We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

Qualitative and semiquantitative analysis of the protein coronas associated to different functionalized nanoparticles

    Francesca Pederzoli

    Department of Life Sciences, University of Modena & Reggio Emilia, Via Campi 103, 41125 Modena, Italy

    ,
    Giovanni Tosi

    Department of Life Sciences, University of Modena & Reggio Emilia, Via Campi 103, 41125 Modena, Italy

    ,
    Filippo Genovese

    Centro Interdipartimentale Grandi Strumenti, University of Modena & Reggio Emilia, via Campi 185, 41125 Modena, Italy

    ,
    Daniela Belletti

    Department of Life Sciences, University of Modena & Reggio Emilia, Via Campi 103, 41125 Modena, Italy

    ,
    Maria Angela Vandelli

    Department of Life Sciences, University of Modena & Reggio Emilia, Via Campi 103, 41125 Modena, Italy

    ,
    Antonio Ballestrazzi

    Department of Scienze Fisiche, Informatiche e Matematiche, University of Modena & Reggio Emilia, Via Campi 213/a, 41125 Modena, Italy

    ,
    Flavio Forni

    Department of Life Sciences, University of Modena & Reggio Emilia, Via Campi 103, 41125 Modena, Italy

    &
    Barbara Ruozi

    *Author for correspondence: Tel.: +39 059 205 8562;

    E-mail Address: barbara.ruozi@unimore.it

    Department of Life Sciences, University of Modena & Reggio Emilia, Via Campi 103, 41125 Modena, Italy

    Published Online:https://doi.org/10.2217/nnm-2017-0250

    Aim: The investigation on protein coronas (PCs) adsorbed onto nanoparticle (NP) surface is representing an open issue due to difficulties in detection and clear isolation of the adsorbed proteins. In this study, we investigated protocols able to isolate the compositions of PCs of three polymeric NPs. Materials & methods: Unfunctionalized NPs and two functionalized NPs were considered as proof-of-concept for the qualitative and semiquantitative analysis of both the corona levels (stably or weakly adsorbed coronas [SC/WC]) of these different nanocarriers. Results: The protocols applied were able to discriminate between the SC and WC. In particular, experimental results indicated that stably adsorbed coronas are prevalently composed by ApoE, while WC by albumin in all the NPs. Otherwise, some differences in WC could be correlated with surface functionalization. Conclusion: This experimental approach allows characterizing the whole PCs, proposing a protocol for isolation of different types of proteins composing PCs.

