We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia

    Cristina Blanco-Andujar

    **Author for correspondence:

    E-mail Address: cristina.blanco-andujar@ipcms.unistra.fr

    Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG cedex 2, France

    ,
    Aurelie Walter

    Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG cedex 2, France

    ,
    Geoffrey Cotin

    Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG cedex 2, France

    ,
    Catalina Bordeianu

    Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG cedex 2, France

    ,
    Damien Mertz

    Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG cedex 2, France

    ,
    Delphine Felder-Flesch

    Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG cedex 2, France

    &
    Sylvie Begin-Colin

    *Author for correspondence:

    E-mail Address: sylvie.begin@unistra.fr

    Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG cedex 2, France

    Published Online:https://doi.org/10.2217/nnm-2016-5001

    Iron oxide nanoparticles are widely used for biological applications thanks to their outstanding balance between magnetic properties, surface-to-volume ratio suitable for efficient functionalization and proven biocompatibility. Their development for MRI or magnetic particle hyperthermia concentrates much of the attention as these nanomaterials are already used within the health system as contrast agents and heating mediators. As such, the constant improvement and development for better and more reliable materials is of key importance. On this basis, this review aims to cover the rational design of iron oxide nanoparticles to be used as MRI contrast agents or heating mediators in magnetic hyperthermia, and reviews the state of the art of their use as nanomedicine tools.

