We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

A global picture: therapeutic perspectives for COVID-19

    Vivek P Chavda

    *Author for correspondence: Tel.: +91 703 091 9407;

    E-mail Address: vivek7chavda@gmail.com

    Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India

    Department of Pharmaceutics, K B Institute of Pharmaceutical Education & Research, Kadi Sarva Vishwavidhyalaya, Gandhinagar, Gujarat, 382023, India

    ,
    Carron Kapadia

    Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India

    ,
    Shailvi Soni

    Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India

    ,
    Riddhi Prajapati

    Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India

    ,
    Subhash C Chauhan

    Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78503, USA

    South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78503, USA

    ,
    Murali M Yallapu

    **Author for correspondence: Tel.: +1 956 296 1734;

    E-mail Address: murali.yallapu@utrgv.edu

    Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78503, USA

    South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78503, USA

    &
    Vasso Apostolopoulos

    ***Author for correspondence: Tel.: +61 399 192 025;

    E-mail Address: Vasso.Apostolopoulos@vu.edu.au

    Institute for Health & Sport, Victoria University, Melbourne, VIC, 3030, Australia

    Published Online:https://doi.org/10.2217/imt-2021-0168

    The COVID-19 pandemic is a lethal virus outbreak by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which has severely affected human lives and the global economy. The most vital part of the research and development of therapeutic agents is to design drug products to manage COVID-19 efficiently. Numerous attempts have been in place to determine the optimal drug dose and combination of drugs to treat the disease on a global scale. This article documents the information available on SARS-CoV-2 and its life cycle, which will aid in the development of the potential treatment options. A consolidated summary of several natural and repurposed drugs to manage COVID-19 is depicted with summary of current vaccine development. People with high age, comorbity and concomitant illnesses such as overweight, metabolic disorders, pulmonary disease, coronary heart disease, renal failure, fatty liver and neoplastic disorders are more prone to create serious COVID-19 and its consequences. This article also presents an overview of post-COVID-19 complications in patients.

