We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/imt-2021-0297
Free first page

References

  • 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J. Clin. 70(1), 7–30 (2020).
  • 2. Guo X, Jo VY, Mills AM et al. Clinically relevant molecular subtypes in leiomyosarcoma. Clin. Cancer Res. 21(15), 3501–3511 (2015).
  • 3. Beck AH, Lee C-H, Witten DM et al. Discovery of molecular subtypes in leiomyosarcoma through integrative molecular profiling. Oncogene 29(6), 845–854 (2010).
  • 4. Judson I, Verweij J, Gelderblom H et al. Doxorubicin alone versus intensified doxorubicin plus ifosfamide for first-line treatment of advanced or metastatic soft-tissue sarcoma: a randomised controlled phase 3 trial. Lancet Oncol. 15(4), 415–423 (2014).
  • 5. Ryan CW, Merimsky O, Agulnik M et al. PICASSO III: a phase III, placebo-controlled study of doxorubicin with or without palifosfamide in patients with metastatic soft tissue sarcoma. J. Clin. Oncol. 34(32), 3898–3905 (2016).
  • 6. Tap WD, Papai Z, Van Tine BA et al. Doxorubicin plus evofosfamide versus doxorubicin alone in locally advanced, unresectable or metastatic soft-tissue sarcoma (TH CR-406/SARC021): an international, multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 18(8), 1089–1103 (2017).
  • 7. D'Ambrosio L, Touati N, Blay J-Y et al. Doxorubicin plus dacarbazine, doxorubicin plus ifosfamide, or doxorubicin alone as a first-line treatment for advanced leiomyosarcoma: a propensity score matching analysis from the European Organization for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group. Cancer 126(11), 2637–2647 (2020).
  • 8. Pautier P, Italiano A, Piperno-Neumann S et al. LBA59 LMS-04 study: A randomised, multicenter, phase III study comparing doxorubicin alone versus doxorubicin with trabectedin followed by trabectedin in non-progressive patients as first-line therapy, in patients with metastatic or unresectable leiomyosarcoma – a French Sarcoma Group study. Ann. Oncol. 32, S1335–S1336 (2021).
  • 9. Borghaei H, Paz-Ares L, Horn L et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 373(17), 1627–1639 (2015).
  • 10. Atkins MB, Plimack ER, Puzanov I et al. Axitinib in combination with pembrolizumab in patients with advanced renal cell cancer: a non-randomised, open-label, dose-finding, and dose-expansion phase 1b trial. Lancet Oncol. 19(3), 405–415 (2018).
  • 11. Larkin J, Chiarion-Sileni V, Gonzalez R et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373(1), 23–34 (2015).
  • 12. Tawbi HA, Burgess M, Bolejack V et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 18(11), 1493–1501 (2017).
  • 13. D'Angelo SP, Mahoney MR, Van Tine BA et al. Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, non-comparative, randomised, phase 2 trials. Lancet Oncol. 19(3), 416–426 (2018).
  • 14. Ben-Ami E, Barysauskas CM, Solomon S et al. Immunotherapy with single agent nivolumab for advanced leiomyosarcoma of the uterus: results of a phase 2 study. Cancer 123(17), 3285–3290 (2017).
  • 15. Pollack SM, Ingham M, Spraker MB, Schwartz GK. Emerging targeted and immune-based therapies in sarcoma. J. Clin. Oncol. 36(2), 125–135 (2017).
  • 16. De Wispelaere W, Annibali D, Tuyaerts S, Lambrechts D, Amant F. Resistance to immune checkpoint blockade in uterine leiomyosarcoma: what can we learn from other cancer types? Cancers 13(9), 2040 (2021).
  • 17. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28(6), 690–714 (2015).
  • 18. Pollack SM, Redman MW, Baker KK et al. Assessment of doxorubicin and pembrolizumab in patients with advanced anthracycline-naive sarcoma: a phase 1/2 nonrandomized clinical trial. JAMA Oncol. 6(11), 1778–1782 (2020).
  • 19. Livingston MB, Jagosky MH, Robinson MM et al. Phase II study of pembrolizumab in combination with doxorubicin in metastatic and unresectable soft tissue sarcoma. Clin. Cancer Res. 27(23), 6424–6431 (2021).
  • 20. Wilky BA, Trucco MM, Subhawong TK et al. Axitinib plus pembrolizumab in patients with advanced sarcomas including alveolar soft-part sarcoma: a single-centre, single-arm, Phase 2 trial. Lancet Oncol. 20(6), 837–848 (2019).
  • 21. Smrke A, Ostler A, Napolitano A et al. 1526MO GEMMK: A phase I study of gemcitabine (gem) and pembrolizumab (pem) in patients (pts) with leiomyosarcoma (LMS) and undifferentiated pleomorphic sarcoma UPS. Ann. Oncol. 32, S1114 (2021).
  • 22. Klemen ND, Hwang S, Bradic M et al. 1527MO Biomarkers of response and hyperprogression in patients with sarcoma treated with checkpoint blockade. Ann. Oncol. 32, S1114–S1115 (2021).
  • 23. Birdi HK, Jirovec A, Cortés-Kaplan S et al. Immunotherapy for sarcomas: new frontiers and unveiled opportunities. J. Immunother. Cancer 9(2), e001580 (2021).
  • 24. Martín-Broto J, Moura DS, Van Tine BA. Facts and hopes in immunotherapy of soft-tissue sarcomas. Clin. Cancer Res. 26(22), 5801–5808 (2020).
  • 25. Seymour L, Bogaerts J, Perrone A et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 18(3), e143–e152 (2017).
  • 26. Adashek JJ, Subbiah IM, Matos I et al. Hyperprogression and immunotherapy: fact, fiction, or alternative fact? Trends Cancer 6(3), 181–191 (2020).
  • 27. Ferrara R, Mezquita L, Texier M et al. Hyperprogressive disease in patients with advanced non-small-cell lung cancer treated with PD-1/PD-L1 inhibitors or with single-agent chemotherapy. JAMA Oncol. 4(11), 1543–1552 (2018).
  • 28. Fuentes-Antrás J, Provencio M, Díaz-Rubio E. Hyperprogression as a distinct outcome after immunotherapy. Cancer Treat. Rev. 70, 16–21 (2018).
  • 29. Champiat S, Ferrara R, Massard C et al. Hyperprogressive disease: recognizing a novel pattern to improve patient management. Nat. Rev. Clin. Oncol. 15(12), 748–762 (2018).
  • 30. Kato S, Goodman AM, Walavalkar V, Barkauskas DA, Sharabi A, Kurzrock R. Hyper-progressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate. Clin. Cancer Res. 23(15), 4242–4250 (2017).
  • 31. Singavi AK, Menon S, Kilari D et al. Predictive biomarkers for hyper-progression (HP) in response to immune checkpoint inhibitors (ICI) – analysis of somatic alterations (SAs). Ann. Oncol. 28, v405 (2017).
  • 32. Manzoni M, Bolognesi MM, Antoranz A et al. The adaptive and innate immune cell landscape of uterine leiomyosarcomas. Sci. Rep. 10(1), 1–10 (2020).
  • 33. Peng W, Chen JQ, Liu C et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 6(2), 202–216 (2016).
  • 34. George S, Miao D, Demetri GD et al. Loss of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma. Immunity 46(2), 197–204 (2017).