We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Friedreich ataxia: clinical features and new developments

    Medina Keita

    Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Kellie McIntyre

    Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Layne N Rodden

    Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

    ,
    Kim Schadt

    Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

    &
    David R Lynch

    *Author for correspondence: Tel.: +1 215 590 2242;

    E-mail Address: lynchd@pennmedicine.upenn.edu

    Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

    Published Online:https://doi.org/10.2217/nmt-2022-0011

    Friedreich's ataxia (FRDA), a neurodegenerative disease characterized by ataxia and other neurological features, affects 1 in 50,000–100,000 individuals in the USA. However, FRDA also includes cardiac, orthopedic and endocrine dysfunction, giving rise to many secondary disease characteristics. The multifaceted approach for clinical care has necessitated the development of disease-specific clinical care guidelines. New developments in FRDA include the advancement of clinical drug trials targeting the NRF2 pathway and frataxin restoration. Additionally, a novel understanding of gene silencing in FRDA, reflecting a variegated silencing pattern, will have applications to current and future therapeutic interventions. Finally, new perspectives on the neuroanatomy of FRDA and its developmental features will refine the time course and anatomical targeting of novel approaches.

    Plain language summary

    Friedreich's ataxia (FRDA), mainly referred to as a disorder of balance, is characterized by loss of coordination (ataxia) in the arms and legs and other neurological features, affecting about 1 in 50,000 people in the USA. FRDA also includes serious heart disease, aggressive scoliosis, diabetes and many other disease characteristics. Due to various clinical care needs, disease-specific clinical care guidelines have been created. New developments in FRDA include the advancement of clinical drug trials targeting cell signaling pathways and restoration of the deficient protein found in individuals with FRDA. Additionally, a new understanding of the role of the various genetic factors that contribute to the development of FRDA could affect current and future therapies. Finally, new perspectives on the early developmental features of FRDA will help refine the time course and accelerate new treatments.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Koeppen AH. Friedreich's ataxia: pathology, pathogenesis and molecular genetics. J. Neurol. Sci. 303(1-2), 1–12 (2011).
    • 2. Pandolfo M. Friedreich ataxia: new pathways. J. Child Neurol. 27(9), 1204–1211 (2012).
    • 3. Pandolfo M. Friedreich ataxia. Handb. Clin. Neurol. 103, 275–294 (2012).
    • 4. Pandolfo M. Friedreich ataxia: the clinical picture. J. Neurol. 256(Suppl. 1), 3–8 (2009).
    • 5. Lynch DR, Schadt K, Kichula E, McCormack S, Lin KY. Friedreich Ataxia: Multidisciplinary Clinical Care. J. Multidiscip. Healthcare. 14, 1645–1658 (2021).
    • 6. McDaniel DO, Keats B, Vedanarayanan VV, Subramony SH. Sequence variation in GAA repeat expansions may cause differential phenotype display in Friedreich's ataxia. Mov. Disord. 16(6), 1153–1158 (2001).
    • 7. Stolle CA, Frackelton EC, McCallum J et al. Novel, complex interruptions of the GAA repeat in small, expanded alleles of two affected siblings with late-onset Friedreich ataxia. Mov. Disord. 23(9), 1303–6 (2008).
    • 8. Lazaropoulos M, Dong Y, Clark E et al. Frataxin levels in peripheral tissue in Friedreich ataxia. Ann. Clin. Transl. Neurol. 2(8), 831–842 (2015).
    • 9. Dürr A, Cossee M, Agid Y et al. Clinical and genetic abnormalities in patients with Friedreich's ataxia. N. Engl. J. Med. 335(16), 1169–1175 (1996). • The original article linking clinical phenomena and GAA repeat length in Friedreich ataxia (FRDA).
    • 10. Patel M, Isaacs CJ, Seyer L et al. Progression of Friedreich ataxia: quantitative characterization over 5 years. Ann. Clin. Transl. Neurol. 3(9), 684–694 (2016).
    • 11. Martelli A, Puccio H. Dysregulation of cellular iron metabolism in Friedreich ataxia: from primary iron-sulfur cluster deficit to mitochondrial iron accumulation. Front. Pharmacol. 5, 130 (2014).
    • 12. Rötig A, de Lonlay P, Chretien D et al. Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat. Genet. 17(2), 215–217 (1997).
    • 13. Musco G, Stier G, Kolmerer B et al. Towards a structural understanding of Friedreich's ataxia: the solution structure of frataxin. Structure 8(7), 695–707 (2000).
    • 14. Delatycki MB, Camakaris J, Brooks H et al. Direct evidence that mitochondrial iron accumulation occurs in Friedreich ataxia. Ann. Neurol. 45(5), 673–675 (1999).
    • 15. Harding IH, Lynch DR, Koeppen AH, Pandolfo M. Central nervous system therapeutic targets in Friedreich ataxia. Hum. Gene Ther. 31(23-24), 1226–1236 (2020). • Collaborative expert review identifying present thoughts on neuroanatomy of FRDA.