    Plain language summary

    Severe acute respiratory syndrome coronavirus-2 causes the coronavirus disease i.e., COVID-19. This article encompasses basic information about coronavirus and COVID-19. It includes information about viral transmission and subsequent events for COVID-19 in a person, and it presents different drugs and vaccines utilized for the management of COVID-19. Several natural drugs are proposed to manage COVID-19. It also has an overview about post-COVID-19 complications in recovered patients.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Gralinski LE, Menachery VD. Return of the coronavirus: 2019-nCoV. Viruses 12(2), 135 (2020).
    • 2. Dhaval Shah, Vivek Chavda HT. Nasal medication conveyance framework: an approach for brain delivery from essential to cutting edge. Res. Rev. J. Med. 6(1), 14–27 (2016).
    • 3. Verity R, Okell LC, Dorigatti I et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect. Dis. 20(6), 669–677 (2020).
    • 4. Gupta D, Sahoo AK, Singh A. Ivermectin: potential candidate for the treatment of COVID 19. Braz. J. Infect. Dis. 24(4), 369–371 (2020).
    • 5. Wessels I, Rolles B, Rink L. The potential impact of zinc supplementation on COVID-19 pathogenesis. Front. Immunol. 11, 1712 (2020).
    • 6. Liu P, Jiang J-Z, Wan X-F et al. Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)? PLoS Pathog. 16(5), e1008421 (2020).
    • 7. Wahyuni DS. New variants of coronavirus: what you should know. SELL J. 5(1), 55 (2020).
    • 8. Chavda VP, Feehan J, Apostolopoulos V. A veterinary vaccine for SARS-CoV-2: the first COVID-19 vaccine for animals. Vaccines 9(6), 631 (2021).
    • 9. Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr. Biol. 30(7), 1346–1351 (2020).
    • 10. GISAID. Official hCoV-19 reference sequence and variants (2022). www.gisaid.org/references/hcov-19-reference-sequence/
    • 11. Harvey WT, Carabelli AM, Jackson B et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19(7), 409–424 (2021). • Describes severe acute respiratory syndrome coronavirus-2 variants.
    • 12. Mirtaleb MS, Mirtaleb AH, Nosrati H et al. Potential therapeutic agents to COVID-19: an update review on antiviral therapy, immunotherapy, and cell therapy. Biomed. Pharmacother. 138, 111518 (2021). • Describes potential therapeutic targets for COVID-19 management.
    • 13. Chavda VP, Gajjar N, Shah N, Dave DJ. Darunavir ethanolate: repurposing an anti-HIV drug in COVID-19 treatment. Eur. J. Med. Chem. Reports 3, 100013 (2021).
    • 14. Zhang W, Zhao Y, Zhang F et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): the perspectives of clinical immunologists from China. Clin. Immunol. 214, 108393 (2020).
    • 15. Li Q, Guan X, Wu P et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 382(13), 1199–1207 (2020).
    • 16. Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA 323(18), 1824–1836 (2020).
    • 17. Iqbal Yatoo M, Hamid Z, Rather I et al. Immunotherapies and immunomodulatory approaches in clinical trials – a mini review. Hum. Vaccin. Immunother. 17(7), 1–13 (2021).
    • 18. Chavda VP, Hossain MK, Beladiya J, Apostolopoulos V. Nucleic acid vaccines for COVID-19: a paradigm shift in the vaccine development arena. Biologics 1(3), 337–356 (2021). • Details development of nucleic acid-based vaccines for COVID-19.
    • 19. Chavda VP, Vora LK, Pandya AK, Patravale VB. Intranasal vaccines for SARS-CoV-2: from challenges to potential in COVID-19 management. Drug Discov. Today 26(11), 2619–2636 (2021).
    • 20. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat. Med. 26(4), 450–452 (2020).
    • 21. Pal M, Berhanu G, Desalegn C, Kandi V. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): an update. Cureus 12(3), e7423 (2020).
    • 22. Aronson JK. The Centre for Evidence-Based Medicine. Coronaviruses – a general introduction. (2020). http://www.cebm.net/covid-19/coronaviruses-a-general-introduction/
    • 23. Ciotti M, Ciccozzi M, Terrinoni A et al. The COVID-19 pandemic. Crit. Rev. Clin. Lab. Sci. 57(6), 1–24 (2020).
    • 24. Tao K, Tzou PL, Nouhin J et al. The biological and clinical significance of emerging SARS-CoV-2 variants. Nat. Rev. Genet. 22(12), 757–773 (2021).
    • 25. Gao Y-M, Xu G, Wang B, Liu B-C. Cytokine storm syndrome in coronavirus disease 2019: a narrative review. J. Intern. Med. 289(2), 147–161 (2021).
    • 26. Abdool Karim SS, de Oliveira T. New SARS-CoV-2 variants – clinical, public health, and vaccine implications. N. Engl. J. Med. 384(19), 1866–1868 (2021).
    • 27. Lauring AS, Hodcroft EB. Genetic variants of SARS-CoV-2 - what do they mean? JAMA 325(6), 529–531 (2021).
    • 28. NCIRD. CDC. Omicron variant: what you need to know (2021). www.cdc.gov/coronavirus/2019-ncov/variants/omicron-variant.html
    • 29. Callaway E. Heavily mutated Omicron variant puts scientists on alert. Nature 600(7887), 21 (2021).
    • 30. Li F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol. 3, 237–261 (2016).
