We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Shifting paradigms in the treatment of chronic lymphocytic leukemia

    Philip A Thompson

    Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA

    ,
    Elizabeth J Shpall

    Department of Stem Cell Transplantation & Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA

    &
    Michael J Keating

    *Author for correspondence:

    E-mail Address: mkeating@mdanderson.org

    Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA

    Published Online:https://doi.org/10.2217/fon.14.288

    ABSTRACT 

    The treatment of chronic lymphocytic leukemia (CLL) is evolving rapidly. Insight into the genetics and biology of the disease, including the importance of intracellular signaling pathways and interactions with the microenvironment has led to the development of rational targeted therapies which are having a major impact on the survival of patients with relapsed and high-risk disease. In addition, an exciting array of cellular therapies and immunotherapy options are in various stages of development. We review the current understanding of CLL genetics and biology, current treatment strategies in specific patient groups and opportunities for future treatment combinations which will bring the goal of cure or long-term disease control with minimal toxicity within reach for the majority of patients.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Shanafelt TD, Kay NE, Rabe KG et al. Brief report: natural history of individuals with clinically recognized monoclonal B-cell lymphocytosis compared with patients with Rai 0 chronic lymphocytic leukemia. J. Clin. Oncol. 27(24), 3959–3963 (2009).
    • 2 Rossi D, Sozzi E, Puma A et al. The prognosis of clinical monoclonal B cell lymphocytosis differs from prognosis of Rai 0 chronic lymphocytic leukaemia and is recapitulated by biological risk factors. Br. J. Haematol. 146(1), 64–75 (2009).
    • 3 Shanafelt TD, Rabe KG, Kay NE et al. Age at diagnosis and the utility of prognostic testing in patients with chronic lymphocytic leukemia. Cancer 116(20), 4777–4787 (2010).
    • 4 Gribben JG, Riches JC. Immunotherapeutic strategies including transplantation: eradication of disease. Hematol. Am. Soc. Hematol. Educ. Program 151–157 (2013).• Review of recent evidence and future potential of immmunotherapy including allogeneic stem cell transplantation.
    • 5 Hallek M, Cheson BD, Catovsky D et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia. a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 111(12), 5446–5456 (2008).• IWCLL criteria for diagnosis, indications for treatment and guidelines for response assessment, on which most clinical studies are based.
    • 6 Hallek M. Signaling the end of chronic lymphocytic leukemia: new frontline treatment strategies. Hematol. Am. Soc. Hematol. Educ. Program 2013, 138–150 (2013).
    • 7 Messmer BT, Messmer D, Allen SL et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J. Clin. Invest. 115(3), 755–764 (2005).
    • 8 Hanada M, Delia D, Aiello A, Stadtmauer E, Reed JC. bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood 82(6), 1820–1828 (1993).
    • 9 Calin GA, Dumitru CD, Shimizu M et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 99(24), 15524–15529 (2002).
    • 10 Burger JA, Chiorazzi N. B cell receptor signaling in chronic lymphocytic leukemia. Trends Immunol. 34(12), 592–601 (2013).
    • 11 Burger JA. Nurture versus nature: the microenvironment in chronic lymphocytic leukemia. Hematol. Am. Soc. Hematol. Educ. Program 96–103 (2011).• Comprehensive review of B-cell receptor signaling biology.
