We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Directing dendritic cell immunotherapy towards successful cancer treatment

    Rachel Lubong Sabado

    New York University School of Medicine, NYU Langone Medical Center Cancer Institute, 550 First Avenue SML 1303, New York, NY 10016, USA. ;

    &
    Nina Bhardwaj

    † Author for correspondence

    New York University School of Medicine, NYU Langone Medical Center Cancer Institute, 550 First Avenue SML 1303, New York, NY 10016, USA. ;

    Published Online:https://doi.org/10.2217/imt.09.43

    The use of dendritic cells (DCs) for tumor immunotherapy represents a powerful approach for harnessing the patient’s own immune system to eliminate tumor cells. However, suboptimal conditions for generating potent immunostimulatory DCs, as well as the induction of tolerance and suppression mediated by the tumors and its microenvironment have contributed to limited success. Combining DC vaccines with new approaches that enhance immunogenicity and overcome the regulatory mechanisms underlying peripheral tolerance may be the key to achieving effective and durable anti-tumor immune responses that translate to better clinical outcomes.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Banchereau J, Briere F, Caux C et al.: Immunobiology of dendritic cells. Annu. Rev. Immunol.18,767–811 (2000).
    • Naik SH, Sathe P, Park HY et al.: Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat. Immunol.8(11),1217–1226 (2007).
    • Mckenna K, Beignon AS, Bhardwaj N: Plasmacytoid dendritic cells: linking innate and adaptive immunity. J. Virol.79(1),17–27 (2005).
    • Salio M, Cella M, Vermi W et al.: Plasmacytoid dendritic cells prime IFN-γ-secreting melanoma-specific CD8 lymphocytes and are found in primary melanoma lesions. Eur. J, Immunol,33(4),1052–1062 (2003).
    • Hartmann E, Wollenberg B, Rothenfusser S et al.: Identification and functional analysis of tumor-infiltrating plasmacytoid dendritic cells in head and neck cancer. Cancer Res.63(19),6478–6487 (2003).
    • Dunn GP, Bruce AT, Sheehan KC et al.: A critical function for type I interferons in cancer immunoediting. Nat. Immunol.6(7),722–729 (2005).
    • Gerlini G, Urso C, Mariotti G et al.: Plasmacytoid dendritic cells represent a major dendritic cell subset in sentinel lymph nodes of melanoma patients and accumulate in metastatic nodes. Clin. Immunol.125(2),184–193 (2007).
    • Battaglia A, Buzzonetti A, Baranello C et al.: Metastatic tumour cells favour the generation of a tolerogenic milieu in tumour draining lymph node in patients with early cervical cancer. Cancer Immunol. Immunother.58(9),1363–1373 (2009).
    • Sharma MD, Baban B, Chandler P et al.: Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature tregs via indoleamine 2,3-dioxygenase. J. Clin. Invest.117(9),2570–2582 (2007).
    • 10  Munn Dh, Sharma Md, Hou D et al.: Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J. Clin. Invest.114(2),280–290 (2004).
    • 11  Trinchieri G: Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol.3(2),133–146 (2003).
    • 12  Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S: Antigen presentation and T-cell stimulation by dendritic cells. Annu. Rev. Immunol.20,621–667 (2002).
    • 13  Mori L, De Libero G: Presentation of lipid antigens to T cells. Immunol. Lett.117(1),1–8 (2008).
    • 14  Ishikawa A, Motohashi S, Ishikawa Eet al.: A Phase I study of α-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin. Cancer Res.11(5),1910–1917 (2005).
    • 15  Seino K, Motohashi S, Fujisawa T, Nakayama T, Taniguchi M: Natural killer T cell-mediated anti-tumor immune responses and their clinical applications. Cancer Sci.97(9),807–812 (2006).
    • 16  Cambi A, Koopman M, Figdor CG: How C-type lectins detect pathogens. Cell. Microbiol7(4),481–488 (2005).
    • 17  Van Vliet SJ, Garcia-Vallejo JJ, Van Kooyk Y: Dendritic cells and C-type lectin receptors: coupling innate to adaptive immune responses. Immunol. Cell. Biol.86(7),580–587 (2008).
    • 18  Tacken PJ, De Vries IJ, Torensma R, Figdor CG: Dendritic-cell immunotherapy: From ex vivo loading to in vivo targeting. Nat. Rev. Immunol.7(10),790–802 (2007).
    • 19  Tacken PJ, De Vries IJ, Gijzen K et al.: Effective induction of naive and recall T-cell responses by targeting antigen to human dendritic cells via a humanized anti-DC-SIGN antibody. Blood106(4),1278–1285 (2005).
    • 20  Bonifaz LC, Bonnyay DP, Charalambous A et al.: in vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T-cell vaccination. J. Exp. Med.199(6),815–824 (2004).
    • 21  Smith AL, Ganesh L, Leung K,Jongstra-Bilen J, Jongstra J, Nabel GJ: Leukocyte-specific protein 1 interacts with DC-SIGN and mediates transport of HIV to the proteasome in dendritic cells. J. Exp. Med.204(2),421–430 (2007).
    • 22  Akira S, Takeda K: Toll-like receptor signalling. Nat. Rev. Immunol.4(7),499–511 (2004).
    • 23  Kato H, Takeuchi O, Sato S et al.: Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature441(7089),101–105 (2006).
