We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Glutamate modulation for the treatment of levodopa induced dyskinesia: a brief review of the drugs tested in the clinic

    Imane Frouni

    Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, H3A 2B4, Canada

    Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, H3C 3J7, Canada

    &
    Philippe Huot

    *Author for correspondence: Tel.: +1 514 398 8385;

    E-mail Address: philippe.huot@mcgill.ca

    Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, H3A 2B4, Canada

    Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, H3C 3J7, Canada

    Department of Neurology & Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada

    Department of Neuroscience, Division of Neurology, McGill University Health Centre, Montreal, QC, H3A 2B4, Canada

    Published Online:https://doi.org/10.2217/nmt-2021-0055

    Levodopa is the standard treatment for Parkinson’s disease, but its use is marred by the emergence of dyskinesia, for which treatment options remain limited. Here, we review the glutamatergic modulators that were assessed for their antidyskinetic potential in clinical trials, including N-methyl-D-aspartate (NMDA) antagonists, agonists at the glycine-binding site on NMDA receptors, metabotropic glutamate (mGlu) 4 agonists, mGlu5 antagonists, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid antagonists and glutamate release inhibitors. Several agents that were investigated are not selective for their targets, raising uncertainty about the extent to which glutamatergic modulation contributed to their effects. Except for amantadine, the use of glutamatergic modulators for the treatment of dyskinesia in Parkinson’s disease remains largely investigational, with promising results obtained with mGlu5 negative allosteric modulation.

    Plain language summary

    Long-term treatment of Parkinson’s disease results in abnormal involuntary movements called ‘dyskinesia’. The chemical substance ‘glutamate’ is deeply involved in the normal functioning of the brain and the drug amantadine, which is used in the clinic to alleviate dyskinesia, is believed to elicit its effects through modulation of glutamate within the brain. In addition to amantadine, several drugs that interact with glutamate have been tested in the clinic, with variable efficacy. Here, we aim to review the pharmacological mechanisms of these drugs and to discuss their efficacy, or lack thereof, in the treatment of dyskinesia in Parkinson’s disease.