    References

    • 1 Liong M, Lu J, Kovochich M et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5), 889–896 (2008).
    • 2 Kim J, Piao Y, Hyeon T. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem. Soc. Rev. 38(2), 372–390 (2009).
    • 3 De M, Ghosh PS, Rotello VM. Applications of nanoparticles in biology. Adv. Mater. 20(22), 4225–4241 (2008).
    • 4 Mornet S, Vasseur S, Grasset F, Duguet E. Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 14(14), 2161–2175 (2004).
    • 5 Yoo D, Lee J-H, Shin T-H, Cheon J. Theranostic magnetic nanoparticles. Acc. Chem. Res. 44(10), 863–874 (2011).
    • 6 Colombo M, Carregal-Romero S, Casula MF et al. Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 41(11), 4306–4334 (2012).
    • 7 Dufort S, Bianchi A, Henry M et al. Nebulized gadolinium-based nanoparticles: a theranostic approach for lung tumor imaging and radiosensitization. Small 11(2), 215–221 (2015).
    • 8 Laurent S, Forge D, Port M et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108(6), 2064–2110 (2008).
    • 9 Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18), 3995–4021 (2005).
    • 10 Maier-Hauff K, Rothe R, Scholz R et al. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J. Neurooncol. 81(1), 53–60 (2007).
    • 11 Maier-Hauff K, Ulrich F, Nestler D et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol. 103(2), 317–324 (2011).
    • 12 Thiesen B, Jordan A. Clinical applications of magnetic nanoparticles for hyperthermia. Int. J. Hyperthermia 24(6), 467–474 (2008).
    • 13 Deatsch AE, Evans BA. Heating efficiency in magnetic nanoparticle hyperthermia. J. Magn. Magn. Mater. 354(0), 163–172 (2014).
    • 14 Kolosnjaj-Tabi J, Di Corato R, Lartigue L et al. Heat-generating iron oxide nanocubes: subtle “destructurators” of the tumoral microenvironment. ACS Nano 8(5), 4268–4283 (2014).
    • 15 Lee J-H, Jang J-T, Choi J-S et al. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat. Nanotechnol. 6(7), 418–422 (2011).
    • 16 Jaszberenyi Z, Sour A, Toth E, Benmelouka M, Merbach AE. Fine-tuning water exchange on GdIII poly(amino carboxylates) by modulation of steric crowding. Dalton Trans. (16), 2713–2719 (2005).
    • 17 Duan H, Kuang M, Wang X, Wang YA, Mao H, Nie S. Reexamining the effects of particle size and surface chemistry on the magnetic properties of iron oxide nanocrystals: new insights into spin disorder and proton relaxivity. J. Phys. Chem. C 112(22), 8127–8131 (2008).
    • 18 Villaraza AJL, Bumb A, Brechbiel MW. Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem. Rev. 110(5), 2921–2959 (2010).
    • 19 Joshi HM, Lin YP, Aslam M et al. Effects of shape and size of cobalt ferrite nanostructures on their MRI contrast and thermal activation. J. Phys. Chem. C 113(41), 17761–17767 (2009).
    • 20 Lee J-H, Huh Y-M, Jun Y-W et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 13(1), 95–99 (2006).
    • 21 Smolensky ED, Park H-YE, Zhou Y, Marjanska M, Botta M, Pierre V. Scaling laws at the nano size: the effect of particle size and shape on the magnetism and relaxivity of iron oxide nanoparticle contrast agents. J. Mater. Chem. B 1(22), 2818–2828 (2013).
    • 22 Zeng L, Ren W, Zheng J, Cui P, Wu A. Ultrasmall water-soluble metal-iron oxide nanoparticles as T1-weighted contrast agents for magnetic resonance imaging. Phys. Chem. Chem. Phys. 14(8), 2631–2636 (2012).
    • 23 Kim BH, Lee N, Kim H et al. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J. Am. Chem. Soc. 133(32), 12624–12631 (2011).
    • 24 Pöselt E, Kloust H, Tromsdorf U et al. Relaxivity optimization of a PEGylated iron-oxide-based negative magnetic resonance contrast agent for T2-weighted spin–echo imaging. ACS Nano 6(2), 1619–1624 (2012).
    • 25 Daou TJ, Pourroy G, Bégin-Colin S et al. Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem. Mater. 18(18), 4399–4404 (2006).
    • 26 Wang W, Pacheco V, Krause H-J et al. Size and compositional effects on contrast efficiency of functionalized superparamagnetic nanoparticles at ultralow and ultrahigh magnetic fields. J. Phys. Chem. C 116(33), 17880–17884 (2012).
    • 27 Yoon T-J, Lee H, Shao H, Weissleder R. Highly magnetic core–shell nanoparticles with a unique magnetization mechanism. Angew. Chem. Int. Ed. Engl. 50(20), 4663–4666 (2011).
