We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Prolonged clinical remission of type 1 diabetes sustained by calcifediol and low-dose basal insulin: a case report

    Marco Infante

    *Author for correspondence:

    E-mail Address: marco.infante@unicamillus.org

    CTO Andrea Alesini Hospital, Division of Endocrinology & Diabetes, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, Rome, 00145, Italy

    Division of Cellular Transplantation, Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL 33136, USA

    Section of Diabetes & Metabolic Disorders, UniCamillus, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, Rome, 00131, Italy

    Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Via Cola di Rienzo 28, Rome, 00192, Italy

    ,
    Laura Vitiello

    Laboratory of Flow Cytometry, IRCCS San Raffaele, Via di Val Cannuta 247, Rome, 00166, Italy

    ,
    Andrea Fabbri

    Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, 00133, Italy

    ,
    Camillo Ricordi

    Division of Cellular Transplantation, Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL 33136, USA

    ,
    Nathalia Padilla

    Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Colonia Centroamérica L-823, Managua, 14048, Nicaragua

    ,
    Francesca Pacifici

    Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, 00133, Italy

    ,
    Pasquale Di Perna

    CTO Andrea Alesini Hospital, Division of Endocrinology & Diabetes, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, Rome, 00145, Italy

    ,
    Marina Passeri

    CTO Andrea Alesini Hospital, Division of Endocrinology & Diabetes, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, Rome, 00145, Italy

    ,
    David Della-Morte

    Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, 00133, Italy

    Department of Human Sciences & Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, Rome, 00166, Italy

    Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, 1120 NW 14th St, Miami, FL 33136, USA

    ,
    Massimiliano Caprio

    Department of Human Sciences & Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, Rome, 00166, Italy

    Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, Via di Val Cannuta 247, Rome, 00166, Italy

    &
    Luigi Uccioli

    CTO Andrea Alesini Hospital, Division of Endocrinology & Diabetes, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, Rome, 00145, Italy

    Published Online:https://doi.org/10.2217/imt-2022-0266

    Herein, we describe an unusually prolonged duration (31 months) of the clinical remission phase in a 22-year-old Italian man with new-onset type 1 diabetes. Shortly after the disease diagnosis, the patient was treated with calcifediol (also known as 25-hydroxyvitamin D3 or calcidiol), coupled with low-dose basal insulin, to correct hypovitaminosis D and to exploit the anti-inflammatory and immunomodulatory properties of vitamin D. During the follow-up period, the patient retained a substantial residual β-cell function and remained within the clinical remission phase, as evidenced by an insulin dose-adjusted glycated hemoglobin value <9. At 24 months, we detected a peculiar immunoregulatory profile of peripheral blood cells, which may explain the prolonged duration of the clinical remission sustained by calcifediol as add-on treatment to insulin.