    Papers of special note have been highlighted as: • of interest

    References

    • 1. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 153(6), 1194–1217 (2013).
    • 2. Kaeberlein M, Rabinovitch PS, Martin GM. Healthy aging: the ultimate preventative medicine. Science 350(6265), 1191–1193 (2015).
    • 3. Kowal SL, Dall TM, Chakrabarti R, Storm MV, Jain A. The current and projected economic burden of Parkinson's disease in the United States. Mov. Disord. 28(3), 311–318 (2013).
    • 4. de Lau LM, Breteler MM. Epidemiology of Parkinson's disease. Lancet Neurol. 5(6), 525–535 (2006).
    • 5. Fox SH, Katzenschlager R, Lim SY et al. International Parkinson and movement disorder society evidence-based medicine review: update on treatments for the motor symptoms of Parkinson's disease. Mov. Disord. 33(8), 1248–1266 (2018). • Latest guidelines of the International Parkinson and Movement Disorder Society, notably highlighting recommendations for the treatment of levodopa-induced dyskinesia.
    • 6. Seppi K, Ray Chaudhuri K, Coelho M et al. Update on treatments for nonmotor symptoms of Parkinson's disease – an evidence‐based medicine review. Mov. Disord. 34(2), 180–198 (2019).
    • 7. Antonini A, Tolosa E, Mizuno Y, Yamamoto M, Poewe WH. A reassessment of risks and benefits of dopamine agonists in Parkinson's disease. Lancet Neurol. 8(10), 929–937 (2009).
    • 8. Gonzalez-Latapi P, Bhowmick SS, Saranza G, Fox SH. Non-dopaminergic treatments for motor control in Parkinson's disease: an update. CNS Drugs 34(10), 1025–1044 (2020).
    • 9. de Bie RMA, Clarke CE, Espay AJ, Fox SH, Lang AE. Initiation of pharmacological therapy in Parkinson's disease: when, why, and how. Lancet Neurol. 19(5), 452–461 (2020).
    • 10. Lizarraga KJ, Fox SH, Strafella AP, Lang AE. Hallucinations, delusions and impulse control disorders in Parkinson disease. Clin. Geriatr. Med. 36(1), 105–118 (2020).
    • 11. Hely MA, Morris JG, Reid WG, Trafficante R. Sydney multicenter study of Parkinson's disease: non-L-dopa-responsive problems dominate at 15 years. Mov. Disord. 20(2), 190–199 (2005).
    • 12. Van Gerpen JA, Kumar N, Bower JH, Weigand S, Ahlskog JE. Levodopa-associated dyskinesia risk among Parkinson disease patients in Olmsted County, Minnesota, 1976-1990. Arch. Neurol. 63(2), 205–209 (2006).
    • 13. Tambasco N, Simoni S, Marsili E et al. Clinical aspects and management of levodopa-induced dyskinesia. Parkinsons Dis. 2012, 745947 (2012).
    • 14. Parkinson Study Group. Levodopa and the progression of Parkinson's disease. N. Engl. J. Med. 351(24), 2498–2508 (2004).
    • 15. Jenner P. Molecular mechanisms of L-DOPA-induced dyskinesia. Nat. Rev. Neurosci. 9(9), 665–677 (2008).
    • 16. Bastide MF, Meissner WG, Picconi B et al. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease. Prog. Neurobiol. 132, 96–168 (2015).
    • 17. Fox SH, Katzenschlager R, Lim SY et al. The movement disorder society evidence-based medicine review update: treatments for the motor symptoms of Parkinson's disease. Mov. Disord. 26(Suppl. 3), S2–S41 (2011).
    • 18. Perez-Lloret S, Rascol O. Efficacy and safety of amantadine for the treatment of L-DOPA-induced dyskinesia. J. Neural. Transm. (Vienna) 125(8), 1237–1250 (2018).
    • 19. Rascol O, Fabbri M, Poewe W. Amantadine in the treatment of Parkinson's disease and other movement disorders. Lancet Neurol. 20(12), 1048–1056 (2021).
    • 20. Thomas A, Iacono D, Luciano AL, Armellino K, Di Iorio A, Onofrj M. Duration of amantadine benefit on dyskinesia of severe Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 75(1), 141–143 (2004).