    • 16. Reetz K, Dogan I, Costa AS et al. Biological and clinical characteristics of the European Friedreich's Ataxia Consortium for Translational Studies (EFACTS) cohort: a cross-sectional analysis of baseline data. Lancet Neurol. 14(2), 174–182 (2015).
    • 17. Corben LA, Tai G, Wilson C, Collins V, Churchyard AJ, Delatycki MB. A comparison of three measures of upper limb function in Friedreich ataxia. J. Neurol. 257(4), 518–523 (2010).
    • 18. Seyer LA, Galetta K, Wilson J et al. Analysis of the visual system in Friedreich ataxia. J. Neurol. 260(9), 2362–2369 (2013).
    • 19. Fortuna F, Barboni P, Liguori R et al. Visual system involvement in patients with Friedreich's ataxia. Brain 132(Pt 1), 116–123 (2009).
    • 20. Givre SJ, Wall M, Kardon RH. Visual loss and recovery in a patient with Friedreich ataxia. J. Neuroophthalmol. 20(4), 229–233 (2000).
    • 21. Pinto F, Amantini A, de Scisciolo G, Scaioli V, Guidi L, Frosini R. Visual involvement in Friedreich's ataxia: PERG and VEP study. Eur. Neurol. 28(5), 246–251 (1988).
    • 22. Carroll WM, Kriss A, Baraitser M, Barrett G, Halliday AM. The incidence and nature of visual pathway involvement in Friedreich's ataxia. A clinical and visual evoked potential study of 22 patients. Brain 103(2), 413–434 (1980).
    • 23. Bogdanova-Mihaylova P, Plapp HM, Chen H et al. Longitudinal assessment using optical coherence tomography in patients with Friedreich's ataxia. Tomography. 7(4), 915–931 (2021).
    • 24. Noval S, Contreras I, Sanz-Gallego I, Manrique RK, Arpa J. Ophthalmic features of Friedreich ataxia. Eye (Lond.). 26(2), 315–320 (2012).
    • 25. Hamedani AG, Hauser LA, Perlman S et al. Longitudinal analysis of contrast acuity in Friedreich ataxia. Neurol. Genet. 4(4), e250 (2018).
    • 26. Afsharian P, Nolan-Kenney R, Lynch AE, Balcer LJ, Lynch DR. Correlation of visual quality of life with clinical and visual status in Friedreich ataxia. J. Neuroophthalmol. 40(2), 213–217 (2020).
    • 27. Rance G, Corben L, Barker E et al. Auditory perception in individuals with Friedreich's ataxia. Audiol Neurootol. 15(4), 229–40 (2010).
    • 28. Koohi N, Thomas-Black G, Giunti P, Bamiou DE. Auditory phenotypic variability in Friedreich's ataxia patients. Cerebellum 20, 497–508 (2021).
    • 29. Rance G, Starr A. Pathophysiological mechanisms and functional hearing consequences of auditory neuropathy. Brain 138(11), 3141–3158 (2015).
    • 30. Starr A, Picton TW, Sininger Y, Hood LJ, Berlin CI. Auditory neuropathy. Brain (Pt 3), 741–53 (1996).
    • 31. Knezevic W, Stewart-Wynne EG. Brainstem auditory evoked responses in hereditary spinocerebellar ataxias. Clin. Exp. Neurol. 21, 149–155 (1985).
    • 32. Rance G, Corben LA, Du Bourg E, King A, Delatycki MB. Successful treatment of auditory perceptual disorder in individuals with Friedreich ataxia. Neuroscience. 171(2), 552 –5 (2010).
    • 33. Tsou AY, Paulsen EK, Lagedrost SJ et al. Cross-sectional analysis of electrocardiograms in a large heterogeneous cohort of Friedreich ataxia subjects. J. Child Neurol. 27(9), 1187–1192 (2012).
    • 34. Legrand L, Weinsaft JW, Pousset F et al. Characterizing cardiac phenotype in Friedreich's ataxia: The CARFA study. Arch. Cardiovasc. Dis. 115(1), 17–28 (2022).
    • 35. Pousset F, Legrand L, Monin ML et al. A 22-year follow-up study of long-term cardiac outcome and predictors of survival in Friedreich ataxia. JAMA Neurol. 72(11), 1334–1341 (2015).
    • 36. Hanson E, Sheldon M, Pacheco B, Alkubeysi M, Raizada V. Heart disease in Friedreich's ataxia. World J. Cardiol. 11(1), 1–12 (2019).
    • 37. Payne RM. The heart in Friedreich's ataxia: basic findings and clinical implications. Prog Pediatr Cardiol. 31(2), 103–109 (2011).
    • 38. Lynch DR, Regner SR, Schadt KA, Friedman LS, Lin KY, St John Sutton MG. Management and therapy for cardiomyopathy in Friedreich's ataxia. Expert Rev. Cardiovasc. Ther. 10(6), 767–777 (2012).
    • 39. Koeppen AH, Ramirez RL, Becker AB et al. The pathogenesis of cardiomyopathy in Friedreich ataxia. PLoS ONE 10(3), e0116396 (2015).
    • 40. Dedobbeleer C, Rai M, Donal E, Pandolfo M, Unger P. Normal left ventricular ejection fraction and mass but subclinical myocardial dysfunction in patients with Friedreich's ataxia. Eur Heart J Cardiovasc. Imaging. 13(4), 346–352 (2012).
