We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/imt-2024-0024

Aim: We compared the effectiveness of rush subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT) using standardized house dust mite (HDM) extract for pediatric bronchial asthma (BA). Methods: We followed the pediatric BA treatment score during 3 years of treatment. We assessed the median time to no longer requiring long-term control pharmacotherapy (LTCP) for BA (LTCP-free). We compared the outcomes after adjustment for confounding factors and propensity score matching. Results: Patients in the HDM SCIT group achieved the LTCP-free status significantly earlier than those in the HDM SLIT group after adjustment for confounding factors and propensity score matching. Conclusion: Patients treated for pediatric BA with rush HDM SCIT had earlier onset of therapeutic effects than those with HDM SLIT.

Papers of special note have been highlighted as: • of interest; •• of considerable interest

References

  • 1. Levy ML, Bacharier LB, Bateman E et al. Key recommendations for primary care from the 2022 Global Initiative for Asthma (GINA) update. NPJ Prim. Care Respir. Med. 2023;33(1):7. doi: 10.1038/s41533-023-00330-1.
  • 2. Stern DA, Morgan WJ, Halonen M et al. Wheezing and bronchial hyper-responsiveness in early childhood as predictors of newly diagnosed asthma in early adulthood: a longitudinal birth-cohort study. Lancet 2008;372(9643):1058–1064. doi: 10.1016/S0140-6736(08)61447-6.
  • 3. Horak E, Lanigan A, Roberts M et al. Longitudinal study of childhood wheezy bronchitis and asthma: outcome at age 42. BMJ 2003;326(7386):422–423. doi: 10.1136/bmj.326.7386.422.
  • 4. McGeachie MJ, Yates KP, Zhou X et al. Patterns of growth and decline in lung function in persistent childhood asthma. N. Engl. J. Med. 2016;374(19):1842–1852. doi: 10.1056/NEJMoa1513737.
  • 5. To M, Tsuzuki R, Katsube O et al. Persistent Asthma from Childhood to Adulthood Presents a Distinct Phenotype of Adult Asthma. J. Allergy Clin. Immunol. Pract. 2020;8(6):1921–1927. doi: 10.1016/j.jaip.2020.01.011.
  • 6. Fuchs O, Bahmer T, Rabe KF et al. Asthma transition from childhood into adulthood. Lancet Respir. Med. 2017;5(3):224–234. doi: 10.1016/S2213-2600(16)30187-4.
  • 7. Alvaro-Lozano M, Akdis CA, Akdis M, Alviani C, Angier E, Arasi S et al. EAACI allergen immunotherapy User's guide. Pediatr. Allergy Immunol. 2020;31(Suppl. 25):1–101. doi: 10.1111/pai.13189.
  • 8. Arakawa H, Hamasaki Y, Kohno Y et al. Japanese guidelines for childhood asthma 2017. Allergol. Int. 2017;66(2):190–204. doi: 10.1016/j.alit.2016.11.003.
  • 9. Okubo K, Kurono Y, Ichimura K et al. Japanese guidelines for allergic rhinitis 2020. Allergol. Int. 2020;69(3):331–345. doi: 10.1016/j.alit.2020.04.001.
  • 10. Cox L, Larenas-Linnemann D, Lockey RF et al. Speaking the same language: The World Allergy Organization Subcutaneous Immunotherapy Systemic Reaction Grading System. J. Allergy Clin. Immunol. 2010;125(3):569–574. doi: 10.1016/j.jaci.2009.10.060.
  • 11. Hamada M, Saeki K, Tanaka I. Effectiveness and safety of subcutaneous immunotherapy with standardized house dust mite extract for patients under the age of 5 years: a prospective cohort study. Allergol. Int. 2021;70(4):492–494. doi: 10.1016/j.alit.2021.05.004.