    • 21. Riederer P, Lange KW, Kornhuber J, Danielczyk W. Pharmacotoxic psychosis after memantine in Parkinson's disease. Lancet 338(8773), 1022–1023 (1991).
    • 22. Birkmayer W, Hornykiewicz O. [The L-3, 4-dioxyphenylalanine (DOPA)-effect in Parkinson-akinesia]. Wien Klin Wochenschr 73, 787–788 (1961).
    • 23. Cotzias GC, Papavasiliou PS, Gellene R. Modification of Parkinsonism – chronic treatment with L-dopa. N. Engl. J. Med. 280(7), 337–345 (1969).
    • 24. Oertel W, Eggert K, Pahwa R et al. Randomized, placebo-controlled trial of ADS-5102 (amantadine) extended-release capsules for levodopa-induced dyskinesia in Parkinson's disease (EASE LID 3). Mov. Disord. 32(12), 1701–1709 (2017). • Phase III clinical trial that demonstrates the efficacy of amantadine for the treatment of levodopa-induced dyskinesia.
    • 25. Pahwa R, Tanner CM, Hauser RA et al. Amantadine extended release for levodopa-induced dyskinesia in Parkinson's disease (EASED Study). Mov. Disord. 30(6), 788–795 (2015). • Phase II/III clinical trial that shows the efficacy of amantadine for the treatment of levodopa-induced dyskinesia.
    • 26. Pahwa R, Tanner CM, Hauser RA et al. ADS-5102 (Amantadine) extended-release capsules for levodopa-induced dyskinesia in Parkinson disease (EASE LID Study): a randomized clinical trial. JAMA Neurol. 74(8), 941–949 (2017). • Phase III clinical trial that demonstrates the efficacy of amantadine for the treatment of levodopa-induced dyskinesia.
    • 27. Verhagen Metman L, Del Dotto P, Natte R, van den Munckhof P, Chase TN. Dextromethorphan improves levodopa-induced dyskinesias in Parkinson's disease. Neurology 51(1), 203–206 (1998).
    • 28. Verhagen Metman L, Blanchet PJ, van den Munckhof P, Del Dotto P, Natte R, Chase TN. A trial of dextromethorphan in parkinsonian patients with motor response complications. Mov. Disord. 13(3), 414–417 (1998).
    • 29. Fox SH, Metman LV, Nutt JG et al. Trial of dextromethorphan/quinidine to treat levodopa-induced dyskinesia in Parkinson's disease. Mov. Disord. 32(6), 893–903 (2017). • Phase II clinical trial that provides preliminary evidence of the antidyskinetic potential of dextromethorphan/quinidine for the treatment of levodopa-induced dyskinesia.
    • 30. Blanchet PJ, Metman LV, Mouradian MM, Chase TN. Acute pharmacologic blockade of dyskinesias in Parkinson's disease. Mov. Disord. 11(5), 580–581 (1996).
    • 31. Tison F, Keywood C, Wakefield M et al. A phase IIA trial of the novel mGluR5-negative allosteric modulator dipraglurant for levodopa-induced dyskinesia in Parkinson's disease. Mov. Disord. 31(9), 1373–1380 (2016). • Phase IIa trial with dipraglurant, in which it alleviated levodopa-induced dyskinesia, paving the way for the currently ongoing phase IIb/III trial.
    • 32. Gelfin E, Kaufman Y, Korn-Lubetzki I et al. D-serine adjuvant treatment alleviates behavioural and motor symptoms in Parkinson's disease. Int. J. Neuropsychopharmacol. 15(4), 543–549 (2012).
    • 33. Doller D, Bespalov A, Miller R, Pietraszek M, Kalinichev M. A case study of foliglurax, the first clinical mGluR4 PAM for symptomatic treatment of Parkinson's disease: translational gaps or a failing industry innovation model? Expert Opin. Investig. Drugs 29(12), 1323–1338 (2020).
    • 34. Montastruc JL, Rascol O, Senard JM, Rascol A. A pilot study of N-methyl-D-aspartate (NMDA) antagonist in Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 55(7), 630–631 (1992).
    • 35. Sherman SJ, Estevez M, Magill AB, Falk T. Case reports showing a long-term effect of subanesthetic ketamine infusion in reducing l-DOPA-induced dyskinesias. Case Rep. Neurol. 8(1), 53–58 (2016). • Case reports highlighting the potential antidyskinetic efficacy of ketamine infusions.