    • 24  Pedra JH, Cassel SL, Sutterwala FS: Sensing pathogens and danger signals by the inflammasome. Curr. Opin. Immunol.21(1),10–16 (2009).
    • 25  Skoberne M, Beignon AS, Bhardwaj N: Danger signals: a time and space continuum. Trends Mol. Med.10(6),251–257 (2004).
    • 26  Martin-Fontecha A, Lanzavecchia A, Sallusto F: Dendritic cell migration to peripheral lymph nodes. Handb. Exp. Pharmacol. (188),31–49 (2009).
    • 27  Scholer A, Hugues S, Boissonnas A, Fetler L, Amigorena S: Intercellular adhesion molecule-1-dependent stable interactions between T cells and dendritic cells determine CD8+ T-cell memory. Immunity28(2),258–270 (2008).
    • 28  Peggs KS, Quezada SA, Allison JP: Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy. Immunol. Rev.224,141–165 (2008).
    • 29  Elgueta R, Benson MJ, De Vries VC, Wasiuk A, Guo Y, Noelle RJ: Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol. Rev.229(1),152–172 (2009).
    • 30  Sallusto F, Lanzavecchia A: Human Th17 cells in infection and autoimmunity. Microbes Infect.11(5),620–624 (2009).
    • 31  Tang Q, Bluestone JA: The 3+ regulatory T cell: a jack of all trades, master of regulation. Nat. Immunol.9(3),239–244 (2008).
    • 32  Sokol CL, Chu NQ, Yu S, Nish SA, Laufer TM, Medzhitov R: Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat. Immunol.10(7),713–720 (2009).
    • 33  Ito T, Wang YH, Duramad O et al.: TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J. Exp. Med.202(9),1213–1223 (2005).
    • 34  Manel N, Unutmaz D, Littman DR: The differentiation of human Th-17 cells requires transforming growth factor-β and induction of the nuclear receptor ROR-γ-t. Nat. Immunol.9(6),641–649 (2008).
    • 35  Jego G, Pascual V, Palucka AK, Banchereau J: Dendritic cells control B-cell growth and differentiation. Curr. Dir. Autoimmun.8,124–139 (2005).
    • 36  Munz C, Dao T, Ferlazzo G, De Cos MA, Goodman K, Young JW: Mature myeloid dendritic cell subsets have distinct roles for activation and viability of circulating human natural killer cells. Blood105(1),266–273 (2005).
    • 37  Fujii S, Shimizu K, Kronenberg M, Steinman RM: Prolonged IFN-γ-producing nkt response induced with α-galactosylceramide-loaded DCs. Nat. Immunol.3(9),867–874 (2002).
    • 38  Cools N, Ponsaerts P, Van Tendeloo VF, Berneman ZN: Balancing between immunity and tolerance: an interplay between dendritic cells, regulatory T cells, and effector T cells. J. Leukoc. Biol.82(6),1365–1374 (2007).
    • 39  Mellor AL, Munn DH: IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat. Rev. Immunol.4(10),762–774 (2004).
    • 40  Munn DH, Mellor AL: IDO and tolerance to tumors. Trends Mol. Med.10(1),15–18 (2004).
    • 41  Levings MK, Gregori S, Tresoldi E, Cazzaniga S, Bonini C, Roncarolo MG: Differentiation of Tr1 cells by immature dendritic cells requires IL-10 but not CD25+CD4+ Tr cells. Blood105(3),1162–1169 (2005).
    • 42  Jonuleit H, Schmitt E, Schuler G, Knop J, Enk AH: Induction of interleukin 10-producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J. Exp. Med.192(9),1213–1222 (2000).
    • 43  Woo EY, Chu CS, Goletz TJ et al.: Regulatory CD4+CD25+ T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res.61(12),4766–4772 (2001).
    • 44  Liyanage UK, Moore TT, Joo HG et al.: Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J. Immunol.169(5),2756–2761 (2002).
    • 45  Viehl CT, Moore TT, Liyanage UK et al.: Depletion of CD4+CD25+ regulatory T cells promotes a tumor-specific immune response in pancreas cancer-bearing mice. Ann. Surg. Oncol.13(9),1252–1258 (2006).
    • 46  Chen W, Liang X, Peterson AJ, Munn DH, Blazar BR: The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive t regulatory cell generation. J. Immunol.181(8),5396–5404 (2008).
    • 47  Skoberne M, Somersan S, Almodovar W et al.: The apoptotic-cell receptor CR3, but not αVβ5, is a regulator of human dendritic-cell immunostimulatory function. Blood108(3),947–955 (2006).
    • 48  Skoberne M, Beignon AS, Larsson M, Bhardwaj N: Apoptotic cells at the crossroads of tolerance and immunity. Curr. Top. Microbiol. Immunol.289,259–292 (2005).
    • 49  Satzger I, Schenck F, Kapp A, Gutzmer R: Spontaneous regression of melanoma with distant metastases – report of a patient with brain metastases. Eur. J. Dermatol.16(4),454–455 (2006).
    • 50  Wang RF, Rosenberg SA: Human tumor antigens for cancer vaccine development. Immunol. Rev.170,85–100 (1999).
    • 51  Kim R, Emi M, Tanabe K: Cancer immunoediting from immune surveillance to immune escape. Immunology121(1),1–14 (2007).