    • 28 Cheong S, Ferguson P, Feindel KW et al. Simple synthesis and functionalization of iron nanoparticles for magnetic resonance imaging. Angew. Chem. Int. Ed. Engl. 50(18), 4206–4209 (2011).
    • 29 Lacroix L-M, Frey Huls N, Ho D, Sun X, Cheng K, Sun S. Stable single-crystalline body centered cubic Fe nanoparticles. Nano Lett. 11(4), 1641–1645 (2011).
    • 30 Khurshid H, Hadjipanayis CG, Chen H et al. Core/shell structured iron/iron-oxide nanoparticles as excellent MRI contrast enhancement agents. J. Magn. Magn. Mater. 331, 17–20 (2013).
    • 31 De Montferrand C, Hu L, Milosevic I et al. Iron oxide nanoparticles with sizes, shapes and compositions resulting in different magnetization signatures as potential labels for multiparametric detection. Acta Biomater. 9(4), 6150–6157 (2013).
    • 32 Lee N, Choi Y, Lee Y et al. Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r2 relaxivity for highly sensitive in vivo MRI of tumors. Nano Lett. 12(6), 3127–3131 (2012).
    • 33 Zhao Z, Zhou Z, Bao J et al. Octapod iron oxide nanoparticles as high-performance T2 contrast agents for magnetic resonance imaging. Nat. Commun. 4, 2266 (2013).
    • 34 Sathya A, Guardia P, Brescia R et al. CoxFe3–xO4 nanocubes for theranostic applications: effect of cobalt content and particle size. Chem. Mater. 28(6), 1769–1780 (2016).
    • 35 Saha I, Chaffee KE, Duanmu C et al. pH-Sensitive MR responses induced by dendron-functionalized SPIONs. J. Phys. Chem. C 117(4), 1893–1903 (2012).
    • 36 Paquet C, De Haan HW, Leek DM et al. Clusters of superparamagnetic iron oxide nanoparticles encapsulated in a hydrogel: a particle architecture generating a synergistic enhancement of the T2 relaxation. ACS Nano 5(4), 3104–3112 (2011).
    • 37 Roca AG, Veintemillas-Verdaguer S, Port M, Robic C, Serna CJ, Morales MP. Effect of nanoparticle and aggregate size on the relaxometric properties of MR contrast agents based on high quality magnetite nanoparticles. J. Phys. Chem. B 113(19), 7033–7039 (2009).
    • 38 Lartigue L, Hugounenq P, Alloyeau D et al. Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents. ACS Nano 6(12), 10935–10949 (2012).
    • 39 Kostopoulou A, Velu SKP, Thangavel K et al. Colloidal assemblies of oriented maghemite nanocrystals and their NMR relaxometric properties. Dalton Trans. 43(22), 8395–8404 (2014).
    • 40 Laurent S, Bridot J-L, Elst LV, Muller RN. Magnetic iron oxide nanoparticles for biomedical applications. Future Med. Chem. 2(3), 427–449 (2010).
    • 41 Roch A, Gossuin Y, Muller RN, Gillis P. Superparamagnetic colloid suspensions: water magnetic relaxation and clustering. J. Magn. Magn. Mater. 293(1), 532–539 (2005).
    • 42 Li W, Tutton S, Vu AT et al. First-pass contrast-enhanced magnetic resonance angiography in humans using ferumoxytol, a novel ultrasmall superparamagnetic iron oxide (USPIO)-based blood pool agent. J. Magn. Reson. Imag. 21(1), 46–52 (2005).
    • 43 Shen T, Weissleder R, Papisov M, Bogdanov A, Brady TJ. Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. Magn. Reson. Med. 29(5), 599–604 (1993).
    • 44 Jun Y-W, Huh Y-M, Choi J-S et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc. 127(16), 5732–5733 (2005).
    • 45 Tong S, Hou S, Zheng Z, Zhou J, Bao G. Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity. Nano Lett. 10(11), 4607–4613 (2010).
    • 46 Basly B, Popa G, Fleutot S et al. Effect of the nanoparticle synthesis method on dendronized iron oxides as MRI contrast agents. Dalton Trans. 42(6), 2146–2157 (2012).
    • 47 Jang J-T, Nah H, Lee J-H, Moon SH, Kim MG, Cheon J. Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew. Chem. Int. Ed. Engl. 48(7), 1234–1238 (2009).
    • 48 Huang J, Bu L, Xie J et al. Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS Nano 4(12), 7151–7160 (2010).
    • 49 Lee N, Kim H, Choi SH et al. Magnetosome-like ferrimagnetic iron oxide nanocubes for highly sensitive MRI of single cells and transplanted pancreatic islets. Proc. Natl Acad. Sci. USA 108(7), 2662–2667 (2011).
    • 50 Walter A, Garofalo A, Parat A et al. Validation of a dendron concept to tune colloidal stability, MRI relaxivity and bioelimination of functional nanoparticles. J. Mater. Chem. B 3(8), 1484–1494 (2015).