    References

    • 1 Xu X, Ho W, Zhang X, Bertrand N, Farokhzad O. Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol. Med. 21(4), 223–232 (2015).
    • 2 Jain A, Jain A, Garg NK et al. Surface engineered polymeric nanocarriers mediate the delivery of transferrin–methotrexate conjugates for an improved understanding of brain cancer. Acta Biomater. 24, 140–151 (2015).
    • 3 Sperling RA, Parak W. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philosophical Transactions of the Royal Society of London 368(1915), 1333–1383 (2010).
    • 4 Thanh NT, Green LA. Functionalisation of nanoparticles for biomedical applications. Nano Today 5(3), 213–230 (2010).
    • 5 Chou LY, Ming K, Chan WC. Strategies for the intracellular delivery of nanoparticles. Chem. Soc. Rev. 40(1), 233–245 (2011).
    • 6 Alexander-Bryant AA, VB-F WS, Wen X. Bioengineering strategies for designing targeted cancer therapies. Adv. Cancer Res. 118, 1–59 (2012).
    • 7 Conde J, Dias JT, Grazú V, Moros M, Baptista PV, De La Fuente JM. Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front. Chem. 2, 48 (2014).
    • 8 Praetorius NP, Mandal TK. Engineered nanoparticles in cancer therapy. Recent Pat. Drug Deliv. Formul. (1), 37–51 (2007).
    • 9 Almer G, Wernig K, Saba-Lepek M et al. Adiponectin-coated nanoparticles for enhanced imaging of atherosclerotic plaques. Int. J. Nanomed. 6, 1279 (2011).
    • 10 Satishkumar R, Vertegel A. Antibody-directed targeting of lysostaphin adsorbed onto polylactide nanoparticles increases its antimicrobial activity against S. aureus in vitro. Nanotechnology 22(50), 505103 (2011).
    • 11 Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. J. Control. Release 235, 34–47 (2016).
    • 12 Rao KS, Reddy MK, Horning JL, Labhasetwar V. TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs. Biomaterials 29(33), 4429–4438 (2008).
    • 13 Tosi G, Fano RA, Bondioli L et al. Investigation on mechanisms of glycopeptide nanoparticles for drug delivery across the blood–brain barrier. Nanomedicine 6(3), 423–436 (2011).
    • 14 Cardoso MM, Peca NI, Roque ACA. Antibody-conjugated nanoparticles for therapeutic applications. Curr. Med. Chem. 19(19), 3103–3127 (2012).
    • 15 Farokhzad OC, Jon S, Khademhosseini A, Tran T-NT, Lavan DA, Langer R. Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res. 64(21), 7668–7672 (2004).
    • 16 Cheng J, Teply BA, Sherifi I et al. Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 28(5), 869–876 (2007).
    • 17 Pelaz B, Del Pino P, Maffre P et al. Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano 9(7), 6996–7008 (2015).
    • 18 Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science 263(5153), 1600–1603 (1994).
    • 19 Aggarwal P, Hall JB, Mcleland CB, Dobrovolskaia MA, Mcneil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 61(6), 428–437 (2009).
    • 20 Rahman M, Laurent S, Tawil N, Yahia LH, Mahmoudi M. Nanoparticle and protein corona. Int. J. Nanomedicine 15, 21–44 (2013).
    • 21 Hu W, Peng C, Lv M et al. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5(5), 3693–3700 (2011).
    • 22 Lee YK, Choi EJ, Webster TJ, Kim SH, Khang D. Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity. Int. J. Nanomedicine 10, 97–113 (2015).
    • 23 Monopoli MP, Walczyk D, Campbell A et al. Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 133(8), 2525–2534 (2011).
    • 24 Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. J. Control. Release 161(2), 505–522 (2012).
    • 25 Costantino L, Gandolfi F, Tosi G, Rivasi F, Vandelli MA, Forni F. Peptide-derivatized biodegradable nanoparticles able to cross the blood–brain barrier. J. Control. Release 108(1), 84–96 (2005).
    • 26 Jefferies WA, Brandon MR, Hunt SV, Williams AF, Gatter KC, Mason DY. Transferrin receptor on endothelium of brain capillaries. Nature 312(5990), 162–163 (1984).
    • 27 Tosi G, Vilella A, Chhabra R et al. Insight on the fate of CNS-targeted nanoparticles. Part II: intercellular neuronal cell-to-cell transport. J. Control. Release 177(Suppl. C), 96–107 (2014).