    • 52  Smyth MJ, Dunn GP, Schreiber RD: Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv. Immunol.90,1–50 (2006).
    • 53  Gandhi RT, O’neill D, Bosch RJ et al.: A randomized therapeutic vaccine trial of canarypox-HIV-pulsed dendritic cells vs. Canarypox-HIV alone in HIV-1-infected patients on antiretroviral therapy. Vaccine27(43),6088–6094 (2009).
    • 54  Palucka AK, Ueno H, Connolly J et al.: Dendritic cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD8+ T-cell immunity. J. Immunother.29(5),545–557 (2006).
    • 55  Redman BG, Chang AE, Whitfield J et al.: Phase Ib trial assessing autologous, tumor-pulsed dendritic cells as a vaccine administered with or without IL-2 in patients with metastatic melanoma. J. Immunother.31(6),591–598 (2008).
    • 56  O’neill DW, Bhardwaj N: Differentiation of peripheral blood monocytes into dendritic cells. Curr. Protoc. Immunol. Chapter 22, Unit 22F 4 (2005).
    • 57  O’neill D, Bhardwaj N: Generation of autologous peptide- and protein-pulsed dendritic cells for patient-specific immunotherapy. Methods Mol. Med.109,97–112 (2005).▪ Standardized protocol for generating antigen-pulsed dendritic cells (DCs)for immunotherapy.
    • 58  Obermaier B, Dauer M, Herten J, Schad K, Endres S, Eigler A: Development of a new protocol for 2-day generation of mature dendritic cells from human monocytes. Biol. Proced. Online5,197–203 (2003).
    • 59  Dauer M, Obermaier B, Herten J et al.: Mature dendritic cells derived from human monocytes within 48 hours: a novel strategy for dendritic cell differentiation from blood precursors. J. Immunol.170(8),4069–4076 (2003).
    • 60  Alldawi L, Takahashi M, Narita M et al.: Effect of prostaglandin E2, lipopolysaccharide, IFN-γ and cytokines on the generation and function of fast-DC. Cytotherapy7(2),195–202 (2005).
    • 61  Jarnjak-Jankovic S, Hammerstad H, Saeboe-Larssen S, Kvalheim G, Gaudernack G: A full scale comparative study of methods for generation of functional dendritic cells for use as cancer vaccines. BMC Cancer7,119 (2007).
    • 62  Banchereau J, Palucka AK, Dhodapkar M et al.: Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine. Cancer Res.61(17),6451–6458 (2001).
    • 63  Klechevsky E, Liu M, Morita R et al.: Understanding human myeloid dendritic cell subsets for the rational design of novel vaccines. Hum. Immunol.70(5),281–288 (2009).
    • 64  Fay JW, Palucka AK, Paczesny S et al.: Long-term outcomes in patients with metastatic melanoma vaccinated with melanoma peptide-pulsed CD34+ progenitor-derived dendritic cells. Cancer Immunol. Immunotherapy55,1209–1218 (2006).
    • 65  Banchereau J, Ueno H, Dhodapkar M et al.: Immune and clinical outcomes in patients with stage IV melanoma vaccinated with peptide-pulsed dendritic cells derived from CD34+ progenitors and activated with type I interferon. J. Immunother.28,505–516 (2005).
    • 66  Marroquin CE, Westwood JA, Lapointe R et al.: Mobilization of dendritic cell precursors in patients with cancer by flt3 ligand allows the generation of higher yields of cultured dendritic cells. J. Immunother.25(3),278–288 (2002).
    • 67  Pulendran B, Banchereau J, Burkeholder S et al.: Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo. J. Immunol.165(1),566–572 (2000).
    • 68  Small EJ, Schellhammer PF, Higano CS et al.: Placebo-controlled Phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J. Clin. Oncol.24(19),3089–3094 (2006).
    • 69  Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N: Antigen-specific inhibition of effector T-cell function in humans after injection of immature dendritic cells. J. Exp. Med.193(2),233–238 (2001).▪ Mature DCs are required to activate appropriate T-cell responses.
    • 70  Dhodapkar MV, Steinman RM: Antigen-bearing immature dendritic cells induce peptide-specific CD8+ regulatory T cells in vivo in humans. Blood100(1),174–177 (2002).
    • 71  De Vries IJ, Lesterhuis WJ, Scharenborg NM et al.: Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin. Cancer Res.9(14),5091–5100 (2003).
    • 72  De Vries IJ, Krooshoop DJ, Scharenborg NM et al.: Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res.63(1),12–17 (2003).
    • 73  Lee AW, Truong T, Bickham K et al.: A clinical grade cocktail of cytokines and PGE2 results in uniform maturation of human monocyte-derived dendritic cells: implications for immunotherapy. Vaccine20(Suppl. 4),A8–A22 (2002).
    • 74  Jongmans W, Tiemessen DM, Van Vlodrop IJ, Mulders PF, Oosterwijk E: Th1-polarizing capacity of clinical-grade dendritic cells is triggered by ribomunyl but is compromised by PGE2: the importance of maturation cocktails. J. Immunother.28(5),480–487 (2005).
    • 75  Krause P, Singer E, Darley PI, Klebensberger J, Groettrup M, Legler DF: Prostaglandin E2 is a key factor for monocyte-derived dendritic cell maturation: enhanced T-cell stimulatory capacity despite IDO. J. Leukoc. Biol.82(5),1106–1114 (2007).