    • 51 Laconte LEW, Nitin N, Zurkiya O et al. Coating thickness of magnetic iron oxide nanoparticles affects R2 relaxivity. J. Magn. Reson. Imag. 26(6), 1634–1641 (2007).
    • 52 Pinho SLC, Laurent S, Rocha JO et al. Relaxometric studies of γ-Fe2O3@SiO2 core shell nanoparticles: when the coating matters. J. Phys. Chem. C 116(3), 2285 (2012).
    • 53 Laurent S, Nicotra C, Gossuin Y et al. Influence of the length of the coating molecules on the nuclear magnetic relaxivity of superparamagnetic colloids. Phys. Status Solidi 1(12), 3644–3650 (2004).
    • 54 Walter A, Billotey C, Garofalo A et al. Mastering the shape and composition of dendronized iron oxide nanoparticles to tailor magnetic resonance imaging and hyperthermia. Chem. Mater. 26(18), 5252–5264 (2014).
    • 55 Bordonali L, Kalaivani T, Sabareesh KPV et al. NMR-D study of the local spin dynamics and magnetic anisotropy in different nearly monodispersed ferrite nanoparticles. J. Phys. 25(6), 066008 (2013).
    • 56 Xiao N, Gu W, Wang H, Deng Y, Shi X, Ye L. T1–T2 dual-modal MRI of brain gliomas using PEGylated Gd-doped iron oxide nanoparticles. J. Colloid Interface Sci. 417, 159–165 (2014).
    • 57 Cui X, Belo S, Krüger D et al. Aluminium hydroxide stabilised MnFe2O4 and Fe3O4 nanoparticles as dual-modality contrasts agent for MRI and PET imaging. Biomaterials 35(22), 5840–5846 (2014).
    • 58 Yang H, Zhuang Y, Sun Y et al. Targeted dual-contrast T1- and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles. Biomaterials 32(20), 4584–4593 (2011).
    • 59 Yang M, Gao L, Liu K et al. Characterization of Fe3O4/SiO2/Gd2O(CO3)2 core/shell/shell nanoparticles as T1 and T2 dual mode MRI contrast agent. Talanta 131, 661–665 (2015).
    • 60 Borges M, Yu S, Laromaine A et al. Dual T1/T2 MRI contrast agent based on hybrid SPION@coordination polymer nanoparticles. RSC Adv. 5(105), 86779–86783 (2015).
    • 61 Kumar CSSR, Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 63(9), 789–808 (2011).
    • 62 Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB. Selective inductive heating of lymph nodes. Ann. Surg. 146(4), 596–606 (1957).
    • 63 Laurent S, Dutz S, Häfeli UO, Mahmoudi M. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interface Sci. 166(1–2), 8–23 (2011).
    • 64 Périgo EA, Hemery G, Sandre O et al. Fundamentals and advances in magnetic hyperthermia. Appl. Phys. Rev. 2(4), 041302 (2015).
    • 65 Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252(0), 370–374 (2002).
    • 66 Kallumadil M, Tada M, Nakagawa T, Abe M, Southern P, Pankhurst QA. Suitability of commercial colloids for magnetic hyperthermia. J. Magn. Magn. Mater. 321(10), 1509–1513 (2009).
    • 67 Cullity BD, Graham CD. Introduction To Magnetic Materials. John Wiley & Sons (2011).
    • 68 Dormann JL, Bessais L, Fiorani D. A dynamic study of small interacting particles: superparamagnetic model and spin-glass laws. J. Phys. C 21(10), 2015 (1988).
    • 69 El-Hilo M, O'grady K, Chantrell RW. The ordering temperature in fine particle systems. J. Magn. Magn. Mater. 117(1–2), 21–28 (1992).
    • 70 Shtrikman S, Wohlfarth EP. The theory of the Vogel–Fulcher law of spin glasses. Phys. Lett. A 85(8), 467–470 (1981).
    • 71 Gunnar G, Rudolf H, Matthias Z, Silvio D, Stefan N, Werner W. The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia. J. Phys. 18(38), S2935 (2006).
    • 72 Brezovich IA. Low frequency hyperthermia: capacitive and ferromagnetic thermoseed methods. Med. Phys. Monogr. 16, 82–111 (1988).
    • 73 Fortin J-P, Wilhelm C, Servais J, Ménager C, Bacri J-C, Gazeau F. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J. Am. Chem. Soc. 129(9), 2628–2635 (2007).
    • 74 De la Presa P, Luengo Y, Multigner M et al. Study of heating efficiency as a function of concentration, size, and applied field in γ-Fe2O3 nanoparticles. J. Phys. Chem. C 116(48), 25602–25610 (2012).
    • 75 Liu XL, Fan HM, Yi JB et al. Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents. J. Mater. Chem. 22(17), 8235–8244 (2012).
    • 76 Jordan A, Rheinländer T, Waldöfner N, Scholz R. Increase of the specific absorption rate (SAR) by magnetic fractionation of magnetic fluids. J. Nanopart. Res. 5(5), 597–600 (2003).
    • 77 Patsula V, Moskvin M, Dutz S, Horák D. Size-dependent magnetic properties of iron oxide nanoparticles. J. Phys. Chem. Solids 88, 24–30 (2016).