    • 12 Herishanu Y, Perez-Galan P, Liu D et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood 117(2), 563–574 (2011).
    • 13 Herman SE, Sun X, Mcauley EM et al. Modeling tumor-host interactions of chronic lymphocytic leukemia in xenografted mice to study tumor biology and evaluate targeted therapy. Leukemia 27(12), 2311–2321 (2013).
    • 14 Duhren-Von Minden M, Ubelhart R, Schneider D et al. Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signalling. Nature 489(7415), 309–312 (2012).
    • 15 Woyach JA, Johnson AJ, Byrd JC. The B-cell receptor signaling pathway as a therapeutic target in CLL. Blood 120(6), 1175–1184 (2012).
    • 16 Stevenson FK, Caligaris-Cappio F. Chronic lymphocytic leukemia: revelations from the B-cell receptor. Blood 103(12), 4389–4395 (2004).
    • 17 Muzio M, Apollonio B, Scielzo C et al. Constitutive activation of distinct BCR-signaling pathways in a subset of CLL patients. a molecular signature of anergy. Blood 112(1), 188–195 (2008).
    • 18 Mockridge CI, Potter KN, Wheatley I, Neville LA, Packham G, Stevenson FK. Reversible anergy of sIgM-mediated signaling in the two subsets of CLL defined by VH-gene mutational status. Blood 109(10), 4424–4431 (2007).
    • 19 Apollonio B, Scielzo C, Bertilaccio MT et al. Targeting B-cell energy in chronic lymphocytic leukemia. Blood 121(19), 3879–3888, S3871–3878 (2013).
    • 20 Ramsay AG, Gribben JG. Immune dysfunction in chronic lymphocytic leukemia T cells and lenalidomide as an immunomodulatory drug. Haematologica 94(9), 1198–1202 (2009).
    • 21 Ramsay AG, Clear AJ, Fatah R, Gribben JG. Multiple inhibitory ligands induce impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide: establishing a reversible immune evasion mechanism in human cancer. Blood 120(7), 1412–1421 (2012).•• Elegant functional work demonstrating the key role of immune checkpoint molecule expression in chronic lymphocytic leukemia (CLL) escape from immune surveillance and the potential for reversal via immunomodulatory drugs.
    • 22 Brusa D, Serra S, Coscia M et al. The PD-1/PD-L1 axis contributes to T-cell dysfunction in chronic lymphocytic leukemia. Haematologica 98(6), 953–963 (2013).
    • 23 Ramsay AG, Johnson AJ, Lee AM et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J. Clin. Invest. 118(7), 2427–2437 (2008).
    • 24 Gorgun G, Holderried TA, Zahrieh D, Neuberg D, Gribben JG. Chronic lymphocytic leukemia cells induce changes in gene expression of CD4 and CD8 T cells. J. Clin. Invest. 115(7), 1797–1805 (2005).
    • 25 Gorgun G, Ramsay AG, Holderried TA et al. E(mu)-TCL1 mice represent a model for immunotherapeutic reversal of chronic lymphocytic leukemia-induced T-cell dysfunction. Proc. Natl Acad. Sci. USA 106(15), 6250–6255 (2009).
    • 26 Morrison VA. Management of infectious complications in patients with chronic lymphocytic leukemia. Hematol. Am. Soc. Hematol. Educ. Program 332–338 (2007).
    • 27 Wadhwa PD, Morrison VA. Infectious complications of chronic lymphocytic leukemia. Semin. Oncol. 33(2), 240–249 (2006).
    • 28 Ravandi F, O'Brien S. Immune defects in patients with chronic lymphocytic leukemia. Cancer Immunol. Immunother. 55(2), 197–209 (2006).
    • 29 Leporrier M, Chevret S, Cazin B et al. Randomized comparison of fludarabine, CAP, and ChOP in 938 previously untreated stage B and C chronic lymphocytic leukemia patients. Blood 98(8), 2319–2325 (2001).
    • 30 Tam CS, O'Brien S, Wierda W et al. Long-term results of the fludarabine, cyclophosphamide, and rituximab regimen as initial therapy of chronic lymphocytic leukemia. Blood 112(4), 975–980 (2008).