    • 76  Morelli AE, Thomson AW: Dendritic cells under the spell of prostaglandins. Trends Immunol.24(3),108–111 (2003).
    • 77  Scandella E, Men Y, Gillessen S, Forster R, Groettrup M: Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells. Blood100(4),1354–1361 (2002).
    • 78  Krause P, Bruckner M, Uermosi C, Singer E, Groettrup M, Legler DF: Prostaglandin E2 enhances T-cell proliferation by inducing the costimulatory molecules OX40L, CD70, and 4–1-βBL on dendritic cells. Blood113(11),2451–2460 (2009).
    • 79  Mailliard RB, Wankowicz-Kalinska A, Cai Q et al.: α-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res.64(17),5934–5937 (2004).
    • 80  Lee JJ, Foon KA, Mailliard RB, Muthuswamy R, Kalinski P: Type 1-polarized dendritic cells loaded with autologous tumor are a potent immunogen against chronic lymphocytic leukemia. J. Leukoc. Biol.84(1),319–325 (2008).
    • 81  Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R: Toll-like receptorscontrol activation of adaptive immune responses. Nat. Immunol.2(10),947–950 (2001).
    • 82  Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A: Selected toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat. Immunol.6(8),769–776 (2005).▪▪ Activation of selected combinations of Toll-like receptors on DCs results in synergistic effects on cytokine production of DCs.
    • 83  Boullart AC, Aarntzen EH, Verdijk P et al.: Maturation of monocyte-derived dendritic cells with toll-like receptor 3 and 7/8 ligands combined with prostaglandin E2 results in high interleukin-12 production and cell migration. Cancer Immunol. Immunother.57(11),1589–1597 (2008).
    • 84  Speetjens FM, Kuppen PJ, Welters MJ et al.: Induction of p53-specific immunity by a p53 synthetic long peptide vaccine in patients treated for metastatic colorectal cancer. Clin Cancer Res15(3),1086–1095 (2009).
    • 85  Melief CJ, Van Der Burg SH: Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat. Rev. Cancer8(5),351–360 (2008).
    • 86  Barrou B, Benoit G, Ouldkaci M et al.: Vaccination of prostatectomized prostate cancer patients in biochemical relapse, with autologous dendritic cells pulsed with recombinant human PSA. Cancer Immunol. Immunother.53(5),453–460 (2004).
    • 87  Salcedo M, Bercovici N, Taylor R et al.: Vaccination of melanoma patients using dendritic cells loaded with an allogeneic tumor cell lysate. Cancer Immunol. Immunother.55(7),819–829 (2006).
    • 88  Mahdian R, Kokhaei P, Najar HM, Derkow K, Choudhury A, Mellstedt H: Dendritic cells, pulsed with lysate of allogeneic tumor cells, are capable of stimulating MHC-restricted antigen-specific anti-tumor T cells. Med. Oncol.23(2),273–282 (2006).
    • 89  Schnurr M, Galambos P, Scholz C et al.: Tumor cell lysate-pulsed human dendritic cells induce a T-cell response against pancreatic carcinoma cells: an in vitro model for the assessment of tumor vaccines. Cancer Res.61(17),6445–6450 (2001).
    • 90  Thumann P, Moc I, Humrich J et al.: Antigen loading of dendritic cells with whole tumor cell preparations. J. Immunol. Methods277(1–2),1–16 (2003).
    • 91  Schnurr M, Chen Q, Shin A et al.: Tumor antigen processing and presentation depend critically on dendritic cell type and the mode of antigen delivery. Blood105(6),2465–2472 (2005).
    • 92  Jenne L, Schuler G, Steinkasserer A: Viral vectors for dendritic cell-based immunotherapy. Trends Immunol.22(2),102–107 (2001).
    • 93  Brockstedt DG, Dubensky TW: Promises and challenges for the development of listeria monocytogenes-based immunotherapies. Expert Rev. Vaccines7(7),1069–1084 (2008).
    • 94  Bellone S, El-Sahwi K, Cocco E et al.: Human papillomavirus type 16 (HPV-16) virus-like particle L1-specific CD8+ cytotoxic T lymphocytes (CTLs) are equally effective as E7-specific CD8+CTLs in killing autologous HPV-16-positive tumor cells in cervical cancer patients: implications for L1 dendritic cell-based therapeutic vaccines. J. Virol.83(13),6779–6789 (2009).
    • 95  Carrasco J, Van Pel A, Neyns B et al.: Vaccination of a melanoma patient with mature dendritic cells pulsed with MAGE-3 peptides triggers the activity of nonvaccine anti-tumor cells. J. Immunol.180(5),3585–3593 (2008).
    • 96  Butterfield LH, Comin-Anduix B, Vujanovic L et al.: Adenovirus MART-1-engineered autologous dendritic cell vaccine for metastatic melanoma. J. Immunother.31(3),294–309 (2008).
    • 97  Veron P, Allo V, Riviere C, Bernard J, Douar AM, Masurier C: Major subsets of human dendritic cells are efficiently transduced by self-complementary adeno-associated virus vectors 1 and 2. J. Virol.81(10),5385–5394 (2007).
    • 98  Skoberne M, Yewdall A, Bahjat KS et al.: KBMA listeria monocytogenesis an effective vector for DC-mediated induction of anti-tumor immunity. J. Clin. Invest.118(12),3990–4001 (2008).