    Plain language summary

    We describe the case of a 22-year-old Italian man who was treated with a form of vitamin D called calcifediol shortly after the diagnosis of type 1 diabetes, which is an autoimmune condition leading to insulin deficiency and to the lifelong need for insulin therapy. Calcifediol was administered, coupled with low-dose insulin, to correct vitamin D insufficiency and to exploit the anti-inflammatory properties of vitamin D. During the follow-up period (31 months), the patient unexpectedly remained on once-daily insulin injection therapy and maintained near-normal blood glucose levels. These findings suggest that calcifediol administration may represent a valid add-on treatment to insulin, with the aim of reducing daily insulin requirements and improving glucose control in patients with recent-onset type 1 diabetes.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet 383(9911), 69–82 (2014). • Provides relevant information on the pathophysiology of type 1 diabetes (T1D).
    • 2. Ikegami H, Noso S, Babaya N, Kawabata Y. Genetics and pathogenesis of type 1 diabetes: prospects for prevention and intervention. J. Diabetes Investig. 2(6), 415–420 (2011).
    • 3. Rewers M, Ludvigsson J. Environmental risk factors for type 1 diabetes. Lancet 387(10035), 2340–2348 (2016).
    • 4. Infante M, Ricordi C, Sanchez J et al. Influence of vitamin D on islet autoimmunity and beta-cell function in type 1 diabetes. Nutrients 11(9), 2185 (2019).
    • 5. Fabbri A, Infante M, Ricordi C. Editorial – Vitamin D status: a key modulator of innate immunity and natural defense from acute viral respiratory infections. Eur. Rev. Med. Pharmacol. Sci. 24(7), 4048–4052 (2020).
    • 6. Mathieu C, Waer M, Laureys J, Rutgeerts O, Bouillon R. Prevention of autoimmune diabetes in NOD mice by 1,25 dihydroxyvitamin D3. Diabetologia 37(6), 552–558 (1994).
    • 7. Mathieu C, Waer M, Casteels K, Laureys J, Bouillon R. Prevention of type I diabetes in NOD mice by nonhypercalcemic doses of a new structural analog of 1,25-dihydroxyvitamin D3, KH1060. Endocrinology 136(3), 866–872 (1995).
    • 8. Mathieu C, Laureys J, Sobis H, Vandeputte M, Waer M, Bouillon R. 1,25-Dihydroxyvitamin D3 prevents insulitis in NOD mice. Diabetes 41(11), 1491–1495 (1992).
    • 9. Littorin B, Blom P, Schölin A et al. Lower levels of plasma 25-hydroxyvitamin D among young adults at diagnosis of autoimmune type 1 diabetes compared with control subjects: results from the nationwide Diabetes Incidence Study in Sweden (DISS). Diabetologia 49(12), 2847–2852 (2006).
    • 10. Daga RA, Laway BA, Shah ZA, Mir SA, Kotwal SK, Zargar AH. High prevalence of vitamin D deficiency among newly diagnosed youth-onset diabetes mellitus in north India. Arq. Bras. Endocrinol. Metabol. 56(7), 423–428 (2012).
    • 11. Cadario F, Prodam F, Savastio S et al. Vitamin D status and type 1 diabetes in children: evaluation according to latitude and skin color. Minerva Pediatr. 67(3), 263–267 (2015).
    • 12. Harris SS. Vitamin D in type 1 diabetes prevention. J. Nutr. 135(2), 323–325 (2005).
    • 13. Ilonen J, Lempainen J, Veijola R. The heterogeneous pathogenesis of type 1 diabetes mellitus. Nat. Rev. Endocrinol. 15(11), 635–650 (2019). • Provides relevant information on the pathophysiology of T1D.
    • 14. Leete P, Willcox A, Krogvold L et al. Differential insulitic profiles determine the extent of β-cell destruction and the age at onset of type 1 diabetes. Diabetes 65(5), 1362–1369 (2016). •• Provides relevant information on different insulitic profiles in T1D.
    • 15. Roep BO. The role of T-cells in the pathogenesis of type 1 diabetes: from cause to cure. Diabetologia 46(3), 305–321 (2003).
    • 16. Lindley S, Dayan CM, Bishop A, Roep BO, Peakman M, Tree TI. Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes 54(1), 92–99 (2005).
    • 17. Brusko TM, Wasserfall CH, Clare-Salzler MJ, Schatz DA, Atkinson MA. Functional defects and the influence of age on the frequency of CD4+ CD25+ T-cells in type 1 diabetes. Diabetes 54(5), 1407–1414 (2005).