    • 31. Huang Y, Yang C, Xu X, Xu W, Liu S. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol. Sin. 41(9), 1141–1149 (2020).
    • 32. Xia S, Zhu Y, Liu M et al. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell. Mol. Immunol. 17(7), 765–767 (2020).
    • 33. V'kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol. 19(3), 155–170 (2021). • Describes severe acute respiratory syndrome coronavirus-2 replication process.
    • 34. Wu Y, Li Z, Zhao Y et al. Therapeutic targets and potential agents for the treatment of COVID-19. Med. Res. Rev. 41(3), 1775–1797 (2021).
    • 35. Zhang Q, Xiang R, Huo S et al. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct. Target. Ther. 6(1), 233 (2021).
    • 36. Hoffmann M, Kleine-Weber H, Schroeder S et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181(2), 271–280.e8 (2020).
    • 37. Ou X, Liu Y, Lei X et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 11(1), 1620 (2020).
    • 38. Mortaz E, Tabarsi P, Varahram M, Folkerts G, Adcock IM. The immune response and immunopathology of COVID-19. Front. Immunol. 11, 1–9 (2020).
    • 39. Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: their roles in pathogenesis. J. Microbiol. Immunol. Infect. 54(2), 159–163 (2021).
    • 40. Astuti I, Ysrafil Y. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): an overview of viral structure and host response. Diabetes Metab. Syndr. 14(4), 407–412 (2020).
    • 41. Wang C, Wang Z, Wang G et al. COVID-19 in early 2021: current status and looking forward. Signal Transduct. Target. Ther. 6(1), 114 (2021). • Describes severe acute respiratory syndrome coronavirus 2 pathophysiology.
    • 42. Singh TU, Parida S, Lingaraju MC et al. Drug repurposing approach to fight COVID-19. Pharmacol. Rep. 72(6), 1479–1508 (2020).
    • 43. Shrestha DB, Budhathoki P, Khadka S et al. Favipiravir versus other antiviral or standard of care for COVID-19 treatment: a rapid systematic review and meta-analysis. Virol. J. 17(1), 141 (2020).
    • 44. Feuillet V, Canard B, Trautmann A. Combining antivirals and immunomodulators to fight COVID-19. Trends Immunol. 42(1), 31–44 (2021).
    • 45. Ardestani A, Azizi Z. Targeting glucose metabolism for treatment of COVID-19. Signal Transduct. Target. Ther. 6(1), 112 (2021).
    • 46. Pajak B, Siwiak E, Sołtyka M et al. 2-Deoxy-D-glucose and its analogs: from diagnostic to therapeutic agents. Int. J. Mol. Sci. 21(1), 234 (2019).
    • 47. Mantha M, Suvvari T, Corriero A. 2-Deoxy-D-glucose as an armament against COVID-19: the key to return to normality? Biomed. Biotechnol. Res. J. 5(3), 347–348 (2021).
    • 48. Kifle ZD, Ayele AG, Enyew EF. Drug repurposing approach, potential drugs, and novel drug targets for COVID-19 treatment. J. Environ. Public Health 2021, 6631721 (2021).
    • 49. Zhou Y, Hou Y, Shen J et al. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 6, 14 (2020).
    • 50. Li X, Yu J, Zhang Z et al. Network bioinformatics analysis provides insight into drug repurposing for COVID-19. Med. Drug Discov. 10, 100090 (2021).
    • 51. Balmeh N, Mahmoudi S, Mohammadi N, Karabedianhajiabadi A. Predicted therapeutic targets for COVID-19 disease by inhibiting SARS-CoV-2 and its related receptors. Informatics Med. Unlocked 20, 100407 (2020).
    • 52. Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol. Sin. 41(9), 1141–1149 (2020).
    • 53. Karoyan P, Vieillard V, Gómez-Morales L et al. Human ACE2 peptide-mimics block SARS-CoV-2 pulmonary cells infection. Commun. Biol. 4(1), 197 (2021).
    • 54. Rahbar Saadat Y, Hosseiniyan Khatibi SM, Zununi Vahed S, Ardalan M. Host serine proteases: a potential targeted therapy for COVID-19 and influenza. Front. Mol. Biosci. 8, 816 (2021).
    • 55. Padhi AK, Seal A, Khan JM, Ahamed M, Tripathi T. Unraveling the mechanism of arbidol binding and inhibition of SARS-CoV-2: insights from atomistic simulations. Eur. J. Pharmacol. 894, 173836 (2021).
    • 56. Vankadari N. Arbidol: a potential antiviral drug for the treatment of SARS-CoV-2 by blocking trimerization of the spike glycoprotein. Int. J. Antimicrob. Agents 56(2), 105998 (2020).
    • 57. Saxena A. Drug targets for COVID-19 therapeutics: ongoing global efforts. J. Biosci. 45(1), 87 (2020).
    • 58. Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J. Crit. Care 57, 279–283 (2020).
    • 59. Wondmkun YT, Mohammed OA. A review on novel drug targets and future directions for COVID-19 treatment. Biol. Targets Ther. 14, 77–82 (2020).
    • 60. McClain CB, Vabret N. SARS-CoV-2: the many pros of targeting PLpro. Signal Transduct. Target. Ther. 5(1), 1–8 (2020).
    • 61. Alexpandi R, De Mesquita JF, Pandian SK, Ravi AV. Quinolines-based SARS-CoV-2 3CLpro and RdRp inhibitors and spike-RBD-ACE2 inhibitor for drug-repurposing against COVID-19: an in silico analysis. Front. Microbiol. 11, 1–21 (2020).