    • 99  Breckpot K, Aerts JL, Thielemans K: Lentiviral vectors for cancer immunotherapy: transforming infectious particles into therapeutics. Gene Ther.14(11),847–862 (2007).
    • 100  He Y, Munn D, Falo LD Jr: Recombinant lentivector as a genetic immunization vehicle for anti-tumor immunity. Expert Rev. Vaccines6(6),913–924 (2007).
    • 101  Schroers R, Sinha I, Segall H et al.: Transduction of human PBMC-derived dendritic cells and macrophages by an HIV-1-based lentiviral vector system. Mol. Ther.1(2),171–179 (2000).
    • 102  Dyall J, Latouche JB, Schnell S, Sadelain M: Lentivirus-transduced human monocyte-derived dendritic cells efficiently stimulate antigen-specific cytotoxic T lymphocytes. Blood97(1),114–121 (2001).
    • 103  Lizee G, Gonzales MI, Topalian SL: Lentivirus vector-mediated expression of tumor-associated epitopes by human antigen presenting cells. Hum. Gene Ther.15(4),393–404 (2004).
    • 104  He Y, Zhang J, Mi Z, Robbins P, Falo LD Jr: Immunization with lentiviral vector-transduced dendritic cells induces strong and long-lasting T-cell responses and therapeutic immunity. J. Immunol.174(6),3808–3817 (2005).
    • 105  Dullaers M, Van Meirvenne S, Heirman C et al.: Induction of effective therapeutic anti-tumor immunity by direct in vivo administration of lentiviral vectors. Gene Ther.13(7),630–640 (2006).
    • 106  Breckpot K, Heirman C, De Greef C, Van Der Bruggen P, Thielemans K: Identification of new antigenic peptide presented by HLA-Cw7 and encoded by several MAGE genes using dendritic cells transduced with lentiviruses. J. Immunol.172(4),2232–2237 (2004).
    • 107  Yang L, Yang H, Rideout K et al.: Engineered lentivector targeting of dendritic cells for in vivo immunization. Nat. Biotechnol.26(3),326–334 (2008).
    • 108  Nair SK, Morse M, Boczkowski D et al.: Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann. Surg.235(4),540–549 (2002).
    • 109  Muller MR, Tsakou G, Grunebach F, Schmidt SM, Brossart P: Induction of chronic lymphocytic leukemia (CLL)-specific CD4- and CD8-mediated T-cell responses using RNA-transfected dendritic cells. Blood103(5),1763–1769 (2004).
    • 110  Nencioni A, Muller MR, Grunebach F et al.: Dendritic cells transfected with tumor RNA for the induction of anti-tumor CTL in colorectal cancer. Cancer Gene Ther.10(3),209–214 (2003).
    • 111  Milazzo C, Reichardt VL, Muller MR, Grunebach F, Brossart P: Induction of myeloma-specific cytotoxic T cells using dendritic cells transfected with tumor-derived RNA. Blood101(3),977–982 (2003).
    • 112  Gilboa E, Vieweg J: Cancer immunotherapy with mRNA-transfected dendritic cells. Immunol. Rev.199,251–263 (2004).
    • 113  Heiser A, Maurice MA, Yancey DR, Coleman DM, Dahm P, Vieweg J: Human dendritic cells transfected with renal tumor RNA stimulate polyclonal T-cell responses against antigens expressed by primary and metastatic tumors. Cancer Res.61(8),3388–3393 (2001).
    • 114  Strobel I, Berchtold S, Gotze A, Schulze U, Schuler G, Steinkasserer A: Human dendritic cells transfected with either RNA or DNA encoding influenza matrix protein M1 differ in their ability to stimulate cytotoxic T lymphocytes. Gene Ther.7(23),2028–2035 (2000).
    • 115  Koido S, Kashiwaba M, Chen D, Gendler S, Kufe D, Gong J: Induction of anti-tumor immunity by vaccination of dendritic cells transfected with MUC1 RNA. J. Immunol.165(10),5713–5719 (2000).
    • 116  Heiser A, Coleman D, Dannull J et al.: Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J. Clin. Invest.109(3),409–417 (2002).
    • 117  Shortman K, Lahoud MH, Caminschi I: Improving vaccines by targeting antigens to dendritic cells. Exp. Mol. Med.41(2),61–66 (2009).
    • 118  Tacken PJ, Torensma R, Figdor CG: Targeting antigens to dendritic cellsin vivo. Immunobiology211(6–8),599–608 (2006).
    • 119  Jinushi M, Hodi FS, Dranoff G: Enhancing the clinical activity of granulocyte-macrophage colony-stimulating factor-secreting tumor cell vaccines. Immunol. Rev.222,287–298 (2008).
    • 120  Jinushi M, Tahara H: Cytokine gene-mediated immunotherapy: current status and future perspectives. Cancer Sci.100(8),1389–1396 (2009).
    • 121  Luiten RM, Kueter EW, Mooi W et al.: Immunogenicity, including vitiligo, and feasibility of vaccination with autologous GM-CSF-transduced tumor cells in metastatic melanoma patients. J. Clin. Oncol.23,8978–8991 (2005).
    • 122  Small EJ, Nemunaitis J, Marshall F et al.: Granulocyte macrophage colony-stimulating factor-secreting allogeneic cellular immunotherapy for hormone-refractory prostate cancer. Clin. Cancer Res.13,1883–3891 (2007).