    • 28 Vergoni AV, Tosi G, Tacchi R, Vandelli MA, Bertolini A, Costantino L. Nanoparticles as drug delivery agents specific for CNS: in vivo biodistribution. Nanomed. Nanotechnol. Biol. Med. 5(4), 369–377 (2009).
    • 29 Valenza M, Chen JY, Di Paolo E et al. Cholesterol-loaded nanoparticles ameliorate synaptic and cognitive function in Huntington's disease mice. EMBO Mol. Med. 7(12), 1547–1564 (2015).
    • 30 Posadas I, Monteagudo S, Cena V. Nanoparticles for brain-specific drug and genetic material delivery, imaging and diagnosis. Nanomedicine (Lond.) 11(7), 833–849 (2016).
    • 31 Salvalaio M, Rigon L, Belletti D et al. Targeted polymeric nanoparticles for brain delivery of high molecular weight molecules in lysosomal storage disorders. PLoS ONE 11(5), e0156452 (2016).
    • 32 Grabrucker AM, Garner CC, Boeckers TM et al. Development of novel Zn2+ loaded nanoparticles designed for cell-type targeted drug release in CNS neurons: in vitro evidences. PLoS ONE 6(3), e17851 (2011).
    • 33 Monsalve Y, Tosi G, Ruozi B et al. PEG-g-chitosan nanoparticles functionalized with the monoclonal antibody OX26 for brain drug targeting. Nanomedicine (Lond.) 10(11), 1735–1750 (2015).
    • 34 Tang X, Liang Y, Zhu Y et al. Anti-transferrin receptor-modified amphotericin B-loaded PLA-PEG nanoparticles cure Candidal meningitis and reduce drug toxicity. Int. J. Nanomedicine 10, 6227–6241 (2015).
    • 35 Aktas Y, Yemisci M, Andrieux K et al. Development and brain delivery of chitosan-PEG nanoparticles functionalized with the monoclonal antibody OX26. Bioconjug. Chem. 16(6), 1503–1511 (2005).
    • 36 Loureiro JA, Gomes B, Fricker G, Coelho MAN, Rocha S, Pereira MC. Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer's disease treatment. Colloids Surf. B. Biointerfaces 145, 8–13 (2016).
    • 37 Schnyder A, Krähenbühl S, Drewe J, Huwyler J. Targeting of daunomycin using biotinylated immunoliposomes: pharmacokinetics, tissue distribution and in vitro pharmacological effects. J. Drug Targeting 13(5), 325–335 (2005).
    • 38 Gosk S, Vermehren C, Storm G, Moos T. Targeting anti-transferrin receptor antibody (OX26) and OX26-conjugated liposomes to brain capillary endothelial cells using in situ perfusion. J. Cereb. Blood Flow Metab. 24(11), 1193–1204 (2004).
    • 39 Georgieva JV, Hoekstra D, Zuhorn IS. Smuggling drugs into the brain: an overview of ligands targeting transcytosis for drug delivery across the blood–brain barrier. Pharmaceutics 6(4), 557–583 (2014).
    • 40 Feliu N, Docter D, Heine M et al. In vivo degeneration and the fate of inorganic nanoparticles. Chem. Soc. Rev. 45(9), 2440–2457 (2016).
    • 41 Walkey CD, Olsen JB, Song F et al. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano 8(3), 2439–2455 (2014).
    • 42 Monopoli MP, Pitek AS, Lynch I, Dawson KA. Formation and characterization of the nanoparticle-protein corona. Methods Mol. Biol. 1025, 137–155 (2013).
    • 43 Setyawati MI, Tay CY, Docter D, Stauber RH, Leong DT. Understanding and exploiting nanoparticles’ intimacy with the blood vessel and blood. Chem. Soc. Rev. 44(22), 8174–8199 (2015).
    • 44 Tenzer S, Docter D, Kuharev J et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 8(10), 772–781 (2013).
    • 45 Walkey CD, Olsen JB, Guo H, Emili A, Chan WC. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134(4), 2139–2147 (2012).
    • 46 Sempf K, Arrey T, Gelperina S et al. Adsorption of plasma proteins on uncoated PLGA nanoparticles. Eur. J. Pharm. Biopharm. 85(1), 53–60 (2013).
    • 47 Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm. 55(1), R1–R4 (1989).
    • 48 Joshi D, Lan-Chun-Fung Y, Pritchard J. Determination of poly (vinyl alcohol) via its complex with boric acid and iodine. Anal. Chim. Acta 104(1), 153–160 (1979).
    • 49 Cedervall T, Lynch I, Lindman S et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA 104(7), 2050–2055 (2007).
    • 50 Chambers MC, Maclean B, Burke R et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30(10), 918–920 (2012).
    • 51 Zambaux M, Bonneaux F, Gref R et al. Influence of experimental parameters on the characteristics of poly (lactic acid) nanoparticles prepared by a double emulsion method. J. Control. Release 50(1), 31–40 (1998).