    • 78 Guardia P, Di Corato R, Lartigue L et al. Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6(4), 3080–3091 (2012).
    • 79 Kossatz S, Ludwig R, Dähring H et al. High therapeutic efficiency of magnetic hyperthermia in xenograft models achieved with moderate temperature dosages in the tumor area. Pharm. Res. 31(12), 3274–3288 (2014).
    • 80 Brusentsov NA, Gogosov VV, Brusentsova TN et al. Evaluation of ferromagnetic fluids and suspensions for the site-specific radiofrequency-induced hyperthermia of MX11 sarcoma cells in vitro. J. Magn. Magn. Mater. 225(1–2), 113–117 (2001).
    • 81 Gazeau F, Lévy M, Wilhelm C. Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine 3(6), 831–844 (2008).
    • 82 Hergt R, Hiergeist R, Zeisberger M et al. Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. J. Magn. Magn. Mater. 293(1), 80–86 (2005).
    • 83 Baaziz W, Pichon BP, Lefevre C et al. High exchange bias in Fe3−δO4@CoO core shell nanoparticles synthesized by a one-pot seed-mediated growth method. J. Phys. Chem. C 117(21), 11436–11443 (2013).
    • 84 Baaziz W, Pichon BP, Liu Y et al. Tuning of synthesis conditions by thermal decomposition toward core–shell CoxFe1–xO@CoyFe3–yO4 and CoFe2O4 nanoparticles with spherical and cubic shapes. Chem. Mater. 26(17), 5063–5073 (2014).
    • 85 Iglesias Ò, Labarta A, Batlle X. Exchange bias phenomenology and models of core/shell nanoparticles. J. Nanosci. Nanotechnol. 8(6), 2761–2780 (2008).
    • 86 Martinez-Boubeta C, Simeonidis K, Makridis A et al. Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci. Rep. 3, 1652 (2013).
    • 87 Gonzalez-Fernandez MA, Torres TE, Andrés-Vergés M et al. Magnetic nanoparticles for power absorption: optimizing size, shape and magnetic properties. J. Solid State Chem. 182(10), 2779–2784 (2009).
    • 88 Habib AH, Ondeck CL, Chaudhary P, Bockstaller MR, Mchenry ME. Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy. J. Appl. Phys. 103(7), 07A307 (2008).
    • 89 Mehdaoui B, Tan RP, Meffre A et al. Increase of magnetic hyperthermia efficiency due to dipolar interactions in low-anisotropy magnetic nanoparticles: theoretical and experimental results. Phys. Rev. B 87(17), 174419 (2013).
    • 90 Hugounenq P, Levy M, Alloyeau D et al. Iron oxide monocrystalline nanoflowers for highly efficient magnetic hyperthermia. J. Phys. Chem. C 116(29), 15702–15712 (2012).
    • 91 Blanco-Andujar C, Ortega D, Southern P, Pankhurst QA, Thanh NTK. High performance multi-core iron oxide nanoparticles for magnetic hyperthermia: microwave synthesis, and the role of core-to-core interactions. Nanoscale 7(5), 1768–1775 (2015).
    • 92 Dennis CL, Jackson AJ, Borchers JA et al. Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia. Nanotechnology 20(39), 395103 (2009).
    • 93 Novakova AA, Smirnov EV, Gendler TS. Magnetic anisotropy in Fe3O4–PVA nanocomposites as a result of Fe3O4-nanoparticles chains formation. J. Magn. Magn. Mater. 300(1), e354–e358 (2006).
    • 94 Serantes D, Simeonidis K, Angelakeris M et al. Multiplying magnetic hyperthermia response by nanoparticle assembling. J. Phys. Chem. C 118(11), 5927–5934 (2014).
    • 95 Alphandéry E, Faure S, Seksek O, Guyot F, Chebbi I. Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano 5(8), 6279–6296 (2011).
    • 96 Noh S-H, Na W, Jang J-T et al. Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Lett. 12(7), 3716–3721 (2012).
    • 97 Di Corato R, Espinosa A, Lartigue L et al. Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs. Biomaterials 35(24), 6400–6411 (2014).
    • 98 Etheridge ML, Hurley KR, Zhang J et al. Accounting for biological aggregation in heating and imaging of magnetic nanoparticles. Technology 2(3), 214–228 (2014).
    • 99 Creixell M, Bohórquez AC, Torres-Lugo M, Rinaldi C. EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS Nano 5(9), 7124–7129 (2011).
    • 100 Yoo D, Jeong H, Noh S-H, Lee J-H, Cheon J. Magnetically triggered dual functional nanoparticles for resistance-free apoptotic hyperthermia. Angew. Chem. Int. Ed. Engl. 52(49), 13047–13051 (2013).
    • 101 Wang L, Yan Y, Wang M et al. An integrated nanoplatform for theranostics via multifunctional core-shell ferrite nanocubes. J. Mater. Chem. B 4(10), 1908–1914 (2016).