    • 123  Higano CS: Phase 1/2 dose-escalation study of a GM-CSF-secreting, allogeneic, cellular immunotherapy for metastatic hormone-refractory prostate cancer. Cancer113,975–984 (2008).
    • 124  Filipazzi P, Valenti R, Huber V et al.: Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based anti-tumor vaccine. J. Clin. Oncol.25(18),2546–2553 (2007).
    • 125  Sica A, Bronte V: Altered macrophage differentiation and immune dysfunction in tumor development. J. Clin. Invest.117(5),1155–1166 (2007).
    • 126  Van Kooyk Y: C-type lectins on dendritic cells: key modulators for the induction of immune responses. Biochem. Soc. Trans.36(Pt 6),1478–1481 (2008).
    • 127  Caminschi I, Proietto AI, Ahmet F et al.: The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood112(8),3264–3273 (2008).
    • 128  Carter RW, Thompson C, Reid DM, Wong SY, Tough DF: Preferential induction of CD4+ T-cell responses through in vivo targeting of antigen to dendritic cell-associated C-type lectin-1. J. Immunol.177(4),2276–2284 (2006).
    • 129  Carter RW, Thompson C, Reid DM, Wong SY, Tough DF: Induction of CD8+ T-cell responses through targeting of antigen to dectin-2. Cell. Immunol.239(2),87–91 (2006).
    • 130  Boscardin SB, Hafalla JC, Masilamani RF et al.: Antigen targeting to dendritic cells elicits long-lived T-cell help for antibody responses. J. Exp. Med.203(3),599–606 (2006).
    • 131  Ramakrishna V, Treml JF, Vitale L et al.: Mannose receptor targeting of tumor antigen pmel17 to human dendritic cells directs anti-melanoma T-cell responses via multiple HLA molecules. J. Immunol.172(5),2845–2852 (2004).
    • 132  Adema GJ, De Vries IJ, Punt CJ, Figdor CG: Migration of dendritic cell based cancer vaccines: in vivo veritas? Curr. Opin. Immunol.17(2),170–174 (2005).
    • 133  Verdijk P, Aarntzen EH, Lesterhuis WJ et al.: Limited amounts of dendritic cells migrate into the T-cell area of lymph nodes but have high immune activating potential in melanoma patients. Clin. Cancer Res.15(7),2531–2540 (2009).▪ Demonstrates that although a small number of injected DCs end up within lymphoid tissues, these DCs have the capacity to activate immune responses.
    • 134  Schadendorf D, Ugurel S, Schuler-Thurner B et al.: Dacarbazine (Dtic) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized Phase III trial of the DC study group of the decog. Ann. Oncol.17(4),563–570 (2006).
    • 135  Higano CS, Schellhammer PF, Small EJ et al.: Integrated data from 2 randomized, double-blind, placebo-controlled, Phase III trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer115(16),3670–3679 (2009).
    • 136  Finn OJ, Forni G: Prophylactic cancer vaccines. Curr. Opin. Immunol.14(2),172–177 (2002).
    • 137  Jocham D, Richter A, Hoffmann L et al.: Adjuvant autologous renal tumour cell vaccine and risk of tumour progression in patients with renal-cell carcinoma after radical nephrectomy: Phase III, randomised controlled trial. Lancet363(9409),594–599 (2004).
    • 138  Bronte V, Mocellin S: Suppressive influences in the immune response to cancer. J. Immunother.32(1),1–11 (2009).
    • 139  Bennaceur K, Chapman J, Brikci-Nigassa L, Sanhadji K, Touraine JL, Portoukalian J: Dendritic cells dysfunction in tumour environment. Cancer Lett.272(2),186–196 (2008).
    • 140  Aptsiauri N, Cabrera T, Mendez R, Garcia-Lora A, Ruiz-Cabello F, Garrido F: Role of altered expression of HLA class I molecules in cancer progression. Adv. Exp. Med. Biol.601,123–131 (2007).
    • 141  Chang CC, Ogino T, Mullins DW et al.: Defective human leukocyte antigen class I-associated antigen presentation caused by a novel b2-microglobulin loss-of-function in melanoma cells. J. Biol. Chem.281(27),18763–18773 (2006).
    • 142  Blank C, Gajewski TF, Mackensen A: Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunol Immunother54(4),307–314 (2005).
    • 143  Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N: Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl Acad. Sci. USA99(19),12293–12297 (2002).
    • 144  Strome SE, Dong H, Tamura H et al.: B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res.63(19),6501–6505 (2003).
    • 145  Blank C, Kuball J, Voelkl S et al.: Blockade of PD-L1 (B7-H1) augments human tumor-specific T-cell responses in vitro. Int. J. Cancer119(2),317–327 (2006).
    • 146  Berger R, Rotem-Yehudar R, Slama G et al.: Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin. Cancer Res.14(10),3044–3051 (2008).
    • 147  Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP: Blockade of CTLA-4 on both effector and regulatory T-cell compartments contributes to the anti-tumor activity of anti-CTLA-4 antibodies. J. Exp. Med. (2009).
    • 148  Yuan J, Gnjatic S, Li H et al.: CTLA-4blockade enhances polyfunctional NY-ESO-1 specific T-cell responses in metastatic melanoma patients with clinical benefit. Proc. Natl Acad. Sci. USA105(51),20410–20415 (2008).