    • 41. St John Sutton M, Ky B, Regner SR et al. Longitudinal strain in Friedreich ataxia: a potential marker for early left ventricular dysfunction. Echocardiography 31(1), 50–57 (2014).
    • 42. Legrand L, Heuze C, Diallo A et al. Prognostic value of longitudinal strain and ejection fraction in Friedreich's ataxia. Int. J. Cardiol. 330, 259–265 (2021).
    • 43. Friedman LS, Schadt KA, Regner SR et al. Elevation of serum cardiac troponin I in a cross-sectional cohort of asymptomatic subjects with Friedreich ataxia. Int. J. Cardiol. 167(4), 1622–1624 (2013).
    • 44. Legrand L, Maupain C, Monin ML et al. Significance of NT-proBNP and high-sensitivity troponin in Friedreich ataxia. J. Clin. Med. 9(6), 1630 (2020).
    • 45. Rummey C, Flynn JM, Corben LA et al. Scoliosis in Friedreich's ataxia: longitudinal characterization in a large heterogeneous cohort. Ann. Clin. Transl. Neurol. 8(6), 1239–1250 (2021).
    • 46. Tsirikos AI, Smith G. Scoliosis in patients with Friedreich's ataxia. J. Bone Joint Surg. Br. 94(5), 684–689 (2012).
    • 47. Simon AL, Meyblum J, Roche B et al. Scoliosis in patients with friedreich ataxia: results of a consecutive prospective series. Spine Deform. 7(5), 812–821 (2019).
    • 48. Reetz K, Dogan I, Hohenfeld C et al. Nonataxia symptoms in Friedreich Ataxia: report from the Registry of the European Friedreich's Ataxia Consortium for Translational Studies (EFACTS). Neurology 91(10), e917–e930 (2018).
    • 49. Milbrandt TA, Kunes JR, Karol LA. Friedreich's ataxia and scoliosis: the experience at two institutions. J. Pediatr. Orthop. 28(2), 234–238 (2008).
    • 50. Tamaroff J, DeDio A, Wade K et al. Friedreich's Ataxia related Diabetes: epidemiology and management practices. Diabetes Res. Clin. Pract. 186, 109828 (2022).
    • 51. Azzi AS, Cosentino C, Kibanda J, Féry F, Cnop M. OGTT is recommended for glucose homeostasis assessments in Friedreich ataxia. Ann. Clin. Transl. Neurol. 6(1), 161–166 (2018).
    • 52. McCormick A, Farmer J, Perlman S et al. Impact of diabetes in the Friedreich ataxia clinical outcome measures study. Ann. Clin. Transl. Neurol. 4(9), 622–631 (2017).
    • 53. Isaacs CJ, Brigatti KW, Kucheruk O et al. Effects of genetic severity on glucose homeostasis in Friedreich ataxia. Muscle Nerve 54(5), 887–894 (2016).
    • 54. Chakraborty PP, Ray S, Bhattacharjee R et al. First presentation of diabetes as diabetic ketoacidosis in a case of Friedreich's ataxia. Clin. Diabetes. 33(2), 84–86 (2015).
    • 55. Greeley NR, Regner S, Willi S, Lynch DR. Cross-sectional analysis of glucose metabolism in Friedreich ataxia. J. Neurol. Sci. 342(1-2), 29–35 (2014).
    • 56. Pappa A, Häusler MG, Veigel A et al. Diabetes mellitus in Friedreich Ataxia: a case series of 19 patients from the German-Austrian diabetes mellitus registry. Diabetes Res. Clin. Pract. 141, 229–236 (2018).
    • 57. Corben LA, Ho M, Copland J, Tai G, Delatycki MB. Increased prevalence of sleep-disordered breathing in Friedreich ataxia. Neurology 81(1), 46–51- (2013).
    • 58. Reddy PL, Grewal RP. Friedreich's ataxia: a clinical and genetic analysis. Clin. Neurol. Neurosurg. 109(2), 200–202 (2007).
    • 59. Eigentler A, Nachbauer W, Donnemiller E, Poewe W, Gasser RW, Boesch S. Low bone mineral density in Friedreich ataxia. Cerebellum. 13(5), 549–557 (2014).
    • 60. Weber DR. Bone health in childhood chronic disease. Endocrinol. Metab. Clin. North Am. 49(4), 637–650 (2020).
    • 61. Dunn J, Tamaroff J, DeDio A et al. Bone mineral density and current bone health screening practices in Friedreich's ataxia. Front. Neurosci. 16, 818750 (2022).
    • 62. Han EY, Choi JH, Kim SH, Im SH. The effect of weight bearing on bone mineral density and bone growth in children with cerebral palsy: a randomized controlled preliminary trial. Medicine 96(10), e5896 (2017).
    • 63. Ward LM, Hadjiyannakis S, McMillan HJ, Noritz G, Weber DR. Bone health and osteoporosis management of the patient with duchenne muscular dystrophy. Pediatrics 142, S34–S42 (2018).
