We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Biomechanical effects of microbubbles: from radiosensitization to cell death

    Ahmed El Kaffas

    Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada

    Imaging Research & Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, ON, Canada

    Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada

    &
    Gregory J Czarnota

    *Author for correspondence:

    E-mail Address: gregory.czarnota@sunnybrook.ca

    Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada

    Imaging Research & Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, ON, Canada

    Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada

    Published Online:https://doi.org/10.2217/fon.15.19

    ABSTRACT 

    Ultrasound-stimulated microbubbles have been demonstrated to mechanically perturb cell membranes, resulting in the activation of biological signaling pathways that significantly enhance the effects of radiation. The underlying mechanism involves augmented ceramide production following both microbubble stimulation and irradiation, leading to rapid and extensive endothelial apoptosis and tumor cell death as a result of vascular collapse. Endothelial cells are particularly sensitive to ceramide-induced cell death due to an enriched presence of sphingomyelinase in their membranes. In tumors, this consequent rapid vascular shutdown translates to an overall increase in tumor responses to radiation treatments. This review summarizes the groundwork behind endothelial-based radiation enhancement with ultrasound-stimulated microbubbles, and presents ongoing research on the use of microbubbles as therapeutic agents in cancer therapy.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Gramiak R, Shah PM. Echocardiography of the aortic root. Invest. Radiol. 3(5), 356–366 (1968).
    • 2 Caissie A, Karshafian R, Hynynen K, Czarnota GJ. Ultrasound contrast microbubbles: in vivo imaging and potential therapeutic applications. In: Nanoimaging. Goins BA, William T. Phillips Taylor and Francis Group. Boka Raton, FL, USA, 2–25 (2011).
    • 3 Calliada F, Campani R, Bottinelli O, Bozzini A, Sommaruga MG. Ultrasound contrast agents: basic principles. Eur. J. Radiol. 27(Suppl. 2), S157–S160 (1998).
    • 4 Haar G Ter, Wells PNT. Ultrasound bioeffects and safety. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 224(2), 363–373 (2010).
    • 5 Hassan MA, Feril LB, Suzuki K, Kudo N, Tachibana K, Kondo T. Evaluation and comparison of three novel microbubbles: enhancement of ultrasound-induced cell death and free radicals production. Ultrason. Sonochem. 16(3), 372–378 (2009).
    • 6 Miller DL, Averkiou MA, Brayman AA et al. Bioeffects considerations for diagnostic ultrasound contrast agents. Am. Inst. Ultrasound Med. 27, 611–632 (2008)
    • 7 Stride E. Physical principles of microbubbles for ultrasound imaging and therapy. Cerebrovasc. Dis. 27(Suppl. 2), 1–13 (2009).
    • 8 Hudson J. Quantification of blood flow using ultrasound contrast agents (2011). https://tspace.library.utoronto.ca
    • 9 Ibsen S, Schutt CE, Esener S. Microbubble-mediated ultrasound therapy: a review of its potential in cancer treatment. Drug Des. Devel. Ther. 7, 375–388 (2013).
    • 10 Pellerito J, Polak JF. Introduction to Vascular Ultrasonography. Elsevier Health Sciences. http://books.google.com
    • 11 Quaia E. Assessment of tissue perfusion by contrast-enhanced ultrasound. Eur. Radiol. 21(3), 604–615 (2011).
    • 12 Sboros V, Tang M-X, Wells PNT. The assessment of microvascular flow and tissue perfusion using ultrasound imaging. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 224(2), 273–290 (2010).