    • 149  O’day SJ, Hamid O, Urba WJ: Targeting cytotoxic T-lymphocyte antigen-4 (CTLA-4): a novel strategy for the treatment of melanoma and other malignancies. Cancer110(12),2614–2627 (2007).
    • 150  Gilboa E: Knocking the SOCS1 off dendritic cells. Nat. Biotechnol.22(12),1521–1522 (2004).
    • 151  Croker BA, Kiu H, Nicholson SE: SOCS regulation of the JAK/STAT signalling pathway. Semin. Cell Dev. Biol.19(4),414–422 (2008).
    • 152  Shen L, Evel-Kabler K, Strube R, Chen SY: Silencing of SOCS1 enhances antigen presentation by dendritic cells and antigen-specific anti-tumor immunity. Nat. Biotechnol.22(12),1546–1553 (2004).
    • 153  Evel-Kabler K, Song XT, Aldrich M, Huang XF, Chen SY: SOCS1 restricts dendritic cells’ ability to break self tolerance and induce anti-tumor immunity by regulating IL-12 production and signaling. J. Clin. Invest.116(1),90–100 (2006).
    • 154  Cohen N, Mouly E, Hamdi H et al.: Gilz expression in human dendritic cells redirects their maturation and prevents antigen-specific T lymphocyte response. Blood107(5),2037–2044 (2006).
    • 155  Berrebi D, Bruscoli S, Cohen N et al.: Synthesis of glucocorticoid-induced leucine zipper (GILZ) by macrophages: an anti-inflammatory and immunosuppressive mechanism shared by glucocorticoids and IL-10. Blood101(2),729–738 (2003).
    • 156  Foss F: Clinical experience with denileukin diftitox (ONTAK). Semin. Oncol.33(1 Suppl. 3),S11–S16 (2006).
    • 157  Liu JY, Wu Y, Zhang XS et al.: Single administration of low dose cyclophosphamide augments the anti-tumor effect of dendritic cell vaccine. Cancer Immunol. Immunother.56(10),1597–1604 (2007).
    • 158  Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S: Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nat. Immunol.3(2),135–142 (2002).
    • 159  Ko K, Yamazaki S, Nakamura K et al.: Treatment of advanced tumors with agonistic anti-gitr mab and its effects on tumor-infiltrating 3+CD25+CD4+ regulatory T cells. J. Exp. Med.202(7),885–891 (2005).
    • 160  Cohen AD, Diab A, Perales MA et al.: Agonist anti-GITR antibody enhances vaccine-induced CD8+ T-cell responses and tumor immunity. Cancer Res.66(9),4904–4912 (2006).
    • 161  Vicari AP, Chiodoni C, Vaure C et al.: Reversal of tumor-induced dendritic cell paralysis by CpG immunostimulatory oligonucleotide and anti-interleukin 10 receptor antibody. J. Exp. Med.196(4),541–549 (2002).
    • 162  Fujita T, Teramoto K, Ozaki Y et al.: Inhibition of transforming growth factor-β-mediated immunosuppression in tumor-draining lymph nodes augments anti-tumor responses by various immunologic cell types. Cancer Res.69(12),5142–5150 (2009).
    • 163  Lopez MN, Pereda C, Segal G et al.: Prolonged survival of dendritic cell-vaccinated melanoma patients correlates with tumor-specific delayed type IV hypersensitivity response and reduction of tumor growth factor β-expressing T cells. J. Clin. Oncol.27(6),945–952 (2009).
    • 164  Wang C, Lin GH, Mcpherson AJ, Watts TH: Immune regulation by 4-1-βB and 4-1-βBL: complexities and challenges. Immunol. Rev.229(1),192–215 (2009).
    • 165  May KF Jr, Chen L, Zheng P, Liu Y: Anti-4-1-βB monoclonal antibody enhances rejection of large tumor burden by promoting survival but not clonal expansion of tumor-specific CD8+ T cells. Cancer Res.62(12),3459–3465 (2002).
    • 166  Murillo O, Dubrot J, Palazon A et al.: in vivo depletion of DC impairs the anti-tumor effect of agonistic anti-CD137 mAb. Eur. J. Immunol.39(9),2424–2436 (2009).
    • 167  Kocak E, Lute K, Chang X et al.: Combination therapy with anti-CTL antigen-4 and anti-4-1-βB antibodies enhances cancer immunity and reduces autoimmunity. Cancer Res.66(14),7276–7284 (2006).
    • 168  Hanks BA, Jiang J, Singh RA et al.: Re-engineered CD40 receptor enables potent pharmacological activation of dendritic-cell cancer vaccines in vivo. Nat. Med.11(2),130–137 (2005).
    • 169  Lapteva N, Seethammagari MR, Hanks BA et al.: Enhanced activation of human dendritic cells by inducible CD40 and toll-like receptor-4 ligation. Cancer Res.67(21),10528–10537 (2007).
    • 170  Kutzler MA, Robinson TM, Chattergoon MA et al.: Coimmunization with an optimized IL-15 plasmid results in enhanced function and longevity of CD8 T cells that are partially independent of CD4 T-cell help. J. Immunol.175(1),112–123 (2005).
    • 171  Klebanoff CA, Finkelstein SE, Surman DR et al.: IL-15 enhances the in vivo anti-tumor activity of tumor-reactive CD8+ T cells. Proc. Natl Acad. Sci. USA101(7),1969–1974 (2004).