    • 36. Berg D, Godau J, Trenkwalder C et al. AFQ056 treatment of levodopa-induced dyskinesias: results of 2 randomized controlled trials. Mov. Disord. 26(7), 1243–1250 (2011).
    • 37. Stocchi F, Rascol O, Destee A et al. AFQ056 in Parkinson patients with levodopa-induced dyskinesia: 13-week, randomized, dose-finding study. Mov. Disord. 28(13), 1838–1846 (2013).
    • 38. Trenkwalder C, Stocchi F, Poewe W et al. Mavoglurant in Parkinson's patients with l-Dopa-induced dyskinesias: two randomized phase II studies. Mov. Disord. 31(7), 1054–1058 (2016).
    • 39. Kumar R, Hauser RA, Mostillo J et al. Mavoglurant (AFQ056) in combination with increased levodopa dosages in Parkinson's disease patients. Int. J. Neurosci. 126(1), 20–24 (2016).
    • 40. Vidal EI, Fukushima FB, Valle AP, Villas Boas PJ. Unexpected improvement in levodopa-induced dyskinesia and on-off phenomena after introduction of memantine for treatment of Parkinson's disease dementia. J. Am. Geriatr. Soc. 61(1), 170–172 (2013).
    • 41. Hanagasi HA, Kaptanoglu G, Sahin HA, Emre M. The use of NMDA antagonist memantine in drug-resistant dyskinesias resulting from L-dopa. Mov. Disord. 15(5), 1016–1017 (2000).
    • 42. Varanese S, Howard J, Di Rocco A. NMDA antagonist memantine improves levodopa-induced dyskinesias and “on-off” phenomena in Parkinson's disease. Mov. Disord. 25(4), 508–510 (2010).
    • 43. Moreau C, Delval A, Tiffreau V et al. Memantine for axial signs in Parkinson's disease: a randomised, double-blind, placebo-controlled pilot study. J. Neurol. Neurosurg. Psychiatry 84(5), 552–555 (2013).
    • 44. Wictorin K, Widner H. Memantine and reduced time with dyskinesia in Parkinson's Disease. Acta Neurol. Scand. 133(5), 355–360 (2016).
    • 45. Merello M, Nouzeilles MI, Cammarota A, Leiguarda R. Effect of memantine (NMDA antagonist) on Parkinson's disease: a double-blind crossover randomized study. Clin. Neuropharmacol. 22(5), 273–276 (1999).
    • 46. Rascol O, Ferreira J, Negre-Pages L et al. A proof-of-concept, randomized, placebo-controlled, multiple cross-overs (n-of-1) study of naftazone in Parkinson's disease. Fundam. Clin. Pharmacol. 26(4), 557–564 (2012).
    • 47. Corvol JC, Durif F, Meissner WG et al. Naftazone in advanced Parkinson's disease: an acute L-DOPA challenge randomized controlled trial. Parkinsonism Relat. Disord. 60, 51–56 (2019). • Recent phase II trial in which naftazone failed to reduce levodopa-induced dyskinesia.
    • 48. Lees A, Fahn S, Eggert KM et al. Perampanel, an AMPA antagonist, found to have no benefit in reducing “off” time in Parkinson's disease. Mov. Disord. 27(2), 284–288 (2012).
    • 49. Eggert K, Squillacote D, Barone P et al. Safety and efficacy of perampanel in advanced Parkinson's disease: a randomized, placebo-controlled study. Mov. Disord. 25(7), 896–905 (2010).
    • 50. Parkinson Study G. Evaluation of dyskinesias in a pilot, randomized, placebo-controlled trial of remacemide in advanced Parkinson disease. Arch. Neurol. 58(10), 1660–1668 (2001).
    • 51. Shoulson I, Penney J, McDermott M et al. A randomized, controlled trial of remacemide for motor fluctuations in Parkinson's disease. Neurology 56(4), 455–462 (2001).
    • 52. Clarke CE, Cooper JA, Holdich TA, Group TS. A randomized, double-blind, placebo-controlled, ascending-dose tolerability and safety study of remacemide as adjuvant therapy in Parkinson's disease with response fluctuations. Clin. Neuropharmacol. 24(3), 133–138 (2001).