    • 13 Dijkmans P a, Juffermans LJM, Musters RJP et al. Microbubbles and ultrasound: from diagnosis to therapy. Eur. J. Echocardiogr. 5(4), 245–256 (2004).
    • 14 Stride EP, Coussios CC, Wells PNT. Cavitation and contrast: the use of bubbles in ultrasound imaging and therapy. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 224(2), 171–191 (2010).
    • 15 Czarnota GJ, Hashim A, El Kaffas A et al. Microbubble and ultrasound enhancement of radiation-induced tumour cell death in vivo – asmase dependence. J. Radiosurgery SBRT. 2 (2013)
    • 16 De Jong N, Cornet R, Lancée CT. Higher harmonics of vibrating gas-filled microspheres. Part one: simulations. Ultrasonics 32(6), 447–453 (1994).
    • 17 Hoff L. Acoustic Characterization of Contrast Agents for Medical Ultrasound Imaging. Springer. http://books.google.com
    • 18 Leighton T. The Acoustic Bubble (Google eBook). Academic Press. http://books.google.com
    • 19 Dicker S, Mleczko M, Schmitz G, Wrenn SP. Determination of microbubble cavitation threshold pressure as function of shell chemistry. Bubble Sci. Eng. Technol. 2(2), 55–64 (2010).
    • 20 Hsieh D-Y Theory of rectified diffusion of mass into gas bubbles. J. Acoust. Soc. Am. 33(2), 206 (1961).
    • 21 Qin S, Caskey C, Ferrara K. Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering. Phys. Med. Biol. 54(6), 1–42 (2009).
    • 22 Postema M, Bouakaz A, Versluis M, de Jong N. Ultrasound-induced gas release from contrast agent microbubbles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 52(6), 1035–1041 (2005).
    • 23 Bevan PD, Karshafian R, Burns PN. The influence of fragmentation on the acoustic response from shrinking bubbles. Ultrasound Med. Biol. 34(7), 1152–1162 (2008).
    • 24 Bevan PD, Karshafian R, Tickner EG, Burns PN. Quantitative measurement of ultrasound disruption of polymer-shelled microbubbles. Ultrasound Med. Biol. 33(11), 1777–1786 (2007).
    • 25 Hafez Z. The role of microstreaming in ultrasound-enhanced thrombolysis. (2008). www.brl.uiuc.edu
    • 26 Tomita Y. Microbubble disruption by ultrasound and induced cavitation phenomena. (109), 1–8 (2009).
    • 27 Doinikov A a, Bouakaz A. Acoustic microstreaming around a gas bubble. J. Acoust. Soc. Am. 127(2), 703–709 (2010).
    • 28 Wrenn SP, Dicker SM, Small EF et al. Bursting bubbles and bilayers. Theranostics 2(12), 1140–1159 (2012).
    • 29 Kudo N, Miyaoka T, Okada K, Yamamoto K, Niwa K. Study on mechanism of cell damage caused by microbubbles exposed to ultrasound. IEEE Ultrason. Symp. 00(c), 1383–1386 (2002).
    • 30 Wu J, Nyborg WL. Ultrasound, cavitation bubbles and their interaction with cells. Adv. Drug Deliv. Rev. 60, 1103–1116 (2008)
    • 31 Prentice P, Cuschieri A, Dholakia K, Prausnitz M, Campbell P. Membrane disruption by optically controlled microbubble cavitation. Nat. Phys. 1(2), 107–110 (2005).
    • 32 Lighthill SJ. Acoustic streaming. J. Sound Vib. 61(3), 391–418 (1978).
    • 33 William D. O’Brien. Ultrasound – biophysics mechanisms. Prog. Biophys. Mol. Biol. 93(1–3), 212–255 (2007).
    • 34 Umemura S, Kawabata K, Sasaki K. In vivo acceleration of ultrasonic tissue heating by microbubble agent. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(10), 1690–1698 (2005).
    • 35 Hilgenfeldt S, Lohse D, Moss W. Water temperature dependence of single bubble sonoluminescence. Phys. Rev. Lett. 80(6), 1332–1335 (1998).
    • 36 Chavrier F, Chapelon JY, Gelet A, Cathignol D. Modeling of high-intensity focused ultrasound-induced lesions in the presence of cavitation bubbles. J. Acoust. Soc. Am. 108(1), 432 (2000).
    • 37 Holt RG, Roy RA. Measurements of bubble-enhanced heating from focused, mhz-frequency ultrasound in a tissue-mimicking material. Ultrasound Med. Biol. 27(10), 1399–1412 (2001).