    • 52 Mahley RW. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240(4852), 622–630 (1988).
    • 53 Nadal A, Fuentes E, Pastor J, Mcnaughton PA. Plasma albumin is a potent trigger of calcium signals and DNA synthesis in astrocytes. Proc. Natl Acad. Sci. USA 92(5), 1426–1430 (1995).
    • 54 Meister S, Zlatev I, Stab J et al. Nanoparticulate flurbiprofen reduces amyloid-β42 generation in an in vitro blood–brain barrier model. Alzheimers Res. Ther. 5(6), 51 (2013).
    • 55 Ritz S, Schottler S, Kotman N et al. Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromolecules 16(4), 1311–1321 (2015).
    • 56 Nguyen VH, Lee BJ. Protein corona: a new approach for nanomedicine design. Int. J. Nanomedicine 12, 3137–3151 (2017).
    • 57 Kim HR, Andrieux K, Delomenie C et al. Analysis of plasma protein adsorption onto PEGylated nanoparticles by complementary methods: 2-DE, CE and Protein Lab-on-chip system. Electrophoresis 28(13), 2252–2261 (2007).
    • 58 Klein J. Probing the interactions of proteins and nanoparticles. Proc. Natl Acad. Sci. USA 104(7), 2029–2030 (2007).
    • 59 Gessner A, Lieske A, Paulke BR, Müller RH. Functional groups on polystyrene model nanoparticles: influence on protein adsorption. J. Biomed. Mater. Res. 65(3), 319–326 (2003).
    • 60 Walkey CD, Chan WC. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 41(7), 2780–2799 (2012).
    • 61 Fisher CA, Narayanaswami V, Ryan RO. The lipid-associated conformation of the low density lipoprotein receptor binding domain of human apolipoprotein E. J. Biol. Chem. 275(43), 33601–33606 (2000).
    • 62 Gupta V, Narayanaswami V, Budamagunta MS, Yamamato T, Voss JC, Ryan RO. Lipid-induced extension of apolipoprotein E helix 4 correlates with low density lipoprotein receptor binding ability. J. Biol. Chem. 281(51), 39294–39299 (2006).
    • 63 Larsen MT, Kuhlmann M, Hvam ML, Howard KA. Albumin-based drug delivery: harnessing nature to cure disease. Mol. Cell. Ther. 4, 3 (2016).
    • 64 Wolfram J, Yang Y, Shen J et al. The nano-plasma interface: implications of the protein corona. Colloids Surf. B Biointerfaces 124, 17–24 (2014).
    • 65 Wang F, Yu L, Monopoli MP et al. The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomed. Nanotechnol. Biol. Med. 9(8), 1159–1168 (2013).
    • 66 Docter D, Westmeier D, Markiewicz M, Stolte S, Knauer SK, Stauber RH. The nanoparticle biomolecule corona: lessons learned – challenge accepted? Chem. Soc. Rev. 44(17), 6094–6121 (2015).
    • 67 Pederzoli F, Tosi G, Vandelli MA, Belletti D, Forni F, Ruozi B. Protein corona and nanoparticles: how can we investigate on? Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. doi:10.1002/wnan.1467 (2017) (Epub ahead of print).
    • 68 Ashby J, Pan S, Zhong W. Size and surface functionalization of iron oxide nanoparticles influence the composition and dynamic nature of their protein corona. ACS Appl. Mater. Interfaces 6(17), 15412–15419 (2014).
    • 69 Kreuter J, Shamenkov D, Petrov V et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood–brain barrier. J. Drug Targeting 10(4), 317–325 (2002).
    • 70 Goppert TM, Muller RH. Protein adsorption patterns on poloxamer- and poloxamine-stabilized solid lipid nanoparticles (SLN). Eur. J. Pharm. Biopharm. 60(3), 361–372 (2005).
    • 71 Michaelis K, Hoffmann M, Dreis S et al. Covalent linkage of apolipoprotein E to albumin nanoparticles strongly enhances drug transport into the brain. J. Pharmacol. Exp. Ther. 317(3), 1246–1253 (2006).
    • 72 Dal Magro R, Ornaghi F, Cambianica I et al. ApoE-modified solid lipid nanoparticles: a feasible strategy to cross the blood–brain barrier. J. Control. Release 249, 103–110 (2017).
    • 73 Peng Q, Zhang S, Yang Q et al. Preformed albumin corona, a protective coating for nanoparticles based drug delivery system. Biomaterials 34(33), 8521–8530 (2013).
    • 74 Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307(1), 93–102 (2006).
    • 75 Chang J, Jallouli Y, Kroubi M et al. Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood–brain barrier. Int. J. Pharm. 379(2), 285–292 (2009).