    • 62. Nur SM, Hasan MA, Al Amin M, Hossain M, Sharmin T. Design of potential RNAi (miRNA and siRNA) molecules for Middle East respiratory syndrome coronavirus (MERS-CoV) gene silencing by computational method. Interdiscip. Sci. Comput. Life Sci. 7(3), 257–265 (2015).
    • 63. Mélo Silva Júnior ML, Souza LMA, Dutra REMC, Valente RGM, Melo TS. Review on therapeutic targets for COVID-19: insights from cytokine storm. Postgrad. Med. J. 97(1148), 391–398 (2020).
    • 64. Hashizume M. Outlook of IL-6 signaling blockade for COVID-19 pneumonia. Inflamm. Regen. 40(1), 1–34 (2020).
    • 65. Stebbing J, Phelan A, Griffin I et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect. Dis. 20(4), 400–402 (2020).
    • 66. Muthaiyan M, Pushan SS, Naorem LD, Venkatesan A. Understanding of Zaire ebolavirus–human protein interaction for drug repurposing. Virusdisease 31(1), 28–37 (2020).
    • 67. Dyall J, Coleman CM, Hart BJ et al. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob. Agents Chemother. 58(8), 4885–4893 (2014).
    • 68. Mirza MU, Froeyen M. Structural elucidation of SARS-CoV-2 vital proteins: computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase. J. Pharm. Anal. 10(4), 320–328 (2020).
    • 69. Karaman B, Sippl W. Computational drug repurposing: current trends. Curr. Med. Chem. 26(28), 5389–5409 (2019).
    • 70. Hasan A, Paray BA, Hussain A et al. A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. J. Biomol. Struct. Dyn. 39(8), 3025–3033 (2021).
    • 71. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 39(5), 529–539 (2017).
    • 72. Schoergenhofer C, Jilma B, Stimpfl T, Karolyi M, Zoufaly A. Pharmacokinetics of lopinavir and ritonavir in patients hospitalized with coronavirus disease 2019 (COVID-19). Ann. Intern. Med. 173(8), 670–672 (2020).
    • 73. Nabirotchkin S, Peluffo AE, Rinaudo P et al. Next-generation drug repurposing using human genetics and network biology. Curr. Opin. Pharmacol. 51, 78–92 (2020).
    • 74. Trosset J-Y, Cavé C. In silico drug-target profiling. Methods Mol. Biol. 1953, 89–103 (2019).
    • 75. Wang MY, Zhao R, Gao LJ, Gao XF, Wang DP, Cao JM. SARS-CoV-2: structure, biology, and structure-based therapeutics development. Front. Cell. Infect. Microbiol. 10, 1–17 (2020).
    • 76. Kim H. Outbreak of novel coronavirus (COVID-19): what is the role of radiologists? Eur. Radiol. 30(6), 3266–3267 (2020).
    • 77. Majumder J, Minko T. Recent developments on therapeutic and diagnostic approaches for COVID-19. AAPS J. 23(1), 14 (2021).
    • 78. Parasher A. COVID-19: current understanding of its pathophysiology, clinical presentation and treatment. Postgrad. Med. J. 97(1147), 312–320 (2021).
    • 79. Tarighi P, Eftekhari S, Chizari M et al. A review of potential suggested drugs for coronavirus disease (COVID-19) treatment. Eur. J. Pharmacol. 895, 173890 (2021). • Drug repurposing for COVID-19 management.
    • 80. Majumder J, Minko T. Recent developments on therapeutic and diagnostic approaches for COVID-19. AAPS J. 23(1), 14 (2021).
    • 81. Chibber P, Haq SA, Ahmed I, Andrabi NI, Singh G. Advances in the possible treatment of COVID-19: a review. Eur. J. Pharmacol. 883, 173372 (2020).
    • 82. Liu X, Liu C, Liu G, Luo W, Xia N. COVID-19: progress in diagnostics, therapy and vaccination. Theranostics 10(17), 7821–7835 (2020).
    • 83. Echeverría-Esnal D, Martin-Ontiyuelo C, Navarrete-Rouco ME et al. Azithromycin in the treatment of COVID-19: a review. Expert Rev. Anti. Infect. Ther. 19(2), 147–163 (2021).
    • 84. Seyed Hosseini E, Riahi Kashani N, Nikzad H, Azadbakht J, Hassani Bafrani H, Haddad Kashani H. The novel coronavirus disease-2019 (COVID-19): mechanism of action, detection and recent therapeutic strategies. Virology 551, 1–9 (2020).
    • 85. Group RC, Horby P, Lim WS et al. Dexamethasone in hospitalized patients with COVID-19. N. Engl. J. Med. 384(8), 693–704 (2021).
    • 86. Ahmadikia K, Hashemi SJ, Khodavaisy S et al. The double-edged sword of systemic corticosteroid therapy in viral pneumonia: a case report and comparative review of influenza-associated mucormycosis versus COVID-19 associated mucormycosis. Mycoses 64(8), 798–808 (2021).
    • 87. Kow CS, Hasan SS. Dexamethasone or hydrocortisone in COVID-19? Cleve. Clin. J. Med. 87(12), 715 (2020).
    • 88. Agresti N, Lalezari JP, Amodeo PP et al. Disruption of CCR5 signaling to treat COVID-19-associated cytokine storm: case series of four critically ill patients treated with leronlimab. J. Transl. Autoimmun. 4, 100083 (2021).
    • 89. Joshi S, Parkar J, Ansari A et al. Role of favipiravir in the treatment of COVID-19. Int. J. Infect. Dis. 102, 501–508 (2021).
    • 90. Agrawal U, Raju R, Udwadia ZF. Favipiravir: a new and emerging antiviral option in COVID-19. Med. J. Armed Forces India 76(4), 370–376 (2020).
    • 91. Singh SP, Pritam M, Pandey B, Yadav TP. Microstructure, pathophysiology, and potential therapeutics of COVID-19: a comprehensive review. J. Med. Virol. 93(1), 275–299 (2021).