    • 53. Wang WW, Zhang XR, Zhang ZR et al. Effects of mGluR5 antagonists on Parkinson's patients with L-Dopa-induced dyskinesia: a systematic review and meta-analysis of randomized controlled trials. Front. Aging Neurosci. 10, 262 (2018).
    • 54. Braz CA, Borges V, Ferraz HB. Effect of riluzole on dyskinesia and duration of the on state in Parkinson disease patients: a double-blind, placebo-controlled pilot study. Clin. Neuropharmacol. 27(1), 25–29 (2004).
    • 55. Bara-Jimenez W, Dimitrova TD, Sherzai A, Aksu M, Chase TN. Glutamate release inhibition ineffective in levodopa-induced motor complications. Mov. Disord. 21(9), 1380–1383 (2006).
    • 56. Kobylecki C, Burn DJ, Kass-Iliyya L, Kellett MW, Crossman AR, Silverdale MA. Randomized clinical trial of topiramate for levodopa-induced dyskinesia in Parkinson's disease. Parkinsonism Relat. Disord. 20(4), 452–455 (2014).
    • 57. Nutt JG, Gunzler SA, Kirchhoff T et al. Effects of a NR2B selective NMDA glutamate antagonist, CP-101,606, on dyskinesia and Parkinsonism. Mov. Disord. 23(13), 1860–1866 (2008).
    • 58. Calon F, Morissette M, Ghribi O et al. Alteration of glutamate receptors in the striatum of dyskinetic 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-treated monkeys following dopamine agonist treatment. Prog. Neuropsychopharmacol. Biol. Psychiatry 26(1), 127–138 (2002).
    • 59. Calon F, Rajput AH, Hornykiewicz O, Bédard PJ, Di Paolo T. Levodopa-induced motor complications are associated with alterations of glutamate receptors in Parkinson's disease. Neurobiol. Dis. 14(3), 404–416 (2003).
    • 60. Ouattara B, Hoyer D, Grégoire L et al. Changes of AMPA receptors in MPTP monkeys with levodopa-induced dyskinesias. Neuroscience 167(4), 1160–1167 (2010).
    • 61. Kobylecki C, Cenci MA, Crossman AR, Ravenscroft P. Calcium-permeable AMPA receptors are involved in the induction and expression of l‐DOPA‐induced dyskinesia in Parkinson's disease. J. Neurochem. 114(2), 499–511 (2010).
    • 62. Silverdale MA, Kobylecki C, Hallett PJ et al. Synaptic recruitment of AMPA glutamate receptor subunits in levodopa‐induced dyskinesia in the MPTP‐lesioned nonhuman primate. Synapse 64(2), 177–180 (2010).
    • 63. Ba M, Kong M, Yang H et al. Changes in subcellular distribution and phosphorylation of GluR1 in lesioned striatum of 6-hydroxydopamine-lesioned and l-dopa-treated rats. Neurochem. Res. 31(11), 1337–1347 (2006).
    • 64. Santini E, Valjent E, Usiello A et al. Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in L-DOPA-induced dyskinesia. J. Neurosci. 27(26), 6995–7005 (2007).
    • 65. Ouattara B, Hoyer D, Grégoire L et al. Changes of AMPA receptors in MPTP monkeys with levodopa-induced dyskinesias. Neuroscience 167(4), 1160–1167 (2010).
    • 66. Konitsiotis S, Blanchet P, Verhagen L, Lamers E, Chase T. AMPA receptor blockade improves levodopa-induced dyskinesia in MPTP monkeys. Neurology 54(8), 1589–1595 (2000).
    • 67. Kobylecki C, Hill MP, Crossman AR, Ravenscroft P. Synergistic antidyskinetic effects of topiramate and amantadine in animal models of Parkinson's disease. Mov. Disord. 26(13), 2354–2363 (2011).
    • 68. Bibbiani F, Oh J, Kielaite A, Collins M, Smith C, Chase T. Combined blockade of AMPA and NMDA glutamate receptors reduces levodopa-induced motor complications in animal models of PD. Exp. Neurol. 196(2), 422–429 (2005).
    • 69. Rogawski MA, Hanada T. Preclinical pharmacology of perampanel, a selective non-competitive AMPA receptor antagonist. Acta Neurol. Scand. Suppl. 197, 19–24 (2013).
    • 70. Rosenfeld WE. Topiramate: a review of preclinical, pharmacokinetic, and clinical data. Clin. Ther. 19(6), 1294–1308 (1997).