    • 64. Musegante AF, Almeida PN, Monteiro RT, Barroso U Jr. Urinary symptoms and urodynamics findings in patients with Friedreich's ataxia. Int. Braz. J. Urol. 39(6), 867–874 (2013).
    • 65. Nieto A, Hernández-Torres A, Pérez-Flores J, Montón F. Depressive symptoms in Friedreich ataxia. Int. J. Clin. Health Psychol. 18(1), 18–26 (2018)
    • 66. Pérez-Flores J, Hernández-Torres A, Montón F, Nieto A. Health-related quality of life and depressive symptoms in Friedreich ataxia. Qual. Life Res. 29(2), 413–420 (2020).
    • 67. Costabile T, Capretti V, Abate F et al. Emotion recognition and psychological comorbidity in Friedreich's ataxia. Cerebellum. 17(3), 336–345 (2018).
    • 68. Sayah S, Rotgé JY, Francisque H et al. Personality and neuropsychological profiles in Friedreich ataxia. Cerebellum. 17(2), 204–212 (2018).
    • 69. Flood MK, Perlman SL. The mental status of patients with Friedreich's ataxia. J. Neurosci. Nurs. 19(5), 251–255 (1987).
    • 70. Xiong E, Lynch AE, Corben LA et al. Health related quality of life in Friedreich Ataxia in a large heterogeneous cohort. J. Neurol. Sci. 410, 116642 (2020).
    • 71. Corben LA, Lynch D, Pandolfo M, Schulz JB, Delatycki MB. Clinical Management Guidelines Writing Group. Consensus clinical management guidelines for Friedreich ataxia. Orphanet. J. Rare Dis. 9, 184 (2014).
    • 72. Deutsch EC, Seyer LA, Perlman SL, Yu J, Lynch DR. Clinical monitoring in a patient with Friedreich ataxia and osteogenic sarcoma. J. Child Neurol. 27(9), 1159–1163 (2012).
    • 73. Griffiths JD, Stark RJ, Ding JC, Cooper IA. Vincristine neurotoxicity in Charcot-Marie-Tooth syndrome. Med. J. Aust. 143(7), 305–306 (1985).
    • 74. Graf WD, Chance PF, Lensch MW, Eng LJ, Lipe HP, Bird TD. Severe vincristine neuropathy in Charcot-Marie-Tooth disease type 1A. Cancer 77(7), 1356–1362 (1996).
    • 75. Kearney M, Orrell RW, Fahey M, Pandolfo M. Antioxidants and other pharmacological treatments for Friedreich ataxia. Cochrane Database Syst. Rev. 4, CD007791 (2012).
    • 76. Myers L, Farmer JM, Wilson RB et al. Antioxidant use in Friedreich ataxia. J. Neurol. Sci. 267(1-2), 174–176 (2008).
    • 77. Meier T, Perlman SL, Rummey C, Coppard NJ, Lynch DR. Assessment of neurological efficacy of idebenone in pediatric patients with Friedreich's ataxia: data from a 6-month controlled study followed by a 12-month open-label extension study. J. Neurol. 259(2), 284–291 (2012).
    • 78. Lagedrost SJ, Sutton MS, Cohen MS et al. Idebenone in Friedreich ataxia cardiomyopathy-results from a 6-month phase III study (IONIA). Am. Heart J. 161(3), 639–645.e1 (2011).
    • 79. Lynch DR, Perlman SL, Meier T. A Phase III, double-blind, placebo-controlled trial of idebenone in friedreich ataxia. Arch. Neurol. 67(8), 941–947 (2010).
    • 80. Rinaldi C, Tucci T, Maione S, Giunta A, De Michele G, Filla A. Low-dose idebenone treatment in Friedreich's ataxia with and without cardiac hypertrophy. J. Neurol. 256(9), 1434–1437 (2009).
    • 81. Schulz JB, Di Prospero NA, Fischbeck K. Clinical experience with high dose idebenone in Friedreich ataxia. J. Neurol. 256(Suppl. 1), 42–5 (2009).
    • 82. Meier T, Buyse G. Idebenone: an emerging therapy for Friedreich ataxia. J. Neurol. 256(Suppl. 1), 25–30 (2009).
    • 83. Pineda M, Arpa J, Montero R et al. Idebenone treatment in paediatric and adult patients with Friedreich ataxia: long-term follow-up. Eur. J. Paediatr. Neurol. 12(6), 470–475 (2008).
    • 84. Di Prospero NA, Baker A, Jeffries N, Fischbeck KH. Neurological effects of high-dose idebenone in patients with Friedreich's ataxia: a randomised, placebo-controlled trial. Lancet Neurol. 6(10), 878–886 (2007).
    • 85. Di Prospero NA, Sumner CJ, Penzak SR, Ravina B, Fischbeck KH, Taylor JP. Safety, tolerability, and pharmacokinetics of high dose idebenone in patients with Friedreich ataxia. Arch. Neurol. 64(6), 803–808 (2007).
    • 86. Zesiewicz T, Heerinckx F, De Jager R et al. Randomized, clinical trial of RT001: early signals of efficacy in Friedreich's ataxia. Mov. Disord. 33(6), 1000–1005 (2018).