    • 38 Li P, Takahashi M, Chiba K. Enhanced free-radical generation by shrinking microbubbles using a copper catalyst. Chemosphere 77(8), 1157–1160 (2009).
    • 39 Juffermans LJM, Kamp O, Dijkmans P, Visser C, Musters RJP. Low-intensity ultrasound-exposed microbubbles provoke local hyperpolarization of the cell membrane via activation of BK(Ca) channels. Ultrasound Med. Biol. 34(3), 502–508 (2008).
    • 40 Meijering BDM, Juffermans LJM, van Wamel A et al. Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation. Circ. Res. 104(5), 679–687 (2009).
    • 41 Kudo N, Okada K, Yamamoto K. Sonoporation by single-shot pulsed ultrasound with microbubbles adjacent to cells. Biophys. J. 96 (12), 4866–4876 (2009).
    • 42 Liang H-D, Tang J, Halliwell M, Wells PNT. Sonoporation, drug delivery, and gene therapy. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 224(2), 343–361 (2010).
    • 43 Karshafian R, Bevan PD, Samac S, Burns PN. The effect of acoustic exposure parameters on cell membrane permeabilisation by ultrasound and microbubbles. AIP Conf. Proc. 498–504 (2007).
    • 44 Goertz DE, Todorova M, Mortazavi O et al. Antitumor effects of combining docetaxel (taxotere) with the antivascular action of ultrasound stimulated microbubbles. PLoS ONE 7(12), e52307 (2012).
    • 45 Todorova M, Agache V, Mortazavi O et al. Antitumor effects of combining metronomic chemotherapy with the antivascular action of ultrasound stimulated microbubbles. Int. J. Cancer 1–30 (2012).
    • 46 Tran WT, El Kaffas A, Al-Mahrouki A, Gillies C, Czarnota GJ. A review of vascular disrupting agents as a concomitant anti-tumour modality with radiation. J. Radiother. Pract. 12(03), 255–262 (2013).
    • 47 Karshafian R. On the permeabilisation and disruption of cell membranes by ultrasound and microbubbles. (2010). https://tspace.library.utoronto.ca
    • 48 Hall EJ, Giaccia AJ. Radiobiology for the Radiologist. Lippincott Williams & Wilkins, PA, USA. http://books.google.com
    • 49 García-Barros M, Thin TH, Maj J et al. Impact of stromal sensitivity on radiation response of tumors implanted in SCID hosts revisited. Cancer Res. 70(20), 8179–8186 (2010).
    • 50 Garcia-Barros M, Paris F, Cordon-Cardo C et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300(5622), 1155–1159 (2003).
    • 51 Truman J-P, García-Barros M, Kaag M et al. Endothelial membrane remodeling is obligate for anti-angiogenic radiosensitization during tumor radiosurgery. PLoS ONE 5(8), e12310 (2010).
    • 52 El Kaffas A, Al-Mahrouki A, Tran WT, Giles A, Czarnota GJ. Sunitinib effects on the radiation response of endothelial and breast tumor cells. Microvasc. Res. 92, 1–9 (2014).
    • 53 El Kaffas A, Giles A, Czarnota GJ. Dose-dependent response of tumor vasculature to radiation therapy in combination with Sunitinib depicted by three-dimensional high-frequency power Doppler ultrasound. Angiogenesis 16(2), 443–454 (2013).
    • 54 El Kaffas A, Tran W, Czarnota GJ. Vascular strategies for enhancing tumour response to radiation therapy. Technol. Cancer Res. Treat. 11(5), 421–432 (2012)
    • 55 Fuks Z, Kolesnick R. Engaging the vascular component of the tumor response. Cancer Cell 8(2), 89–91 (2005).
    • 56 Paris F, Fuks Z, Kang A et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293(5528), 293 (2001).
    • 57 Peña L a, Fuks Z, Kolesnick RN. Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res. 60(2), 321–327 (2000).
    • 58 Truman J, Hambardzumyan D, Garcia-Barros M et al. Basic fibroblast growth factor inhibits radiation-induced apoptosis of endothelial cells by inhibiting acid sphingomyelinase activity. Radiother. Oncol. 78(2), S74–S74 (2006).