    • 31 Hallek M, Fischer K, Fingerle-Rowson G et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia. a randomised, open-label, Phase 3 trial. Lancet 376(9747), 1164–1174 (2010).• Pivotal Phase III study that established FCR as the standard of care in untreated CLL.
    • 32 Wierda W, O'Brien S, Wen S et al. Chemoimmunotherapy with fludarabine, cyclophosphamide, and rituximab for relapsed and refractory chronic lymphocytic leukemia. J. Clin. Oncol. 23(18), 4070–4078 (2005).
    • 33 Tsimberidou AM, Wen S, McLaughlin P et al. Other malignancies in chronic lymphocytic leukemia/small lymphocytic lymphoma. J. Clin. Oncol. 27(6), 904–910 (2009).
    • 34 Hamblin TJ. Richter's syndrome – the downside of fludarabine? Leukemia Res. 29(10), 1103–1104 (2005).
    • 35 Cheson BD, Vena DA, Barrett J, Freidlin B. Second malignancies as a consequence of nucleoside analog therapy for chronic lymphoid leukemias. J. Clin. Oncol. 17(8), 2454–2460 (1999).
    • 36 Chemotherapeutic options in chronic lymphocytic leukemia. a meta-analysis of the randomized trials. CLL Trialists’ Collaborative Group. J. Natl Cancer Inst. 91(10), 861–868 (1999).
    • 37 Dighiero G, Maloum K, Desablens B et al. Chlorambucil in indolent chronic lymphocytic leukemia. French Cooperative Group on Chronic Lymphocytic Leukemia. N. Engl. J. Med. 338(21), 1506–1514 (1998).
    • 38 Cymbalista F, Müller C, Busch R et al. Early versus deferred treatment with combined fludarabine, cyclophosphamide and rituximab (FCR) improves event-free survival in patients with high-risk binet stage a chronic lymphocytic leukemia – first results of a randomized German–French cooperative Phase III trial. Blood 122(21), 524 (2013).
    • 39 Rai KR, Sawitsky A, Cronkite EP, Chanana AD, Levy RN, Pasternack BS. Clinical staging of chronic lymphocytic leukemia. Blood 46(2), 219–234 (1975).
    • 40 Wierda WG, O'Brien S, Wang X et al. Multivariable model for time to first treatment in patients with chronic lymphocytic leukemia. J. Clin. Oncol. 29(31), 4088–4095 (2011).
    • 41 Molica S, Mauro FR, Callea V et al. The utility of a prognostic index for predicting time to first treatment in early chronic lymphocytic leukemia. the GIMEMA experience. Haematologica 95(3), 464–469 (2010).
    • 42 Bahlo J, Pflug N, Elter T et al. Proposal of a prognostic score for previously untreated patients with chronic lymphocytic leukemia based on an overall survival analysis of three German CLL Study Group Phase III trials. ASH Annual Meeting Abstracts 118(21), 2831 (2011).
    • 43 Zenz T, Eichhorst B, Busch R et al. TP53 mutation and survival in chronic lymphocytic leukemia. J. Clin. Oncol. 28(29), 4473–4479 (2010).
    • 44 Gonzalez D, Martinez P, Wade R et al. Mutational status of the TP53 gene as a predictor of response and survival in patients with chronic lymphocytic leukemia. results from the LRF CLL4 trial. J. Clin. Oncol. 29(16), 2223–2229 (2011).
    • 45 Rossi D, Cerri M, Deambrogi C et al. The prognostic value of TP53 mutations in chronic lymphocytic leukemia is independent of Del17p13. implications for overall survival and chemorefractoriness. Clin. Cancer Res. 15(3), 995–1004 (2009).
    • 46 Keating MJ, O'Brien S, Albitar M et al. Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia. J. Clin. Oncol. 23(18), 4079–4088 (2005).
    • 47 Shanafelt T. Treatment of older patients with chronic lymphocytic leukemia: key questions and current answers. Hematol. Am. Soc. Hematol. Educ. Program 158–167 (2013) (2013).