    • 92. Tong S, Su Y, Yu Y et al. Ribavirin therapy for severe COVID-19: a retrospective cohort study. Int. J. Antimicrob. Agents 56(3), 106114 (2020).
    • 93. Gupta RK, Nwachuku EL, Zusman BE, Jha RM, Puccio AM. Drug repurposing for COVID-19 based on an integrative meta-analysis of SARS-CoV-2 induced gene signature in human airway epithelium. PLoS One 16(9), e0257784 (2021).
    • 94. Ng YL, Salim CK, Chu JJH. Drug repurposing for COVID-19: approaches, challenges and promising candidates. Pharmacol. Ther. 228, 107930 (2021). •• Describes drug repurposing approaches.
    • 95. Pushpakom S, Iorio F, Eyers PA et al. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov. 18(1), 41–58 (2019).
    • 96. Pereira CA, Sayé M, Reigada C et al. Computational approaches for drug discovery against trypanosomatid-caused diseases. Parasitology 147(6), 611–633 (2020).
    • 97. Saberian N, Peyvandipour A, Donato M, Ansari S, Draghici S. A new computational drug repurposing method using established disease-drug pair knowledge. Bioinformatics 35(19), 3672–3678 (2019). • Describes bioinformatic-based approaches for drug repurposing.
    • 98. Gyebi GA, Ogunro OB, Adegunloye AP, Ogunyemi OM, Afolabi SO. Potential inhibitors of coronavirus 3-chymotrypsin-like protease (3CL(pro)): an in silico screening of alkaloids and terpenoids from African medicinal plants. J. Biomol. Struct. Dyn. 39(9), 3396–3408 (2020).
    • 99. Jhamb D, Magid-Slav M, Hurle MR, Agarwal P. Pathway analysis of GWAS loci identifies novel drug targets and repurposing opportunities. Drug Discov. Today 24(6), 1232–1236 (2019).
    • 100. Talevi A, Bellera CL. Challenges and opportunities with drug repurposing: finding strategies to find alternative uses of therapeutics. Expert Opin. Drug Discov. 15(4), 397–401 (2020).
    • 101. Deng C, Ji X, Rainey C, Zhang J, Lu W. Integrating machine learning with human knowledge. iScience 23(11), 101656 (2020).
    • 102. Zhao K, So H-C. Drug repositioning for schizophrenia and depression/anxiety disorders: a machine learning approach leveraging expression data. IEEE J. Biomed. Heal. Inform. 23(3), 1304–1315 (2019).
    • 103. Pace JR, DeBerardinis AM, Sail V et al. Repurposing the clinically efficacious antifungal agent itraconazole as an anticancer chemotherapeutic. J. Med. Chem. 59(8), 3635–3649 (2016).
    • 104. Lüscher Dias T, Schuch V, Beltrão-Braga PCB et al. Drug repositioning for psychiatric and neurological disorders through a network medicine approach. Transl. Psychiatry 10(1), 141 (2020).
    • 105. Chavda VP, Vora LK, Vihol DR. COVAX-19® vaccine: completely blocks virus transmission to non-immune individuals. Clin. Complement. Med. Pharmacol. 1(1), 100004 (2021).
    • 106. WHO. COVID-19 vaccine tracker and landscape (2022). www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
    • 107. Karpiński TM, Ożarowski M, Seremak-Mrozikiewicz A, Wolski H, Wlodkowic D. The 2020 race towards SARS-CoV-2 specific vaccines. Theranostics 11(4), 1690–1702 (2021).
    • 108. Dong Y, Dai T, Wei Y, Zhang L. A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct. Target. Ther. 5(1), 237 (2020). •• Summarizes the current vaccine development scenario for COVID-19.
    • 109. Holder J. Tracking coronavirus vaccinations around the world. New York Times (2021). www.nytimes.com/interactive/2021/world/covid-vaccinations-tracker.html
    • 110. Krause PR, Fleming TR, Peto R et al. Considerations in boosting COVID-19 vaccine immune responses. Lancet 398(10308), 1377–1380 (2021). • Role of booster dosing in COVID-19 management.
    • 111. Li Y, Tenchov R, Smoot J et al. A comprehensive review of the global efforts on COVID-19 vaccine development. ACS Cent. Sci. 7(4), 512–533 (2021). •• Comprehensive review on the vaccine development scenario for COVID-19.
    • 112. Wang P, Nair MS, Liu L et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 593(7857), 130–135 (2021).
    • 113. Lopez Bernal J, Andrews N, Gower C et al. Effectiveness of COVID-19 vaccines against the B.1.617.2 (Delta) variant. N. Engl. J. Med. 385(7), 585–594 (2021). • Vaccine efficacy and the Delta variant.
    • 114. Mahase E. COVID-19: antibody boost after third dose varies greatly by vaccine, study finds. BMJ 375, n3011 (2021).
    • 115. Hansen CH, Schelde AB, Moustsen-Helm IR et al. Vaccine effectiveness against SARS-CoV-2 infection with the Omicron or Delta variants following a two-dose or booster BNT162b2 or mRNA-1273 vaccination series: a Danish cohort study. medRxiv doi:10.1101/2021.12.20.21267966 (2021) (Epub ahead of print).
    • 116. Lu L, Mok BW-Y, Chen L et al. Neutralization of SARS-CoV-2 Omicron variant by sera from BNT162b2 or Coronavac vaccine recipients. Clin. Infect. Dis. doi:10.1093/cid/ciab1041 (2021) (Epub ahead of print).