    • 59 Tabas I. Secretory sphingomyelinase. Chem. Phys. Lipids 102(1–2), 123–130 (1999).
    • 60 Nikolova-Karakashian MN, Rozenova KA. Sphingolipids as Signaling and Regulatory Molecules. Springer, NY, USA. http://link.springer.com
    • 61 Wang N, Ingber DE. Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophys. J. 66(6), 2181–2189 (1994).
    • 62 Ghosh K, Thodeti CK, Dudley AC, Mammoto A, Klagsbrun M, Ingber DE. Tumor-derived endothelial cells exhibit aberrant Rho-mediated mechanosensing and abnormal angiogenesis in vitro. Proc. Natl Acad. Sci. USA 105(32), 11305–11310 (2008).
    • 63 Mammoto A, Ingber DE. Cytoskeletal control of growth and cell fate switching. Curr. Opin. Cell Biol. 21(6), 864–870 (2009).
    • 64 Karshafian R, Tchouala JIN, Al-Mahrouki A, Giles A, Czarnota GJ. Enhancement of radiation therapy by ultrasonically-stimulated microbubbles in vitro: effects of treatment scheduling on cell viability and production of ceramide. 2010 IEEE Int. Ultrason. Symp. 2115–2118 (2010).
    • 65 Nofiele JT, Karshafian R, Furukawa M et al. Ultrasound-activated microbubble cancer therapy: ceramide production leading to enhanced radiation effect in vitro. Technol. Cancer Res. Treat. 12 (1), 53–60 (2013
    • 66 Al-Mahrouki A, Karshafian R, Giles A, Czarnota GJ. Bioeffects of ultrasound-stimulated microbubbles on endothelial cells: gene expression changes associated with radiation enhancement in vitro. Ultrasound Med. Biol. 38(11), 1958–1969 (2012).
    • 67 Czarnota GJ, Karshafian R, Burns PN et al. Tumor radiation response enhancement by acoustical stimulation of the vasculature. Proc. Natl Acad. Sci. USA 109(30), E2033–E2041 (2012).•• High-impact publication on the use of ultrasound-stimulated microbubbles (USMB) to radiosensitize prostate tumors.
    • 68 Al-Mahrouki A, Iradji S, Tran WT, Czarnota GJ. Cellular characterization of ultrasound-stimulated microbubble radiation enhancement. Dis. Model. Mech. 7(3), 363–372 (2014). • Accompanying histological work demonstrating histological effects of USMB combined with radiation therapy.
    • 69 Tran WT, Iradji S, Sofroni E, Giles A, Eddy D, Czarnota GJ. Microbubble and ultrasound radioenhancement of bladder cancer. Br. J. Cancer 107(3), 469–476 (2012).• Early publication demonstrating the potential of combined USMB and radiation therapy in a bladder tumor model.
    • 70 Kwok SJJ, El Kaffas A, Lai P et al. Ultrasound-mediated microbubble enhancement of radiation therapy studied using three-dimensional high-frequency power Doppler ultrasound. Ultrasound Med. Biol. 39(11), 1983–1990 (2013).
    • 71 Schueneman AJ, Himmelfarb E, Geng L et al. SU11248 maintenance therapy prevents tumor regrowth after fractionated irradiation of murine tumor models. Cancer Res. 63(14), 4009–4016 (2003).
    • 72 Boehm S, Rothermundt C, Hess D, Joerger M. Antiangiogenic drugs in oncology: a focus on drug safety and the elderly – a mini-review. Gerontology 56(3), 303–309 (2010).
    • 73 El Kaffas A, Nofiele J, Giles A, Cho S, Liu SK, Czarnota GJ. Dll4-notch signalling blockade synergizes combined ultrasound-stimulated microbubble and radiation therapy in human colon cancer xenografts. PLoS ONE 9(4), e93888 (2014).
    • 74 Sathornsumetee S, Cao Y, Marcello JE et al. Tumor angiogenic and hypoxic profiles predict radiographic response and survival in malignant astrocytoma patients treated with bevacizumab and irinotecan. J. Clin. Oncol. 26(2), 271–278 (2008).
    • 75 Park M-T, Oh E-T, Song M-J et al. The radiosensitivity of endothelial cells isolated from human breast cancer and normal tissue in vitro. Microvasc. Res. 84(2), 140–148 (2012).
    • 76 Hida K, Hida Y, Shindoh M. Understanding tumor endothelial cell abnormalities to develop ideal anti-angiogenic therapies. Cancer Sci. 99(3), 459–466 (2008).