    • 48 Martell RE, Peterson BL, Cohen HJ et al. Analysis of age, estimated creatinine clearance and pretreatment hematologic parameters as predictors of fludarabine toxicity in patients treated for chronic lymphocytic leukemia. a CALGB (9011) coordinated intergroup study. Cancer Chemother. Pharmacol. 50(1), 37–45 (2002).
    • 49 Miller MD, Paradis CF, Houck PR et al. Rating chronic medical illness burden in geropsychiatric practice and research. application of the Cumulative Illness Rating Scale. Psychiatry Res. 41(3), 237–248 (1992).
    • 50 Charlson M, Szatrowski TP, Peterson J, Gold J. Validation of a combined comorbidity index. J. Clin. Epidemiol. 47(11), 1245–1251 (1994).
    • 51 Mossner E, Brunker P, Moser S et al. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood 115(22), 4393–4402 (2010).
    • 52 Herter S, Herting F, Mundigl O et al. Preclinical activity of the type II CD20 antibody GA101 (obinutuzumab) compared with rituximab and ofatumumab in vitro and in xenograft models. Mol. Cancer Ther. 12(10), 2031–2042 (2013).
    • 53 Knauf WU, Lissichkov T, Aldaoud A et al. Phase III randomized study of bendamustine compared with chlorambucil in previously untreated patients with chronic lymphocytic leukemia. J. Clin. Oncol. 27(26), 4378–4384 (2009).
    • 54 Rai KR, Peterson BL, Appelbaum FR et al. Fludarabine compared with chlorambucil as primary therapy for chronic lymphocytic leukemia. N. Engl. J. Med. 343(24), 1750–1757 (2000).
    • 55 Goede V, Fischer K, Busch R et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N. Engl. J. Med. 370(12), 1101–1110 (2014).• Pivotal Phase III study demonstrating a survival benefit for the addition of obinutuzumab to chlorambucil in unfit, treatment-naive patients with CLL, the first treatment to demonstrate a survival advantage in this population.
    • 56 Badoux XC, Keating MJ, Wen S et al. Lenalidomide as initial therapy of elderly patients with chronic lymphocytic leukemia. Blood 118(13), 3489–3498 (2011).
    • 57 Strati P, Keating MJ, Wierda WG et al. Lenalidomide induces long-lasting responses in elderly patients with chronic lymphocytic leukemia. Blood 122(5), 734–737 (2013).
    • 58 Wu L, Adams M, Carter T et al. lenalidomide enhances natural killer cell and monocyte-mediated antibody-dependent cellular cytotoxicity of rituximab-treated CD20+ tumor cells. Clin. Cancer Res. 14(14), 4650–4657 (2008).
    • 59 Robak T, Dmoszynska A, Solal-Celigny P et al. Rituximab plus fludarabine and cyclophosphamide prolongs progression-free survival compared with fludarabine and cyclophosphamide alone in previously treated chronic lymphocytic leukemia. J. Clin. Oncol. 28(10), 1756–1765 (2010).
    • 60 Tam C. Life after FCR. Blood (2014) (In press).
    • 61 Stilgenbauer S, Zenz T. Understanding and managing ultra high-risk chronic lymphocytic leukemia. Hematol. Am. Soc. Hematol. Educ. Program 481–488 (2010) (2010).
    • 62 Teeling JL, French RR, Cragg MS et al. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood 104(6), 1793–1800 (2004).
    • 63 Wierda WG, Kipps TJ, Mayer J et al. Ofatumumab as single-agent CD20 immunotherapy in fludarabine-refractory chronic lymphocytic leukemia. J. Clin. Oncol. 28(10), 1749–1755 (2010).
    • 64 Chanan-Khan A, Miller KC, Musial L et al. Clinical efficacy of lenalidomide in patients with relapsed or refractory chronic lymphocytic leukemia. results of a Phase II study. J. Clin. Oncol. 24(34), 5343–5349 (2006).
    • 65 Ferrajoli A, Lee BN, Schlette EJ et al. Lenalidomide induces complete and partial remissions in patients with relapsed and refractory chronic lymphocytic leukemia. Blood 111(11), 5291–5297 (2008).