    • 18. Haseda F, Imagawa A, Murase-Mishiba Y, Terasaki J, Hanafusa T. CD4+ CD45RA- FoxP3high activated regulatory T cells are functionally impaired and related to residual insulin-secreting capacity in patients with type 1 diabetes. Clin. Exp. Immunol. 173(2), 207–216 (2013).
    • 19. Walker LS, von Herrath M. CD4 T cell differentiation in type 1 diabetes. Clin. Exp. Immunol. 183(1), 16–29 (2016).
    • 20. Cox SL, Silveira PA. Emerging roles for B lymphocytes in type 1 diabetes. Expert. Rev. Clin. Immunol. 5(3), 311–324 (2009).
    • 21. Fonolleda M, Murillo M, Vázquez F, Bel J, Vives-Pi M. Remission phase in paediatric type 1 diabetes: new understanding and emerging biomarkers. Horm. Res. Paediatr. 88(5), 307–315 (2017). •• Provides relevant information on the pathophysiology of the remission phase in patients with T1D.
    • 22. Pinkey JH, Bingley PJ, Sawtell PA, Dunger DB, Gale EA. Presentation and progress of childhood diabetes mellitus: a prospective population-based study. The Bart’s–Oxford Study Group. Diabetologia 37(1), 70–74 (1994).
    • 23. Zhong T, Tang R, Xie Y, Liu F, Li X, Zhou Z. Frequency, clinical characteristics, and determinants of partial remission in type 1 diabetes: different patterns in children and adults. J. Diabetes 12(10), 761–768 (2020).
    • 24. Passanisi S, Salzano G, Gasbarro A et al. Influence of age on partial clinical remission among children with newly diagnosed type 1 diabetes. Int. J. Environ. Res. Public Health 17(13), 4801 (2020).
    • 25. Abdul-Rasoul M, Habib H, Al-Khouly M. ‘The honeymoon phase’ in children with type 1 diabetes mellitus: frequency, duration, and influential factors. Pediatr. Diabetes 7(2), 101–107 (2006).
    • 26. Aly H, Gottlieb P. The honeymoon phase: intersection of metabolism and immunology. Curr. Opin. Endocrinol. Diabetes Obes. 16(4), 286–292 (2009).
    • 27. Infante M, Fabbri A, Padilla N et al. BNT162b2 mRNA COVID-19 vaccine does not impact the honeymoon phase in type 1 diabetes: a case report. Vaccines (Basel) 10(7), 1096 (2022).
    • 28. Kitabchi AE, Umpierrez GE, Miles JM, Fisher JN. Hyperglycemic crises in adult patients with diabetes. Diabetes Care 32(7), 1335–1343 (2009).
    • 29. Saisho Y. Postprandial C-peptide to glucose ratio as a marker of β cell function: implication for the management of type 2 diabetes. Int. J. Mol. Sci. 17(5), 744 (2016).
    • 30. Mortensen HB, Hougaard P, Swift P et al. New definition for the partial remission period in children and adolescents with type 1 diabetes. Diabetes Care 32(8), 1384–1390 (2009).
    • 31. Caprio M, Infante M, Calanchini M, Mammi C, Fabbri A. Vitamin D: not just the bone. Evidence for beneficial pleiotropic extraskeletal effects. Eat. Weight Disord. 22(1), 27–41 (2017).
    • 32. Caprio M, Mammi C, Rosano GM. Vitamin D: a novel player in endothelial function and dysfunction. Arch. Med. Sci. 8(1), 4–5 (2012).
    • 33. Pinheiro MM, Fabbri A, Infante M. Cytokine storm modulation in COVID-19: a proposed role for vitamin D and DPP-4 inhibitor combination therapy (VIDPP-4i). Immunotherapy 13(9), 753–765 (2021).
    • 34. Pinheiro MM, Pinheiro FMM, Diniz SN, Fabbri A, Infante M. Combination of vitamin D and dipeptidyl peptidase-4 inhibitors (VIDPP-4i) as an immunomodulation therapy for autoimmune diabetes. Int. Immunopharmacol. 95, 107518 (2021).
    • 35. Maia Pinheiro M, Moura Maia Pinheiro F, Pires Amaral Resende LL, Nogueira Diniz S, Fabbri A, Infante M. Improvement of pure sensory mononeuritis multiplex and IgG1 deficiency with sitagliptin plus Vitamin D3. Eur. Rev. Med. Pharmacol. Sci. 24(15), 8151–8159 (2020).
    • 36. Maia Pinheiro M, Maia Pinheiro FM, Amaral Resende LLP, Diniz SN, Fabbri A, Infante M. 36-month follow-up of a pure sensory mononeuritis multiplex and IgG1 deficiency improved after treatment with sitagliptin and vitamin D3. Eur. Rev. Med. Pharmacol. Sci. 25(4), 1768–1769 (2021).