    • 87. Brenna JT, James G, Midei M et al. J. Pharm. Sci. 109(11), 3496–3503 (2020).
    • 88. Mariotti C, Fancellu R, Caldarazzo S et al. Erythropoietin in Friedreich ataxia: no effect on frataxin in a randomized controlled trial. Mov. Disord. 27(3), 446–449 (2012).
    • 89. Saccà F, Puorro G, Marsili A et al. Long-term effect of epoetin alfa on clinical and biochemical markers in friedreich ataxia. Mov. Disord. 31(5), 734–741 (2016).
    • 90. Boesch S, Nachbauer W, Mariotti C et al. Safety and tolerability of carbamylated erythropoietin in Friedreich's ataxia. Mov. Disord. 29(7), 935–939 (2014).
    • 91. Nachbauer W, Boesch S, Schneider R et al. Bioenergetics of the calf muscle in Friedreich ataxia patients measured by 31P-MRS before and after treatment with recombinant human erythropoietin. PLoS ONE 8(7), e69229 (2013).
    • 92. Nachbauer W, Hering S, Seifert M et al. Effects of erythropoietin on frataxin levels and mitochondrial function in Friedreich ataxia–a dose-response trial. Cerebellum. 10(4), 763–769 (2011).
    • 93. Saccà F, Piro R, De Michele G et al. Epoetin alfa increases frataxin production in Friedreich's ataxia without affecting hematocrit. Mov. Disord. 26(4), 739–742 (2011).
    • 94. Boesch S, Sturm B, Hering S et al. Neurological effects of recombinant human erythropoietin in Friedreich's ataxia: a clinical pilot trial. Mov. Disord. 23(13), 1940–1944 (2008).
    • 95. Boesch S, Sturm B, Hering S, Goldenberg H, Poewe W, Scheiber-Mojdehkar B. Friedreich's ataxia: clinical pilot trial with recombinant human erythropoietin. Ann. Neurol. 62(5), 521–524 (2007).
    • 96. Britti E, Delaspre F, Sanz-Alcázar A et al. Calcitriol increases frataxin levels and restores mitochondrial function in cell models of Friedreich ataxia. Biochem. J. 478(1), 1–20 (2021).
    • 97. Alfedi G, Luffarelli R, Condò I et al. Drug repositioning screening identifies etravirine as a potential therapeutic for friedreich's ataxia. Mov. Disord. 34(3), 323–334 (2019).
    • 98. Vavla M, Arrigoni F, Toschi N et al. Sensitivity of neuroimaging indicators in monitoring the effects of interferon gamma treatment in Friedreich's ataxia. Front. Neurosci. 14, 872 (2020).
    • 99. Vavla M, D'Angelo MG, Arrigoni F. Safety and efficacy of interferon γ in friedreich's ataxia. Mov. Disord. 35(2), 370–371 (2020).
    • 100. Lynch DR, Hauser L, McCormick A et al. Randomized, double-blind, placebo-controlled study of interferon-γ 1b in Friedreich ataxia. Ann. Clin. Transl. Neurol. 6(3), 546–553 (2019).
    • 101. Wyller VB, Jacobsen K, Dahl MB et al. Interferon gamma may improve cardiac function in Friedreich's ataxia cardiomyopathy. Int. J. Cardiol. 221, 376–378 (2016).
    • 102. Marcotulli C, Fortuni S, Arcuri G et al. GIFT-1, a phase IIa clinical trial to test the safety and efficacy of IFNγ administration in FRDA patients. Neurol. Sci. 37(3), 361–364 (2016).
    • 103. Seyer L, Greeley N, Foerster D et al. Open-label pilot study of interferon gamma-1b in Friedreich ataxia. Acta Neurol. Scand. 132(1), 7–15 (2015).
    • 104. Pandolfo M, Arpa J, Delatycki MB et al. Deferiprone in Friedreich ataxia: a 6-month randomized controlled trial. Ann. Neurol. 76(4), 509–521 (2014).
    • 105. Arpa J, Sanz-Gallego I, Rodríguez-de-Rivera FJ et al. Triple therapy with deferiprone, idebenone and riboflavin in Friedreich's ataxia - open-label trial. Acta Neurol. Scand. 129(1), 32–40 (2014).
    • 106. Arpa J, Sanz-Gallego I, Rodríguez-de-Rivera FJ et al. Triple therapy with darbepoetin alfa, idebenone, and riboflavin in Friedreich's ataxia: an open-label trial. Cerebellum. 12(5), 713–720 (2013).
    • 107. Patel M, Schadt K, McCormick A, Isaacs C, Dong YN, Lynch DR. Open-label pilot study of oral methylprednisolone for the treatment of patients with friedreich ataxia. Muscle Nerve 60(5), 571–575 (2019).
    • 108. Qureshi MY, Patterson MC, Clark V et al. Safety and efficacy of (+)-epicatechin in subjects with Friedreich's ataxia: a phase II, open-label, prospective study. J. Inherit. Metab. Dis. 44(2), 502–514 (2021).
    • 109. Yiu EM, Tai G, Peverill RE et al. An open-label trial in Friedreich ataxia suggests clinical benefit with high-dose resveratrol, without effect on frataxin levels. J. Neurol. 262(5), 1344–1353 (2015).