    • 71. Rascol O, Barone P, Behari M et al. Perampanel in Parkinson disease fluctuations: a double-blind randomized trial with placebo and entacapone. Clin. Neuropharmacol. 35(1), 15–20 (2012).
    • 72. Goetz CG, Stebbins GT, Chung KA et al. Topiramate as an adjunct to amantadine in the treatment of dyskinesia in parkinson's disease: a randomized, double-blind, placebo-controlled multicenter study. Mov. Disord. 32(9), 1335–1336 (2017).
    • 73. Hallett PJ, Dunah A, Ravenscroft P et al. Alterations of striatal NMDA receptor subunits associated with the development of dyskinesia in the MPTP-lesioned primate model of Parkinson's disease. Neuropharmacology 48(4), 503–516 (2005).
    • 74. Gardoni F, Picconi B, Ghiglieri V et al. A critical interaction between NR2B and MAGUK in L-DOPA induced dyskinesia. J. Neurosci. 26(11), 2914–2922 (2006).
    • 75. Blanchet PJ, Konitsiotis S, Chase TN. Amantadine reduces levodopa-induced dyskinesias in parkinsonian monkeys. Mov. Disord. 13(5), 798–802 (1998).
    • 76. Verhagen Metman L, Del Dotto P, van den Munckhof P, Fang J, Mouradian MM, Chase TN. Amantadine as treatment for dyskinesias and motor fluctuations in Parkinson's disease. Neurology 50(5), 1323–1326 (1998).
    • 77. Rogawski MA, Wenk GL. The neuropharmacological basis for the use of memantine in the treatment of Alzheimer's disease. CNS Drug Rev. 9(3), 275–308 (2003).
    • 78. Palmer GC, Murray RJ, Wilson TC et al. Biological profile of the metabolites and potential metabolites of the anticonvulsant remacemide. Epilepsy Res. 12(1), 9–20 (1992).
    • 79. Werling LL, Keller A, Frank JG, Nuwayhid SJ. A comparison of the binding profiles of dextromethorphan, memantine, fluoxetine and amitriptyline: treatment of involuntary emotional expression disorder. Exp. Neurol. 207(2), 248–257 (2007).
    • 80. Pope LE, Khalil M, Berg JE, Stiles M, Yakatan GJ, Sellers EM. Pharmacokinetics of dextromethorphan after single or multiple dosing in combination with quinidine in extensive and poor metabolizers. J. Clin. Pharmacol. 44(10), 1132–1142 (2004).
    • 81. Zanos P, Moaddel R, Morris PJ et al. Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms. Pharmacol. Rev. 70(3), 621–660 (2018).
    • 82. Huot P, Johnston TH, Koprich JB, Fox SH, Brotchie JM. The pharmacology of L-DOPA-induced dyskinesia in Parkinson's disease. Pharmacol. Rev. 65(1), 171–222 (2013).
    • 83. Danysz W, Parsons CG, Kornhuber J, Schmidt WJ, Quack G. Aminoadamantanes as NMDA receptor antagonists and antiparkinsonian agents–preclinical studies. Neurosci. Biobehav. Rev. 21(4), 455–468 (1997).
    • 84. Rammes G, Rupprecht R, Ferrari U, Zieglgansberger W, Parsons CG. The N-methyl-D-aspartate receptor channel blockers memantine, MRZ 2/579 and other amino-alkyl-cyclohexanes antagonise 5-HT(3) receptor currents in cultured HEK-293 and N1E-115 cell systems in a non-competitive manner. Neurosci. Lett. 306(1-2), 81–84 (2001).
    • 85. Aracava Y, Pereira EF, Maelicke A, Albuquerque EX. Memantine blocks alpha7* nicotinic acetylcholine receptors more potently than n-methyl-D-aspartate receptors in rat hippocampal neurons. J. Pharmacol. Exp. Ther. 312(3), 1195–1205 (2005).
    • 86. Seeman P, Caruso C, Lasaga M. Memantine agonist action at dopamine D2High receptors. Synapse 62(2), 149–153 (2008).
    • 87. Peeters M, Romieu P, Maurice T, Su TP, Maloteaux JM, Hermans E. Involvement of the sigma 1 receptor in the modulation of dopaminergic transmission by amantadine. Eur. J. Neurosci. 19(8), 2212–2220 (2004).
    • 88. Matsubayashi H, Swanson KL, Albuquerque EX. Amantadine inhibits nicotinic acetylcholine receptor function in hippocampal neurons. J. Pharmacol. Exp. Ther. 281(2), 834–844 (1997).