    • 37. Charoenngam N, Holick MF. Immunologic effects of vitamin D on human health and disease. Nutrients 12(7), 2097 (2020).
    • 38. Erlich H, Valdes AM, Noble J et al. HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the type 1 diabetes genetics consortium families. Diabetes 57(4), 1084–1092 (2008).
    • 39. Van der Auwera B, Van Waeyenberge C, Schuit F et al. DRB1*0403 protects against IDDM in Caucasians with the high-risk heterozygous DQA1*0301-DQB1*0302/DQA1*0501-DQB1*0201 genotype. Belgian Diabetes Registry. Diabetes 44(5), 527–530 (1995).
    • 40. Garcia-Prat M, Álvarez-Sierra D, Aguiló-Cucurull A et al. Extended immunophenotyping reference values in a healthy pediatric population. Cytometry B Clin. Cytom. 96(3), 223–233 (2019).
    • 41. Yazidi M, Mahjoubi S, Oueslati I, Chaker F, Chihaoui M. The remission phase in adolescents and young adults with newly diagnosed type 1 diabetes mellitus: prevalence, predicting factors and glycemic control during follow-up. Arch. Endocrinol. Metab. 66(2), 222–228 (2022).
    • 42. Erlich HA, Zeidler A, Chang J et al. HLA class II alleles and susceptibility and resistance to insulin dependent diabetes mellitus in Mexican–American families. Nat. Genet. 3(4), 358–364 (1993).
    • 43. Payami H, Joe S, Farid NR et al. Relative predispositional effects (RPEs) of marker alleles with disease: HLA-DR alleles and Graves disease. Am. J. Hum. Genet. 45(4), 541–546 (1989).
    • 44. Rickels MR, Evans-Molina C, Bahnson HT et al. High residual C-peptide likely contributes to glycemic control in type 1 diabetes. J. Clin. Invest. 130(4), 1850–1862 (2020).
    • 45. Davis AK, DuBose SN, Haller MJ et al. Prevalence of detectable C-peptide according to age at diagnosis and duration of type 1 diabetes. Diabetes Care 38(3), 476–481 (2015).
    • 46. Gomez-Muñoz L, Perna-Barrull D, Caroz-Armayones JM et al. Candidate biomarkers for the prediction and monitoring of partial remission in pediatric type 1 diabetes. Front. Immunol. 13, 825426 (2022).
    • 47. Palmer JP. C-peptide in the natural history of type 1 diabetes. Diabetes Metab. Res. Rev. 25(4), 325–328 (2009).
    • 48. Nigi L, Maccora C, Dotta F, Sebastiani G. From immunohistological to anatomical alterations of human pancreas in type 1 diabetes: new concepts on the stage. Diabetes Metab. Res. Rev. 36(4), e3264 (2020).
    • 49. Planas R, Carrillo J, Sanchez A et al. Gene expression profiles for the human pancreas and purified islets in type 1 diabetes: new findings at clinical onset and in long-standing diabetes. Clin. Exp. Immunol. 159(1), 23–44 (2010).
    • 50. Li Y, Liu Y, Chu CQ. Th17 cells in type 1 diabetes: role in the pathogenesis and regulation by gut microbiome. Mediators Inflamm. 2015, 638470 (2015).
    • 51. Martin-Orozco N, Chung Y, Chang SH, Wang YH, Dong C. Th17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into Th1 cells. Eur. J. Immunol. 39(1), 216–224 (2009).
    • 52. Visperas A, Vignali DA. Are regulatory T cells defective in type 1 diabetes and can we fix them? J. Immunol. 197(10), 3762–3770 (2016).
    • 53. Hull CM, Peakman M, Tree TIM. Regulatory T cell dysfunction in type 1 diabetes: what’s broken and how can we fix it? Diabetologia 60(10), 1839–1850 (2017).
    • 54. Sanda S, Roep BO, von Herrath M. Islet antigen specific IL-10+ immune responses but not CD4+CD25+FoxP3+ cells at diagnosis predict glycemic control in type 1 diabetes. Clin. Immunol. 127(2), 138–143 (2008).
    • 55. Simon Q, Pers JO, Cornec D, Le Pottier L, Mageed RA, Hillion S. In-depth characterization of CD24(high)CD38(high) transitional human B cells reveals different regulatory profiles. J. Allergy Clin. Immunol. 137(5), 1577–1584.e10 (2016).
    • 56. Federico G, Focosi D, Marchi B et al. Administering 25-hydroxyvitamin D3 in vitamin D-deficient young type 1A diabetic patients reduces reactivity against islet autoantigens. Clin. Nutr. 33(6), 1153–1156 (2014). •• Provides insights into the protective actions of calcifediol against β-cell autoimmunity in patients with new-onset type 1 diabetes.