    • 117. Kyriakidis NC, López-Cortés A, González EV, Grimaldos AB, Prado EO. SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates. NPJ Vaccines 6(1), 28 (2021).
    • 118. Bernal JL, Andrews N, Gower C et al. Effectiveness of COVID-19 vaccines against the B.1.617.2 variant. N. Engl. J. Med. 385(7), 585–594 (2021).
    • 119. Kozlovskaya LI, Piniaeva AN, Ignatyev GM et al. Long-term humoral immunogenicity, safety and protective efficacy of inactivated vaccine against COVID-19 (CoviVac) in preclinical studies. Emerg. Microbes Infect. 10(1), 1790–1806 (2021).
    • 120. Shrotri M, Swinnen T, Kampmann B, Parker EPK. An interactive website tracking COVID-19 vaccine development. Lancet Glob. Heal. 9(5), e590–e592 (2021).
    • 121. Ng WH, Liu X, Mahalingam S. Development of vaccines for SARS-CoV-2. F1000Res. 9, 991 (2020).
    • 122. Mallapaty S. China's COVID vaccines are going global – but questions remain. Nature 593(7858), 178–179 (2021).
    • 123. Al Kaabi N, Zhang Y, Xia S et al. Effect of 2 inactivated SARS-CoV-2 vaccines on symptomatic COVID-19 infection in adults: a randomized clinical trial. JAMA 326(1), 35–45 (2021).
    • 124. Zhang Y, Zeng G, Pan H et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect. Dis. 21(2), 181–192 (2021).
    • 125. Chen W-H, Hotez PJ, Bottazzi ME. Potential for developing a SARS-CoV receptor-binding domain (RBD) recombinant protein as a heterologous human vaccine against coronavirus infectious disease (COVID)-19. Hum. Vaccin. Immunother. 16(6), 1239–1242 (2020).
    • 126. Heath PT, Galiza EP, Baxter DN et al. Safety and efficacy of NVX-CoV2373 COVID-19 vaccine. N. Engl. J. Med. 385(13), 1172–1183 (2021).
    • 127. Tregoning JS, Brown ES, Cheeseman HM et al. Vaccines for COVID-19. Clin. Exp. Immunol. 202(2), 162–192 (2020).
    • 128. See I, Su JR, Lale A et al. US case reports of cerebral venous sinus thrombosis with thrombocytopenia after ad26.COV2.S vaccination, March 2 to April 21, 2021. JAMA 325(24), 2448–2456 (2021).
    • 129. Jacob JJ, John Fletcher G, Monisha Priya T, Veeraraghavan B, Mutreja A. Relevance of immune response and vaccination strategies of SARS-CoV-2 in the phase of viral red queen dynamics. Indian J. Med. Microbiol. 39(4), 417–422 (2021).
    • 130. He Q, Mao Q, Zhang J et al. COVID-19 vaccines: current understanding on immunogenicity, safety, and further considerations. Front. Immunol. 12, 669339 (2021).
    • 131. Callaway E. Pfizer COVID vaccine protects against worrying coronavirus variants. Nature 593(7859), 325–326 (2021).
    • 132. Callaway E. Mix-and-match COVID vaccines trigger potent immune response. Nature 593(7860), 491–491 (2021).
    • 133. Dynavax. Press Release. Dynavax and Clover Biopharmaceuticals announce research collaboration to evaluate coronavirus (COVID-19) vaccine candidate with CpG 1018 adjuvant. https://investors.dynavax.com/news-releases/news-release-details/dynavax-and-clover-biopharmaceuticals-announce-research
    • 134. Martin C, Lowery D. mRNA vaccines: intellectual property landscape. Nat. Rev. Drug Discov. 19(9), 578 (2020).
    • 135. Chavda VP, Pandya R, Apostolopoulos V. DNA vaccines for SARS-CoV-2: toward third-generation vaccination era. Expert Rev. Vaccines 20(12), 1549–1560 (2021). • Summarizes DNA vaccine for COVID-19 management.
    • 136. Smith TRF, Patel A, Ramos S et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat. Commun. 11(1), 2601 (2020).
    • 137. Deb P, Molla MMA, Saif-Ur-Rahman KM. An update to monoclonal antibody as therapeutic option against COVID-19. Biosaf. Heal. 3(2), 87–91 (2021). • Summarizes monoclonal antibodies for COVID-19 management.
    • 138. Weinreich DM, Sivapalasingam S, Norton T et al. REGN-COV2, a neutralizing antibody cocktail, in outpatients with COVID-19. N. Engl. J. Med. 384(3), 238–251 (2020).
    • 139. Razonable RR, Pawlowski C, O'Horo JC et al. Casirivimab-imdevimab treatment is associated with reduced rates of hospitalization among high-risk patients with mild to moderate coronavirus disease-19. EClinicalMedicine 40, 101102 (2021).
    • 140. Tuccori M, Ferraro S, Convertino I et al. Anti-SARS-CoV-2 neutralizing monoclonal antibodies: clinical pipeline. MAbs 12(1), 1854149 (2020).
    • 141. Flaherty L. From the feds. J. Emerg. Nurs. 26(3), 242–246 (2000).
    • 142. Zhao M. Cytokine storm and immunomodulatory therapy in COVID-19: role of chloroquine and anti-IL-6 monoclonal antibodies. Int. J. Antimicrob. Agents 55(6), 105982 (2020).
    • 143. Lang FM, Lee KMC, Teijaro JR, Becher B, Hamilton JA. GM-CSF-based treatments in COVID-19: reconciling opposing therapeutic approaches. Nat. Rev. Immunol. 20(8), 507–514 (2020).
    • 144. Patterson BK, Seethamraju H, Dhody K et al. CCR5 inhibition in critical COVID-19 patients decreases inflammatory cytokines, increases CD8 T-cells, and decreases SARS-CoV2 RNA in plasma by day 14. Int. J. Infect. Dis. 103, 25–32 (2021).
    • 145. Rosas IO, Bräu N, Waters M et al. Tocilizumab in hospitalized patients with severe COVID-19 pneumonia. N. Engl. J. Med. 384(16), 1503–1516 (2021).