  • 12. Hamada M, Saeki K, Tanaka I. Comparison of rush-subcutaneous and sublingual immunotherapy with house dust mite extract for pediatric allergic rhinitis: a prospective cohort study. Allergol. Int. 2023;72(4):573–579. doi: 10.1016/j.alit.2023.02.007.
  • 13. Takai T, Okamoto Y, Okubo K et al. Japanese Society of Allergology task force report on standardization of house dust mite allergen vaccines-secondary publication. Allergol. Int. 2015;64(2):181–186. doi: 10.1016/j.alit.2015.01.005.
  • 14. Denz R, Klaaßen-Mielke R, Timmesfeld N. A comparison of different methods to adjust survival curves for confounders. Stat. Med. 2023;42(10):1461–1479. doi: 10.1002/sim.9681.
  • 15. Denz R. adjustedCurves: confounder-adjusted survival curves and cumulative incidence functions. R package verion0.9.0 (2023). Available at: https://cran.r-project.org/package=adjutedCurves
  • 16. Pepe MS, Fleming TR. Weighted Kaplan-Meier Statistics: a class of distance tests for censored survival data. Biometrics 1989;45(2):497–507.
  • 17. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48(3):452–458. doi: 10.1038/bmt.2012.244.
  • 18. Dhami S, Kakourou A, Asamoah F et al. Allergen immunotherapy for allergic asthma: a systematic review and meta-analysis. Allergy 2017;72(12):1825–1848. doi: 10.1111/all.13208.
  • 19. Keles S, Karakoc-Aydiner E, Ozen A et al. A novel approach in allergen-specific immunotherapy: combination of sublingual and subcutaneous routes. J. Allergy Clin. Immunol. 2011;128(4):808–815. doi: 10.1016/j.jaci.2011.04.033.
  • 20. Karakoc-Aydiner E, Eifan AO, Baris S et al. Long-term effect of sublingual and subcutaneous immunotherapy in dust mite-allergic children with asthma/rhinitis: a 3-year prospective randomized controlled trial. J. Investig Allergol. Clin. Immunol. 2015;25(5):334–342.
  • 21. Hamada M. Evaluation of protocols for rush subcutaneous immunotherapy with standardized house dust mite extracts. Arelugi 2020;69(1):40–47. doi: 10.15036/arerugi.69.40.
  • 22. Okamoto Y, Kato M, Ishii K et al. Safety and effectiveness of a 300 IR house dust mite sublingual tablet: descriptive 4-year final analysis of a post-marketing surveillance in Japan. Immunotherapy 2023;15(16):1401–1414. doi: 10.2217/imt-2023-0100. • Investigates the reasons for discontinuation of house dust mite sublingual immunotherapy in a real-world setting, based on numerous cases.
  • 23. Plewako H, Wosinska K, Arvidsson M et al. Basophil interleukin 4 and interleukin 13 production is suppressed during the early phase of rush immunotherapy. Int. Arch. Allergy Immunol. 2006;141(4):346–353. doi: 10.1159/000095461. •• Reports the early suppression of basophils in rush allergen immunotherapy, a subset of allergen immunotherapy.
  • 24. Novak N, Mete N, Bussmann C et al. Early suppression of basophil activation during allergen-specific immunotherapy by histamine receptor 2. J. Allergy Clin. Immunol. 2012;130(5):1153–1158. doi: 10.1016/j.jaci.2012.04.039.
  • 25. Van Overtvelt L, Baron-Bodo V, Horiot S et al. Changes in basophil activation during grass-pollen sublingual immunotherapy do not correlate with clinical efficacy. Allergy 2011;66(12):1530–1537. doi: 10.1111/j.1398-9995.2011.02696.x.
  • 26. Ciepiela O, Zawadzka-Krajewska A, Kotula I et al. Sublingual immunotherapy for asthma: affects T-cells but does not impact basophil activation. Pediatr. Allergy Immunol. Pulmonol. 2014;27(1):17–23. doi: 10.1089/ped.2014.0328.