    • 110. Lynch DR, Willi SM, Wilson RB et al. A0001 in Friedreich ataxia: biochemical characterization and effects in a clinical trial. Mov. Disord. 27(8), 1026–1033 (2012).
    • 111. Zesiewicz T, Salemi JL, Perlman S et al. Double-blind, randomized, and controlled trial of EPI-743 in Friedreich's ataxia. Neurodegener. Dis. Manag. 8(4), 233–242 (2018).
    • 112. Enns GM, Kinsman SL, Perlman SL et al. Initial experience in the treatment of inherited mitochondrial disease with EPI-743. Mol. Genet. Metab. 105(1), 91–102 (2012).
    • 113. Rodríguez-Pascau L, Britti E, Calap-Quintana P et al. PPAR gamma agonist leriglitazone improves frataxin-loss impairments in cellular and animal models of Friedreich Ataxia. Neurobiol. Dis. 148, 105162 (2021).
    • 114. García-Giménez JL, Sanchis-Gomar F, Pallardó FV. Could thiazolidinediones increase the risk of heart failure in Friedreich's ataxia patients? Mov. Disord. 26(5), 769–771 (2011).
    • 115. Marmolino D, Acquaviva F, Pinelli M et al. PPAR-gamma agonist Azelaoyl PAF increases frataxin protein and mRNA expression: new implications for the Friedreich's ataxia therapy. Cerebellum. 8(2), 98–103 (2009).
    • 116. D'Oria V, Petrini S, Travaglini L et al. Frataxin deficiency leads to reduced expression and impaired translocation of NF-E2-related factor (Nrf2) in cultured motor neurons. Int. J. Mol. Sci. 14(4), 7853–7865 (2013).
    • 117. Shan Y, Schoenfeld RA, Hayashi G et al. Frataxin deficiency leads to defects in expression of antioxidants and Nrf2 expression in dorsal root ganglia of the Friedreich's ataxia YG8R mouse model. Antioxid. Redox Signal. 19(13), 1481–1493 (2013).
    • 118. Paupe V, Dassa EP, Goncalves S et al. Impaired nuclear Nrf2 translocation undermines the oxidative stress response in Friedreich ataxia. PLoS ONE 4(1), e4253 (2009).
    • 119. La Rosa P, Russo M, D'Amico J et al. Nrf2 induction re-establishes a proper neuronal differentiation program in Friedreich's ataxia neural stem cells. Front. Cell. Neurosci. 13, 356 (2019).
    • 120. Abeti R, Baccaro A, Esteras N, Giunti P. Novel Nrf2-inducer prevents mitochondrial defects and oxidative stress in Friedreich's ataxia models. Front. Cell. Neurosci. 12, 188 (2018).
    • 121. Petrillo S, Piermarini E, Pastore A et al. Nrf2-inducers counteract neurodegeneration in frataxin-silenced motor neurons: disclosing new therapeutic targets for Friedreich's ataxia. Int. J. Mol. Sci. 18(10), 2173 (2017).
    • 122. Anzovino A, Chiang S, Brown BE, Hawkins CL, Richardson DR, Huang ML. Molecular alterations in a mouse cardiac model of Friedreich ataxia: an impaired Nrf2 response mediated via upregulation of Keap1 and activation of the Gsk3β Axis. Am. J. Pathol. 187(12), 2858–2875 (2017).
    • 123. Abeti R, Uzun E, Renganathan I, Honda T, Pook MA, Giunti P. Targeting lipid peroxidation and mitochondrial imbalance in Friedreich's ataxia. Pharmacol. Res. 99, 344–350 (2015).
    • 124. La Rosa P, Petrillo S, Turchi R et al. The Nrf2 induction prevents ferroptosis in Friedreich's ataxia. Redox Biol. 38, 101791 (2021).
    • 125. Lynch DR, Chin MP, Delatycki MB et al. Safety and efficacy of omaveloxolone in Friedreich ataxia (MOXIe Study). Ann. Neurol. 89(2), 212–225 (2021). •• Along with reference 127, one of two double blind trials showing benefits of omaveloxolone.
    • 126. Petrillo S, D'Amico J, La Rosa P, Bertini ES, Piemonte F. Targeting NRF2 for the treatment of Friedreich's ataxia: a comparison among drugs. Int. J. Mol. Sci. 20(20), 5211 (2019).
    • 127. Lynch DR, Farmer J, Hauser L et al. Safety, pharmacodynamics, and potential benefit of omaveloxolone in Friedreich ataxia. Ann. Clin. Transl. Neurol. 6(1), 15–26 (2018). •• Along with reference 125, one of two double blind trials showing benefits of omaveloxolone.
    • 128. Sahdeo S, Scott BD, McMackin MZ et al. Dyclonine rescues frataxin deficiency in animal models and buccal cells of patients with Friedreich's ataxia. Hum. Mol. Genet. 23(25), 6848–6862 (2014).
    • 129. Li Y, Polak U, Bhalla AD et al. Excision of expanded GAA repeats alleviates the molecular phenotype of Friedreich's ataxia. Mol. Ther. 23(6), 1055–1065 (2015).