    • 57. Yu J, Sharma P, Girgis CM, Gunton JE. Vitamin D and beta cells in type 1 diabetes: a systematic review. Int. J. Mol. Sci. 23(22), 14434 (2022).
    • 58. Nwosu BU, Parajuli S, Jasmin G et al. Ergocalciferol in new-onset type 1 diabetes: a randomized controlled trial. J. Endocr. Soc. 6(1), bvab179 (2022).
    • 59. Charoenngam N, Shirvani A, Holick MF. Vitamin D and its potential benefit for the COVID-19 pandemic. Endocr. Pract. 27(5), 484–493 (2021).
    • 60. Infante M, Ricordi C, Baidal DA et al. VITAL study: an incomplete picture? Eur. Rev. Med. Pharmacol. Sci. 23(7), 3142–3147 (2019).
    • 61. Infante M, Sears B, Rizzo AM et al. Omega-3 PUFAs and vitamin D co-supplementation as a safe–effective therapeutic approach for core symptoms of autism spectrum disorder: case report and literature review. Nutr. Neurosci. 23(10), 779–790 (2018).
    • 62. Infante M, Fabbri A, Della-Morte D, Ricordi C. The importance of vitamin D and omega-3 PUFA supplementation: a nonpharmacologic immunomodulation strategy to halt autoimmunity. Eur. Rev. Med. Pharmacol. Sci. 26(18), 6787–6795 (2022).
    • 63. Overbergh L, Decallonne B, Valckx D et al. Identification and immune regulation of 25-hydroxyvitamin D-1-alpha-hydroxylase in murine macrophages. Clin. Exp. Immunol. 120(1), 139–146 (2000).
    • 64. Korf H, Wenes M, Stijlemans B et al. 1,25-Dihydroxyvitamin D3 curtails the inflammatory and T cell stimulatory capacity of macrophages through an IL-10-dependent mechanism. Immunobiology 217(12), 1292–1300 (2012).
    • 65. Ferreira GB, van Etten E, Verstuyf A et al. 1,25-Dihydroxyvitamin D3 alters murine dendritic cell behaviour in vitro and in vivo. Diabetes Metab. Res. Rev. 27(8), 933–941 (2011).
    • 66. Zhang X, Zhou M, Guo Y, Song Z, Liu B. 1,25-Dihydroxyvitamin D3 promotes high glucose-induced M1 macrophage switching to M2 via the VDR-PPARγ signaling pathway. Biomed. Res. Int. 2015, 157834 (2015).
    • 67. Jeffery LE, Burke F, Mura M et al. 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J. Immunol. 183(9), 5458–5467 (2009).
    • 68. Overbergh L, Decallonne B, Waer M et al. 1α,25-dihydroxyvitamin D3 induces an autoantigen-specific T-helper 1/T-helper 2 immune shift in NOD mice immunized with GAD65 (p 524–543). Diabetes 49(8), 1301–1307 (2000).
    • 69. Boonstra A, Barrat FJ, Crain C, Heath VL, Savelkoul HF, O’Garra A. 1α,25-Dihydroxyvitamin d3 has a direct effect on naive CD4(+) T cells to enhance the development of Th2 cells. J. Immunol. 167(9), 4974–4980 (2001).
    • 70. Bouillon R, Lieben L, Mathieu C, Verstuyf A, Carmeliet G. Vitamin D action: lessons from VDR and Cyp27b1 null mice. Pediatr. Endocrinol. Rev. 10(Suppl. 2), 354–366 (2013).
    • 71. Holick MF. The use and interpretation of assays for vitamin D and its metabolites. J. Nutr. 120(Suppl. 11), 1464–1469 (1990).
    • 72. Wootton AM. Improving the measurement of 25-hydroxyvitamin D. Clin. Biochem. Rev. 26(1), 33–36 (2005).
    • 73. Smith JE, Goodman DS. The turnover and transport of vitamin D and of a polar metabolite with the properties of 25-hydroxycholecalciferol in human plasma. J. Clin. Invest. 50(10), 2159–2167 (1971).
    • 74. Infante M, Ricordi C. Editorial – Moving forward on the pathway of targeted immunotherapies for type 1 diabetes: the importance of disease heterogeneity. Eur. Rev. Med. Pharmacol. Sci. 23(19), 8702–8704 (2019).
    • 75. Infante M, Alejandro R, Fabbri A, Ricordi C. Chapter 5. The heterogeneity of type 1 diabetes: from immunopathology to immune intervention. In: Translational Autoimmunity (1st Edition), Volume 4. Rezaei N (Ed.). Academic Press, MA, USA, 83–104 (2022).
    • 76. Nwosu BU. The theory of hyperlipidemic memory of type 1 diabetes. Front. Endocrinol. 13, 819544 (2022). • Provides relevant information on the pathophysiology of the remission phase in patients with T1D.