    • 89. Sommerauer C, Rebernik P, Reither H, Nanoff C, Pifl C. The noradrenaline transporter as site of action for the anti-Parkinson drug amantadine. Neuropharmacology 62(4), 1708–1716 (2012).
    • 90. Shen W, Ren W, Zhai S et al. Striatal Kir2 K+ channel inhibition mediates the antidyskinetic effects of amantadine. J. Clin. InvestM 130(5), 2593–2601 (2020).
    • 91. Chenard BL, Bordner J, Butler TW et al. (1S,2S)-1-(4-hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)-1-propanol: a potent new neuroprotectant which blocks N-methyl-D-aspartate responses. J. Med. Chem. 38(16), 3138–3145 (1995).
    • 92. Williams K. Ifenprodil, a novel NMDA receptor antagonist: site and mechanism of action. Curr. Drug Target 2(3), 285–298 (2001).
    • 93. Vecsei L, Szalardy L, Fulop F, Toldi J. Kynurenines in the CNS: recent advances and new questions. Nat. Rev. Drug Discov. 12(1), 64–82 (2013).
    • 94. Bogenpohl J, Galvan A, Hu X, Wichmann T, Smith Y. Metabotropic glutamate receptor 4 in the basal ganglia of parkinsonian monkeys: ultrastructural localization and electrophysiological effects of activation in the striatopallidal complex. Neuropharmacology 66, 242–252 (2013).
    • 95. Bennouar K-E, Uberti MA, Melon C et al. Synergy between L-DOPA and a novel positive allosteric modulator of metabotropic glutamate receptor 4: implications for Parkinson's disease treatment and dyskinesia. Neuropharmacology 66, 158–169 (2013).
    • 96. Iderberg H, Maslava N, Thompson AD et al. Pharmacological stimulation of metabotropic glutamate receptor type 4 in a rat model of Parkinson's disease and L-DOPA-induced dyskinesia: comparison between a positive allosteric modulator and an orthosteric agonist. Neuropharmacology 95, 121–129 (2015).
    • 97. Charvin D, Di Paolo T, Bezard E et al. An mGlu4-Positive Allosteric Modulator Alleviates Parkinsonism in Primates. Mov. Disord. 33(10), 1619–1631 (2018).
    • 98. Charvin D. mGlu4 allosteric modulation for treating Parkinson's disease. Neuropharmacology 135, 308–315 (2018).
    • 99. Pisani A, Gubellini P, Bonsi P et al. Metabotropic glutamate receptor 5 mediates the potentiation of N-methyl-D-aspartate responses in medium spiny striatal neurons. Neuroscience 106(3), 579–587 (2001).
    • 100. Awad H, Hubert GW, Smith Y, Levey AI, Conn PJ. Activation of metabotropic glutamate receptor 5 has direct excitatory effects and potentiates NMDA receptor currents in neurons of the subthalamic nucleus. J. Neurosci. 20(21), 7871–7879 (2000).
    • 101. Ouattara B, Grégoire L, Morissette M et al. Metabotropic glutamate receptor type 5 in levodopa-induced motor complications. Neurobiol. Aging 32(7), 1286–1295 (2011).
    • 102. Bezard E, Pioli EY, Li Q et al. The mGluR5 negative allosteric modulator dipraglurant reduces dyskinesia in the MPTP macaque model. Mov. Disord. 29(8), 1074–1079 (2014).
    • 103. Levandis G, Bazzini E, Armentero M-T, Nappi G, Blandini F. Systemic administration of an mGluR5 antagonist, but not unilateral subthalamic lesion, counteracts l-DOPA-induced dyskinesias in a rodent model of Parkinson's disease. Neurobiol. Dis. 29(1), 161–168 (2008).
    • 104. Rylander D, Iderberg H, Li Q et al. A mGluR5 antagonist under clinical development improves L-DOPA-induced dyskinesia in parkinsonian rats and monkeys. Neurobiol. Dis. 39(3), 352–361 (2010).
    • 105. Grégoire L, Morin N, Ouattara B et al. The acute antiparkinsonian and antidyskinetic effect of AFQ056, a novel metabotropic glutamate receptor type 5 antagonist, in l-Dopa-treated parkinsonian monkeys. Parkinsonism Relat. Disord. 17(4), 270–276 (2011).