    • 77 Kim S-R, Kim E-H. Effect of acidic environment on the response of endothelial cells to irradiation: implication for microbeam radiation therapy. Int. J. Radiat. Biol. (2014).
    • 78 Baish JW, Gazit Y, Berk DA, Nozue M, Baxter LT, Jain RK. Role of tumor vascular architecture in nutrient and drug delivery: an invasion percolation-based network model. Microvasc. Res. 51(3), 327–346 (1996).
    • 79 Bampi VF, Gomes CF, De Oliveira LBO, Da Silva JLB. The effect of the anti-angiogenic drug sunitinib malate on the vascular architecture of oral squamous cell carcinoma. Microsc. Res. Tech. 77(4), 250–256 (2014).
    • 80 Sabo E, Boltenko A, Sova Y. Microscopic analysis and significance of vascular architectural complexity in renal cell carcinoma microscopic analysis and significance of vascular architectural complexity in renal cell carcinoma. Clin. Cancer Res. 7, 533–537 (2001)
    • 81 Kim HC, Al-Mahrouki A, Gorjizadeh A, Karshafian R, Czarnota GJ. Effects of biophysical parameters in enhancing radiation responses of prostate tumors with ultrasound-stimulated microbubbles. Ultrasound Med. Biol. 39(8), 1376–1387 (2013).
    • 82 Patterson DM, Rustin GJS. Vascular damaging agents. Clin. Oncol. (R. Coll. Radiol). 19(6), 443–456 (2007).
    • 83 Kerbel RS. Tumor angiogenesis: past, present and the near future. Carcinogenesis 21(3), 505–515 (2000).
    • 84 Gupta SC, Sung B, Prasad S, Webb LJ, Aggarwal BB. Cancer drug discovery by repurposing: teaching new tricks to old dogs. Trends Pharmacol. Sci. 34(9), 508–517 (2013).
    • 85 Folkman J, Camphausen K. What does radiotherapy do to endothelial cells? Science 293(5528), 227 (2001).
    • 86 Klinger AL, Pichette B, Sobolewski P, Eckmann DM. Mechanotransductional basis of endothelial cell response to intravascular bubbles. Integr. Biol. (Camb.). 3(10), 1033–1042 (2011).
    • 87 Janmey P a, Weitz D a. Dealing with mechanics: mechanisms of force transduction in cells. Trends Biochem. Sci. 29(7), 364–370 (2004).
    • 88 Collis J, Manasseh R, Liovic P et al. Cavitation microstreaming and stress fields created by microbubbles. Ultrasonics 50(2), 273–279 (2010).
    • 89 Mizrahi N, Seliktar D, Kimmel E. Ultrasound-induced angiogenic response in endothelial cells. Ultrasound Med. Biol. 33(11), 1818–1829 (2007).
    • 90 Unga J, Hashida M. Ultrasound induced cancer immunotherapy. Adv. Drug Deliv. Rev. (2014).
    • 91 Tran TA, Le Guennec JY, Bougnoux P, Tranquart F, Bouakaz A. Characterization of cell membrane response to ultrasound activated microbubbles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(1), 43–49 (2008).
    • 92 Tran T a, Roger S, Le Guennec JY, Tranquart F, Bouakaz A. Effect of ultrasound-activated microbubbles on the cell electrophysiological properties. Ultrasound Med. Biol. 33(1), 158–163 (2007).
    • 93 Yoshimura M, Itasaka S, Harada H, Hiraoka M. Microenvironment and radiation therapy. Biomed Res. Int. 685308 (2013).
    • 94 Hospital SC. Radiation enhancement of metastasis: a review hyperbaric oxygen lineolic acid. 9(2), 77–104 (1991)
    • 95 Rix A, Palmowski M, Gremse F et al. Influence of repetitive contrast agent injections on functional and molecular ultrasound measurements. Ultrasound Med. Biol. 40(10), 2468–2475 (2014).
    • 96 Sorace AG, Saini R, Mahoney M, Hoyt K. Molecular ultrasound imaging using a targeted contrast agent for assessing early tumor response to antiangiogenic therapy. J. Ultrasound Med. 31(10), 1543–1550 (2012).
    • 97 Turkbey B, Kobayashi H, Ogawa M, Bernardo M, Choyke PL. Imaging of tumor angiogenesis: functional or targeted? AJR Am. J. Roentgenol. 193(2), 304–313 (2009).