    • 146. Mariette X, Hermine O, Tharaux P-L et al. Effectiveness of tocilizumab in patients hospitalized with COVID-19: a follow-up of the CORIMUNO-TOCI-1 randomized clinical trial. JAMA Intern. Med. 181(9), 1241–1243 (2021).
    • 147. Pinto D, Park YJ, Beltramello M et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 583(7815), 290–295 (2020).
    • 148. Ju B, Zhang Q, Ge J et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 584(7819), 115–119 (2020). •• Summarizes monoclonal antibodies for COVID-19 management.
    • 149. Shanmugaraj B, Rattanapisit K, Manopwisedjaroen S, Thitithanyanont A, Phoolcharoen W. Monoclonal antibodies B38 and H4 produced in Nicotiana benthamiana neutralize SARS-CoV-2 in vitro. Front. Plant Sci. 11, 589995 (2020).
    • 150. Wang C, Li W, Drabek D et al. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat. Commun. 11(1), 1–6 (2020).
    • 151. Khosla S, Hofbauer LC. Osteoporosis treatment: recent developments and ongoing challenges. Lancet Diabetes Endocrinol. 5(11), 898–907 (2017).
    • 152. Rogers TF, Zhao F et al. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science 369(6506), 956–963 (2020).
    • 153. Du S, Cao Y, Zhu Q et al. Structurally resolved SARS-CoV-2 antibody shows high efficacy in severely infected hamsters and provides a potent cocktail pairing strategy. Cell 183(4), 1013–1023.e13 (2020).
    • 154. Seydoux E, Homad LJ, MacCamy AJ et al. Analysis of a SARS-CoV-2-infected individual reveals development of potent neutralizing antibodies with limited somatic mutation. Immunity 53(1), 98–105.e5 (2020).
    • 155. Mehta P, Porter JC, Manson JJ et al. Therapeutic blockade of granulocyte macrophage colony-stimulating factor in COVID-19-associated hyperinflammation: challenges and opportunities. Lancet Respir. Med. 8(8), 822–830 (2020).
    • 156. Benucci M, Giannasi G, Cecchini P et al. COVID-19 pneumonia treated with sarilumab: a clinical series of eight patients. J. Med. Virol. 92(11), 2368–2370 (2020).
    • 157. Landi L, Ravaglia C, Russo E et al. Blockage of interleukin-1β with canakinumab in patients with COVID-19. Sci. Rep. 10(1), 1–9 (2020).
    • 158. Temesgen Z, Assi M, Shweta FNU et al. GM-CSF neutralization with lenzilumab in severe COVID-19 pneumonia: a case–cohort study. Mayo Clin. Proc. 95(11), 2382–2394 (2020).
    • 159. Mi T, Burgess K. Striking similarities between CDRs in some mAbs that neutralize COVID-19. ACS Med. Chem. Lett. 11(9), 1663–1666 (2020).
    • 160. Alsaadi EAJ, Jones IM. Membrane binding proteins of coronaviruses. Future Virol. 14(4), 275–286 (2019).
    • 161. Yavuz SŞ, Ünal S. Antiviral treatment of COVID-19. Turk. J. Med. Sci. 50, 611–619 (2020).
    • 162. Khare P, Sahu U, Pandey SC, Samant M. Current approaches for target-specific drug discovery using natural compounds against SARS-CoV-2 infection Prashant. Virus Res. 290, 1–16 (2020).
    • 163. Altay O, Mohammadi E, Lam S et al. Current status of COVID-19 therapies and drug repositioning applications. iScience 23(7), 101303 (2020).
    • 164. Zhou P, Yang X, Wang X et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(1), 270–280 (2020).
    • 165. Zhang H, Penniger J M, Li Y, Zhong N, Slutsky A S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 46(4), 586–590 (2020).
    • 166. Huang M-T, Ghai G, Ho C-T. Inflammatory process and molecular targets for anti-inflammatory nutraceuticals. Compr. Rev. Food Sci. Food Saf. 3(4), 127–139 (2004).
    • 167. Bahbah EI, Negida A, Nabet MS. Purposing saikosaponins for the treatment of COVID-19. Med. Hypotheses 140, 109782 (2020).
    • 168. Kim DE, Min JS, Jang MS et al. Natural bis-benzylisoquinoline and cepharanthine inhibit human coronavirus OC43 infection of MRC-5 human lung cells. Biomolecules 9(696), 1–16 (2019).
    • 169. Lin C-W, Tsai F-J, Tsai C-H et al. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res. 68(1), 36–42 (2005).
    • 170. Ryu YB, Jeong HJ, Kim JH et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorg. Med. Chem. 18(22), 7940–7947 (2010).
    • 171. Veeramani C, Alsaif MA, Al-Numair KS. Herbacetin, a flaxseed flavonoid, ameliorates high percent dietary fat induced insulin resistance and lipid accumulation through the regulation of hepatic lipid metabolizing and lipid-regulating enzymes. Chem. Biol. Interact. 288, 49–56 (2018).
    • 172. Sherif YE, Gabr SA, Hosny NM, Alghadir AH, Alansari R. Phytochemicals of Rhus spp. as potential inhibitors of the SARS-CoV-2 main protease: molecular docking and drug-likeness study. Evidence-Based Complement. Altern. Med. 2021, 8814890 (2021).
    • 173. Lim H, Son KH, Chang HW, Bae K, Kang SS, Kim HP. Anti-inflammatory activity of pectolinarigenin and pectolinarin isolated from Cirsium chanroenicum. Biol. Pharm. Bull. 31(11), 2063–2067 (2008).