    • 106. Dekundy A, Pietraszek M, Schaefer D, Cenci MA, Danysz W. Effects of group I metabotropic glutamate receptors blockade in experimental models of Parkinson's disease. Brain Res. Bull. 69(3), 318–326 (2006).
    • 107. Johnston TH, Fox SH, McIldowie MJ, Piggott MJ, Brotchie JM. Reduction of L-DOPA-induced dyskinesia by the selective metabotropic glutamate receptor 5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson's disease. J. Pharmacol. Exp. Ther. 333(3), 865–873 (2010).
    • 108. Stocchi F, Rascol O, Destee A et al. AFQ056 in Parkinson patients with levodopa‐induced dyskinesia: 13‐week, randomized, dose‐finding study. Mov. Disord. 28(13), 1838–1846 (2013).
    • 109. Campanelli F, Natale G, Marino G, Ghiglieri V, Calabresi P. Striatal glutamatergic hyperactivity in Parkinson's disease. Neurobiol. Dis. 168, 105697 (2022).
    • 110. Mattei C, Molgo J, Joseph X, Israel M, Bloy C. Naftazone reduces glutamate cerebro spinal fluid levels in rats and glutamate release from mouse cerebellum synaptosomes. Neurosci. Lett. 271(3), 183–186 (1999).
    • 111. Bellingham MC. A review of the neural mechanisms of action and clinical efficiency of riluzole in treating amyotrophic lateral sclerosis: what have we learned in the last decade? CNS Neurosci. Ther. 17(1), 4–31 (2011).
    • 112. Merims D, Ziv I, Djaldetti R, Melamed E. Riluzole for levodopa-induced dyskinesias in advanced Parkinson's disease. Lancet 353(9166), 1764–1765 (1999).
    • 113. Picconi B, Pisani A, Centonze D et al. Striatal metabotropic glutamate receptor function following experimental parkinsonism and chronic levodopa treatment. Brain 125(Pt 12), 2635–2645 (2002).
    • 114. Cenci MA. Glutamatergic pathways as a target for the treatment of dyskinesias in Parkinson's disease. Biochem. Soc. Trans. 42(2), 600–604 (2014).
    • 115. DeLong MR, Wichmann T. Circuits and circuit disorders of the basal ganglia. Arch. Neurol. 64(1), 20–24 (2007).
    • 116. Nambu A, Tokuno H, Takada M. Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci. Res. 43(2), 111–117 (2002).
    • 117. Jackson MJ, Al-Barghouthy G, Pearce RK, Smith L, Hagan JJ, Jenner P. Effect of 5-HT1B/D receptor agonist and antagonist administration on motor function in haloperidol and MPTP-treated common marmosets. Pharmacol. Biochem. Behav. 79(3), 391–400 (2004).
    • 118. Kwan C, Frouni I, Bedard D et al. 5-HT2A blockade for dyskinesia and psychosis in Parkinson's disease: is there a limit to the efficacy of this approach? A study in the MPTP-lesioned marmoset and a literature mini-review. Exp. Brain Res. 237(2), 435–442 (2019).
    • 119. Kwan C, Nuara SG, Bedard D et al. Selective blockade of the 5-HT3 receptor acutely alleviates dyskinesia and psychosis in the parkinsonian marmoset. Neuropharmacology 182, 108386 (2021).
    • 120. Johnston TH, Huot P, Fox SH et al. TC-8831, a nicotinic acetylcholine receptor agonist, reduces l-DOPA-induced dyskinesia in the MPTP macaque. Neuropharmacology 73C, 337–347 (2013).
    • 121. Rascol O, Arnulf I, Peyro-Saint Paul H et al. Idazoxan, an alpha-2 antagonist, and L-DOPA-induced dyskinesias in patients with Parkinson's disease. Mov. Disord. 16(4), 708–713 (2001).
    • 122. AlShimemeri S, Fox SH, Visanji NP. Emerging drugs for the treatment of L-DOPA-induced dyskinesia: an update. Expert Opin. Emerg. Drugs 25(2), 131–144 (2020).
    • 123. Bymaster FP, Calligaro DO, Falcone JF et al. Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology 14(2), 87–96 (1996).
    • 124. Durif F, Debilly B, Galitzky M et al. Clozapine improves dyskinesias in Parkinson disease: a double-blind, placebo-controlled study. Neurology 62(3), 381–388 (2004).