    • 130. Codazzi F, Hu A, Rai M et al. Friedreich ataxia-induced pluripotent stem cell-derived neurons show a cellular phenotype that is corrected by a benzamide HDAC inhibitor. Hum. Mol. Genet. 25(22), 4847–4855 (2016).
    • 131. Herman D, Jenssen K, Burnett R, Soragni E, Perlman SL, Gottesfeld JM. Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia. Nat. Chem. Biol. 2(10), 551–8 (2006).
    • 132. Rai M, Soragni E, Jenssen K et al. HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model. PLoS ONE 3(4), e1958 (2008).
    • 133. Chutake YK, Lam CC, Costello WN, Anderson MP, Bidichandani SI. Reversal of epigenetic promoter silencing in Friedreich ataxia by a class I histone deacetylase inhibitor. Nucleic Acids Res. 44(11), 5095–5104 (2016).
    • 134. Soragni E, Miao W, Iudicello M et al. Epigenetic therapy for Friedreich ataxia. Ann. Neurol. 76(4), 489–508 (2014).
    • 135. Vyas PM, Tomamichel WJ, Pride PM et al. A TAT-frataxin fusion protein increases lifespan and cardiac function in a conditional Friedreich's ataxia mouse model. Hum. Mol. Genet. 21(6), 1230–1247 (2012).
    • 136. Britti E, Delaspre F, Feldman A et al. Frataxin-deficient neurons and mice models of Friedreich ataxia are improved by TAT-MTScs-FXN treatment. J. Cell Mol. Med. 22(2), 834–848 (2018).
    • 137. Mincheva-Tasheva S, Obis E, Tamarit J, Ros J. Apoptotic cell death and altered calcium homeostasis caused by frataxin depletion in dorsal root ganglia neurons can be prevented by BH4 domain of Bcl-xL protein. Hum. Mol. Genet. 23(7), 1829–1841 (2014).
    • 138. Perdomini M, Belbellaa B, Monassier L et al. Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich's ataxia. Nat. Med. 20(5), 542–547 (2014).
    • 139. Piguet F, de Montigny C, Vaucamps N, Reutenauer L, Eisenmann A, Puccio H. Rapid and complete reversal of sensory ataxia by gene therapy in a novel model of Friedreich ataxia. Mol. Ther. 26(8), 1940–1952 (2018).
    • 140. Belbellaa B, Reutenauer L, Monassier L, Puccio H. Correction of half the cardiomyocytes fully rescue Friedreich ataxia mitochondrial cardiomyopathy through cell-autonomous mechanisms. Hum. Mol. Genet. 28(8), 1274–1285 (2019).
    • 141. Cherif K, Gérard C, Rousseau J, Ouellet DL, Chapdelaine P, Tremblay JP. Increased Frataxin Expression Induced in Friedreich Ataxia Cells by Platinum TALE-VP64s or Platinum TALE SunTag. Mol. Ther. Nucleic Acids. 12, 19–32 (2018).
    • 142. ClinicalTrials.gov. Single Ascending Dose Study of CTI-1601 Versus Placebo in Subjects With Friedreich's Ataxia (2020). https://clinicaltrials.gov/ct2/show/NCT04176991
    • 143. Fischell JM, Fishman PS. A multifaceted approach to optimizing AAV delivery to the brain for the treatment of neurodegenerative diseases. Front Neurosci. 15, 747726 (2021).
    • 144. Hinderer C, Bell P, Katz N et al. Evaluation of intrathecal routes of administration for adeno-associated viral vectors in large animals. Hum. Gene Ther. 29(1), 15–24 (2018).
    • 145. Taymans JM, Vandenberghe LH, Haute CV et al. Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Hum. Gene Ther. 18(3), 195–206 (2007).
    • 146. Belbellaa B, Reutenauer L, Messaddeq N, Monassier L, Puccio H. High levels of Frataxin overexpression lead to mitochondrial and cardiac toxicity in mouse models. Mol. Ther. Methods Clin. Dev. 19, 120–138 (2020).
    • 147. Erwin GS, Grieshop MP, Ali A et al. Synthetic transcription elongation factors license transcription across repressive chromatin. Science 358(6370), 1617–1622 (2017). •• Article showing the elegant approach to the Gene TAC drug design.
    • 148. Rodden LN, Chutake YK, Gilliam K et al. Methylated and unmethylated epialleles support variegated epigenetic silencing in Friedreich ataxia. Hum. Mol. Genet. 29(23), 3818–3829 (2021). •• Initial article on variegated silencing, a mechanism that may revolutionize thought process in FRDA.
    • 149. Rodden LN, Gilliam KM, Lam C et al. DNA methylation in Friedreich ataxia silences expression of frataxin isoform E. Sci. Rep. 12(1), 5031 (2022).
    • 150. Rodden LN, Gilliam KM, Lam C, Lynch DR, Bidichandani SI. Epigenetic heterogeneity in Friedreich ataxia underlies variable FXN reactivation. Front. Neurosci. 15, 752921 (2021).