    • 174. Lau K-M, Lee K-M, Koon C-M et al. Immunomodulatory and anti-SARS activities of Houttuynia cordata. J. Ethnopharmacol. 118(1), 79–85 (2008).
    • 175. Alam S, Sarker MMR, Afrin S et al. Traditional herbal medicines, bioactive metabolites, and plant products against COVID-19: update on clinical trials and mechanism of actions. Front. Pharmacol. 12, 1248 (2021). • Role of herbal remedies in COVID-19 management.
    • 176. Wen C-C, Shyur L-F, Jan J-T et al. Traditional Chinese medicine herbal extracts of Cibotium barometz, Gentiana scabra, Dioscorea batatas, Cassia tora, and Taxillus chinensis inhibit SARS-CoV replication. J. Tradit. Complement. Med. 1(1), 41–50 (2011).
    • 177. Mazraedoost S, Behbudi G, Mousavi SM, Hashemi SA. COVID-19 treatment by plant compounds. AANBT 2(1), 23–33 (2021).
    • 178. Subedi L, Tchen S, Gaire BP, Hu B, Hu K. Adjunctive nutraceutical therapies for COVID-19. Int. J. Mol. Sci. 22(4), 1963 (2021).
    • 179. Yang Y, Islam MS, Wang J, Li Y, Chen X. Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): a review and perspective. Int. J. Biol. Sci. 16(10), 1708–1717 (2020).
    • 180. Frick D, Lam A. Understanding helicases as a means of virus control. Curr. Pharm. Des. 12(11), 1315–1338 (2006).
    • 181. Karpe YA, Lole KS. NTPase and 5′ to 3′ RNA duplex-unwinding activities of the hepatitis E virus helicase domain. J. Virol. 84(7), 3595–3602 (2010).
    • 182. Jo S, Kim S, Shin DH, Kim M. Inhibition of SARS-CoV 3CL protease by flavonoids. J. Enzyme Inhib. Med. Chem. 35(1), 145–151 (2019).
    • 183. Koulgi S, Jani V, Uppuladinne M, Sonavane U, Nath AK. Drug repurposing studies targeting SARS-CoV-2: an ensemble docking approach on drug target 3C-like protease (3CL pro). J. Biomol. Struct. Dyn. 39(15), 5735–5755 (2020).
    • 184. Hilgenfeld R. From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design. FEBS J. 281(1), 4085–4096 (2014).
    • 185. Fung KP, Leung PC, Tsui KW et al. Immunomodulatory activities of the herbal formula kwan du bu fei dang in healthy subjects: a randomised, double-blind, placebo-controlled study. Hong Kong Med. J. 17(2), 41–43 (2011).
    • 186. Kumar P, Kumar M, Bedi O et al. Role of vitamins and minerals as immunity boosters in COVID-19. Inflammopharmacology 29(4), 1001–1016 (2021). • Role of vitamins in COVID-19 management.
    • 187. Gombart AF, Pierre A, Maggini S. A review of micronutrients and the immune system – working in harmony to reduce the risk of infection. Nutrients 12(1), 236 (2020).
    • 188. Lordan R, Rando HM, COVID-19 Review Consortium, Greene CS. Dietary supplements and nutraceuticals under investigation for COVID-19 prevention and treatment. mSystems 6(3), e00122–e21 (2021).
    • 189. Savant S, Srinivasan S, Kruthiventi AK. Potential nutraceuticals for COVID-19. Nutr. Diet. Suppl. 13, 25–51 (2021). • Role of nutraceuticals in COVID-19 management.
    • 190. Bauer SR, Kapoor A, Rath M, Thomas SA. What is the role of supplementation with ascorbic acid, zinc, vitamin D, or N-acetylcysteine for prevention or treatment of COVID-19? Cleve. Clin. J. Med. doi:10.3949/ccjm.87a.ccc046 (2020) (Epub ahead of print).
    • 191. Altay O, Arif M, Li X et al. Combined metabolic activators accelerates recovery in mild-to-moderate COVID-19. Adv. Sci. 8(17), 2101222 (2021).
    • 192. Obayan AE. Overview of the rationale for L-glutamine treatment in moderate–severe COVID-19. J. Infect. Dis. Epidemiol. 7, 187 (2021).
    • 193. Hemilä H, de Man AME. Vitamin C and COVID-19. Front. Med. 7, 1013 (2021).
    • 194. Wallace TC, Reider C, Fulgoni VL. Calcium and vitamin D disparities are related to gender, age, race, household income level, and weight classification but not vegetarian status in the United States: analysis of the NHANES 2001–2008 data set. J. Am. Coll. Nutr. 32(5), 321–330 (2013).
    • 195. Grant WB, Lahore H, McDonnell SL et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 12(4), 1–19 (2020).
    • 196. Li R, Wu K, Li Y et al. Revealing the targets and mechanisms of vitamin A in the treatment of COVID-19. Aging (Albany NY) 12(15), 15784–15796 (2020).
    • 197. Goyal P, Choi JJ, Pinheiro LC et al. Clinical characteristics of COVID-19 in New York City. N. Engl. J. Med. 382(24), 2372–2374 (2020).
    • 198. Zhang C, Shi L, Wang F-S. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol. Hepatol. 5(5), 428–430 (2020).
    • 199. Bhatraju PK, Ghassemieh BJ, Nichols M et al. COVID-19 in critically ill patients in the Seattle region – case series. N. Engl. J. Med. 382(21), 2012–2022 (2020).
    • 200. Chavda VP, Apostolopoulos V. Mucormycosis – an opportunistic infection in the aged immunocompromised individual: a reason for concern in COVID-19. Maturitas 154, 58–61 (2021). • Mucormycosis associated with COVID-19.
    • 201. Singh AK, Singh R, Joshi SR, Misra A. Mucormycosis in COVID-19: a systematic review of cases reported worldwide and in India. Diabetes Metab. Syndr. Clin. Res. Rev. 15(4), 102146 (2021).