    • 102 Yunok O, Nohyun L, Hyun Wook K, Junghwan O. In vitro study on apoptotic cell death by effective magnetic hyperthermia with chitosan-coated MnFe2O4. Nanotechnology 27(11), 115101 (2016).
    • 103 Connord V, Clerc P, Hallali N et al. Real-time analysis of magnetic hyperthermia experiments on living cells under a confocal microscope. Small 11(20), 2437–2445 (2015).
    • 104 Blanco-Andujar C, Ortega D, Southern P, Nesbitt SA, Thanh NTK, Pankhurst QA. Real-time tracking of delayed-onset cellular apoptosis induced by intracellular magnetic hyperthermia. Nanomedicine 11(2), 121–136 (2015).
    • 105 Shah BP, Pasquale N, De G, Tan T, Ma J, Lee K-B. Core–shell nanoparticle-based peptide therapeutics and combined hyperthermia for enhanced cancer cell apoptosis. ACS Nano 8(9), 9379–9387 (2014).
    • 106 Balasubramanian S, Girija AR, Nagaoka Y et al. Curcumin and 5-Fluorouracil-loaded, folate- and transferrin-decorated polymeric magnetic nanoformulation: a synergistic cancer therapeutic approach, accelerated by magnetic hyperthermia. Int. J. Nanomedicine 9, 437–459 (2014).
    • 107 Sadhukha T, Wiedmann TS, Panyam J. Enhancing therapeutic efficacy through designed aggregation of nanoparticles. Biomaterials 35(27), 7860–7869 (2014).
    • 108 Asín L, Ibarra MR, Tres A, Goya GF. Controlled cell death by magnetic hyperthermia: effects of exposure time, field amplitude, and nanoparticle concentration. Pharm. Res. 29(5), 1319–1327 (2012).
    • 109 Sanchez C, El Hajj Diab D, Connord V et al. Targeting a G-protein-coupled receptor overexpressed in endocrine tumors by magnetic nanoparticles to induce cell death. ACS Nano 8(2), 1350–1363 (2014).
    • 110 Hildebrandt B, Wust P, Ahlers O et al. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol. 43(1), 33–56 (2002).
    • 111 Otte J. Hyperthermia in cancer therapy. Eur. J. Pediatr. 147(6), 560–569 (1988).
    • 112 Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7(11), 653–664 (2010).
    • 113 Gao W, Zheng Y, Wang R et al. A smart, phase transitional and injectable DOX/PLGA-Fe implant for magnetic-hyperthermia-induced synergistic tumor eradication. Acta Biomater. 29, 298–306 (2016).
    • 114 Matsuoka F, Shinkai M, Honda H, Kubo T, Sugita T, Kobayashi T. Hyperthermia using magnetite cationic liposomes for hamster osteosarcoma. Biomagn. Res. Technol. 2, 3–3 (2004).
    • 115 Hilger I, Kaiser WA. Iron oxide-based nanostructures for MRI and magnetic hyperthermia. Nanomedicine 7(9), 1443–1459 (2012).
    • 116 Moroz P, Jones SK, Gray BN. Tumor response to arterial embolization hyperthermia and direct injection hyperthermia in a rabbit liver tumor model. J. Surg. Oncol. 80(3), 149–156 (2002).
    • 117 Huang HS, Hainfeld JF. Intravenous magnetic nanoparticle cancer hyperthermia. Int. J. Nanomedicine 8, 2521–2532 (2013).
    • 118 Dähring H, Grandke J, Teichgräber U, Hilger I. Improved hyperthermia treatment of tumors under consideration of magnetic nanoparticle distribution using micro-CT imaging. Mol. Imag. Biol. 17(6), 763–769 (2015).
    • 119 Shetake NG, Kumar A, Gaikwad S et al. Magnetic nanoparticle-mediated hyperthermia therapy induces tumour growth inhibition by apoptosis and Hsp90/AKT modulation. Int. J. Hyperthermia 31(8), 909–919 (2015).
    • 120 Hayashi K, Nakamura M, Miki H et al. Magnetically responsive smart nanoparticles for cancer treatment with a combination of magnetic hyperthermia and remote-control drug release. Theranostics 4(8), 834–844 (2014).
    • 121 Espinosa A, Bugnet M, Radtke G et al. Can magneto-plasmonic nanohybrids efficiently combine photothermia with magnetic hyperthermia? Nanoscale 7(45), 18872–18877 (2015).
    • 122 Hayashi K, Nakamura M, Sakamoto W et al. Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Theranostics 3(6), 366–376 (2013).
    • 123 Basel MT, Balivada S, Wang H et al. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model. Int. J. Nanomedicine 7, 297–306 (2012).
    • 124 Denardo SJ, Denardo GL, Natarajan A et al. Thermal dosimetry predictive of efficacy of 111In-ChL6 nanoparticle AMF-induced thermoablative therapy for human breast cancer in mice. J. Nucl. Med. 48(3), 437–444 (2007).
    • 125 Xie J, Zhang Y, Yan C et al. High-performance PEGylated Mn–Zn ferrite nanocrystals as a passive-targeted agent for magnetically induced cancer theranostics. Biomaterials 35(33), 9126–9136 (2014).