    • 151. Saveliev A, Everett C, Sharpe T, Webster Z, Festenstein R. DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing. Nature 422(6934), 909–913 (2003).
    • 152. Herman D, Jenssen K, Burnett R, Soragni E, Perlman SL, Gottesfeld JM. Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia. Nat. Chem. Biol. 2(10), 551–558 (2006).
    • 153. Greene E, Mahishi L, Entezam A, Kumari D, Usdin K. Repeat-induced epigenetic changes in intron 1 of the frataxin gene and its consequences in Friedreich ataxia. Nucleic Acids Res. 35(10), 3383–3390 (2007).
    • 154. Soragni E, Herman D, Dent SY, Gottesfeld JM, Wells RD, Napierala M. Long intronic GAA*TTC repeats induce epigenetic changes and reporter gene silencing in a molecular model of Friedreich ataxia. Nucleic Acids Res. 36(19), 6056–6065 (2008).
    • 155. Castaldo I, Pinelli M, Monticelli A et al. DNA methylation in intron 1 of the frataxin gene is related to GAA repeat length and age of onset in Friedreich ataxia patients. J. Med. Genet. 45(12), 808–812 (2008).
    • 156. Al-Mahdawi S, Pinto RM, Ismail O et al. The Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic changes in human and transgenic mouse brain and heart tissues. Hum. Mol. Genet. 17(5), 735–746 (2008).
    • 157. De Biase I, Chutake YK, Rindler PM, Bidichandani SI. Epigenetic silencing in Friedreich ataxia is associated with depletion of CTCF (CCCTC-binding factor) and antisense transcription. PLoS ONE 4(11), e7914 (2009).
    • 158. Evans-Galea MV, Carrodus N, Rowley SM et al. FXN methylation predicts expression and clinical outcome in Friedreich ataxia. Ann. Neurol. 71(4), 487–497 (2012).
    • 159. Chan PK, Torres R, Yandim C et al. Heterochromatinization induced by GAA-repeat hyperexpansion in Friedreich's ataxia can be reduced upon HDAC inhibition by vitamin B3. Hum. Mol. Genet. 22(13), 2662–2675 (2013).
    • 160. Muller HJ. Types of visible variations induced by x-rays in drosophila. J. Genet. 1930 XXII, 22, 299–333 (1930).
    • 161. Rodden L, Rummey C, Dong YN, Lynch DR. Clinical evidence for variegated silencing in Friedreich ataxia patients. Neurology Genet. 8(3), e683 (2022).
    • 162. Lynch DR, Deutsch EC, Wilson RB, Tennekoon G. answered questions in Friedreich ataxia. J. Child Neurol. 27(9), 1223–1229 (2012).
    • 163. Koeppen AH, Becker AB, Qian J, Gelman BB, Mazurkiewicz JE. Friedreich ataxia: developmental failure of the dorsal root entry zone. J. Neuropathol. Exp. Neurol. 76(11), 969–977 (2017).
    • 164. Santoro L, Perretti A, Lanzillo B et al. Influence of GAA expansion size and disease duration on central nervous system impairment in Friedreich's ataxia: contribution to the understanding of the pathophysiology of the disease. Clin. Neurophysiol. 111(6), 1023–1030 (2000).
    • 165. Coppola G, De Michele G, Cavalcanti F et al. Why do some Friedreich's ataxia patients retain tendon reflexes? A clinical, neurophysiological and molecular study. J. Neurol. 246(5), 353–357 (1999).
    • 166. Santoro L, De Michele G, Perretti A et al. Relation between trinucleotide GAA repeat length and sensory neuropathy in Friedreich's ataxia. J. Neurol. Neurosurg. Psychiatry 66(1), 93–96 (1999).
    • 167. Naeije G, Coquelet N, Wens V, Goldman S, Pandolfo M, De Tiège X. Age of onset modulates resting-state brain network dynamics in Friedreich Ataxia. Hum. Brain. Mapp. 42(16), 5334–5344 (2021).
    • 168. Naeije G, Wens V, Coquelet N et al. Age of onset determines intrinsic functional brain architecture in Friedreich ataxia. Ann. Clin. Transl. Neurol. 7(1), 94–104 (2020).
    • 169. Naeije G, Bourguignon M, Wens V et al. Electrophysiological evidence for limited progression of the proprioceptive impairment in Friedreich ataxia. Clin. Neurophysiol. 131(2), 574–576 (2020).
    • 170. Marty B, Naeije G, Bourguignon M et al. Evidence for genetically determined degeneration of proprioceptive tracts in Friedreich ataxia. Neurology 93(2), e116–e124 (2019).
    • 171. Kemp KC, Cook AJ, Redondo J, Kurian KM, Scolding NJ, Wilkins A. Purkinje cell injury, structural plasticity and fusion in patients with Friedreich's ataxia. Acta Neuropathol. Commun. 4(1), 53 (2016).
    • 172. Quercia N, Somers GR, Halliday W, Kantor PF, Banwell B, Yoon G. Friedreich ataxia presenting as sudden cardiac death in childhood: clinical, genetic and pathological correlation, with implications for genetic testing and counselling. Neuromuscul. Disord. 20(5), 340–342 (2010).