    • 172  Teague RM, Sather BD, Sacks JA et al.: Interleukin-15 rescues tolerant CD8+ T cells for use in adoptive immunotherapy of established tumors. Nat. Med.12(3),335–341 (2006).
    • 173  Schluns KS, Kieper WC, Jameson SC, Lefrancois L: Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat. Immunol.1(5),426–432 (2000).
    • 174  Rosenberg SA, Sportes C, Ahmadzadeh M et al.: IL-7 administration to humans leads to expansion of CD8+ and CD4+ cells but a relative decrease of CD4+ T-regulatory cells. J. Immunother.29(3),313–319 (2006).
    • 175  Minkis K, Kavanagh DG, Alter G et al.: Type 2 bias of T cells expanded from the blood of melanoma patients switched to type 1 by IL-12p70 mRNA-transfected dendritic cells. Cancer Res.68(22),9441–9450 (2008).
    • 176  Czerniecki BJ, Koski GK, Koldovsky U et al.: Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res.67(4),1842–1852 (2007).
    • 177  Adams S, O’neill DW, Nonaka D et al.: Immunization of malignant melanoma patients with full-length NY-ESO-1 protein using TLR7 agonist imiquimod as vaccine adjuvant. J. Immunol.181(1),776–784 (2008).
    • 178  Speiser DE, Lienard D, Rufer N et al.: Rapid and strong human CD8+ T-cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J. Clin. Invest.115(3),739–746 (2005).
    • 179  Warger T, Osterloh P, Rechtsteiner Get al.: Synergistic activation of dendritic cells by combined toll-like receptor ligation induces superior CTL responses in vivo. Blood108(2),544–550 (2006).
    • 180  Vandepapeliere P, Horsmans Y, Moris P et al.: Vaccine adjuvant systems containing monophosphoryl lipid A and QS21 induce strong and persistent humoral and T-cell responses against hepatitis B surface antigen in healthy adult volunteers. Vaccine26(10),1375–1386 (2008).
    • 181  Longhi MP, Trumpfheller C, Idoyaga J et al.: Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1 immunity with poly IC as adjuvant. J. Exp. Med.206(7),1589–1602 (2009).
    • 182  Reed SG, Bertholet S, Coler RN, Friede M: New horizons in adjuvants for vaccine development. Trends Immunol.30(1),23–32 (2009).
    • 183  Sharp FA, Ruane D, Claass B et al.: Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc. Natl Acad. Sci. USA106(3),870–875 (2009).
    • 184  Baumgaertner P, Rufer N, Devevre E et al.: ex vivo detectable human CD8 T-cell responses to cancer-testis antigens. Cancer Res.66(4),1912–1916 (2006).
    • 185  Diefenbach CS, Gnjatic S, Sabbatini P et al.: Safety and immunogenicity study of NY-ESO-1-β peptide and montanide ISA-51 vaccination of patients with epithelial ovarian cancer in high-risk first remission. Clin. Cancer Res.14(9),2740–2748 (2008).
    • 186  Fourcade J, Kudela P, Andrade Filho PAet al.: Immunization with analog peptide in combination with CpG and montanide expands tumor antigen-specific CD8+ T cells in melanoma patients. J. Immunother.31(8),781–791 (2008).
    • 187  Marshall JL, Gulley JL, Arlen PM et al.: Phase I study of sequential vaccinations with fowlpox-CEA(6D)-TRICOM alone and sequentially with vaccinia-CEA(6D)-TRICOM, with and without granulocyte-macrophage colony-stimulating factor, in patients with carcinoembryonic antigen-expressing carcinomas. J. Clin. Oncol.23(4),720–731 (2005).
    • 188  Marshall JL, Hoyer RJ, Toomey MA et al.: Phase I study in advanced cancer patients of a diversified prime-and-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses. J. Clin. Oncol.18(23),3964–3973 (2000).
    • 189  Dhodapkar MV: Harnessing human CD1d restricted T cells for tumor immunity: progress and challenges. Front. Biosci.14,796–807 (2009).
    • 190  Chang DH, Osman K, Connolly J et al.: Sustained expansion of NKT cells and antigen-specific T cells after injection of α-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J. Exp. Med.201(9),1503–1517 (2005).
    • 191  Aquino A, Formica V, Prete SP et al.: Drug-induced increase of carcinoembryonic antigen expression in cancer cells. Pharmacol. Res.49(5),383–396 (2004).
    • 192  Correale P, Aquino A, Giuliani A et al.: Treatment of colon and breast carcinoma cells with 5-fluorouracil enhances expression of carcinoembryonic antigen and susceptibility to HLA-A(*)02.01 restricted, CEA-peptide-specific cytotoxic T cells in vitro. Int. J. Cancer104(4),437–445 (2003).
    • 193  Lu W, Arraes LC, Ferreira WT, Andrieu JM: Therapeutic dendritic-cell vaccine for chronic HIV-1 infection. Nat. Med.10(12),1359–1365 (2004).▪▪ DC vaccine against HIV elicits T-cell responses that correlate with decreasedviral loads.
    • 201  List of clinical trials for antigen-pulsed DCs. www.clinicaltrials.gov
    • 202  List of DC-based vaccine clinical trials. www.mmri.mater.org.au