    • 66 Badoux XC, Keating MJ, Wen S et al. Phase II study of lenalidomide and rituximab as salvage therapy for patients with relapsed or refractory chronic lymphocytic leukemia. J. Clin. Oncol. 31(5), 584–591 (2013).
    • 67 Byrd JC, Furman RR, Coutre SE et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 369(1), 32–42 (2013).• Phase II study of ibrutinib in relapsed/refractory CLL.
    • 68 Furman RR, Sharman JP, Coutre SE et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. (2014).
    • 69 Woyach JA, Smucker K, Smith LL et al. Prolonged lymphocytosis during ibrutinib therapy is associated with distinct molecular characteristics and does not indicate a suboptimal response to therapy. Blood, (2014).
    • 70 Ponader S, Chen SS, Buggy JJ et al. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood 119(5), 1182–1189 (2012).
    • 71 De Gorter DJ, Beuling EA, Kersseboom R et al. Bruton's tyrosine kinase and phospholipase Cgamma2 mediate chemokine-controlled B cell migration and homing. Immunity 26(1), 93–104 (2007).
    • 72 De Rooij MF, Kuil A, Geest CR et al. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood 119(11), 2590–2594 (2012).
    • 73 Barrientos JC, Furman RR, Leonard J et al. Update on a phase I study of the selective PI3K{delta} inhibitor idelalisib (GS-1101) in combination with rituximab and/or bendamustine in patients with relapsed or refractory CLL. ASCO Meeting Abstracts 31(15 Suppl.), 7017 (2013).
    • 74 Brown JR, Furman RR, Flinn I et al. Final results of a Phase I study of idelalisib (GSE1101) a selective inhibitor of PI3K{delta}, in patients with relapsed or refractory CLL. ASCO Meeting Abstracts 31(15 Suppl.), 7003 (2013).
    • 75 Van Delft MF, Wei AH, Mason KD et al. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 10(5), 389–399 (2006).
    • 76 Tse C, Shoemaker AR, Adickes J et al. ABT-263. a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 68(9), 3421–3428 (2008).
    • 77 Roberts AW, Seymour JF, Brown JR et al. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition. results of a phase I study of navitoclax in patients with relapsed or refractory disease. J. Clin. Oncol. 30(5), 488–496 (2012).
    • 78 Mason KD, Carpinelli MR, Fletcher JI et al. Programmed anuclear cell death delimits platelet life span. Cell 128(6), 1173–1186 (2007).
    • 79 Zhang H, Nimmer PM, Tahir SK et al. Bcl-2 family proteins are essential for platelet survival. Cell Death Differ. 14(5), 943–951 (2007).
    • 80 Souers AJ, Leverson JD, Boghaert ER et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 19(2), 202–208 (2013).
    • 81 Vandenberg CJ, Cory S. ABT-199, a new Bcl-2-specific BH3 mimetic, has in vivo efficacy against aggressive Myc-driven mouse lymphomas without provoking thrombocytopenia. Blood 121(12), 2285–2288 (2013).
    • 82 Davids MS, Pagel JM, Kahl BS et al. Bcl-2 inhibitor ABT-199 (GDC-0199) monotherapy shows anti-tumor activity including complete remissions in high-risk relapsed/refractory (R/R) chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL). Blood 122(21), 872 (2013).
    • 83 Marijt WA, Heemskerk MH, Kloosterboer FM et al. Hematopoiesis-restricted minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete remissions of relapsed leukemia. Proc. Natl Acad. Sci. USA 100(5), 2742–2747 (2003).
    • 84 Dreger P, Brand R, Milligan D et al. Reduced-intensity conditioning lowers treatment-related mortality of allogeneic stem cell transplantation for chronic lymphocytic leukemia. a population-matched analysis. Leukemia 19(6), 1029–1033 (2005).
    • 85 Farina L, Carniti C, Dodero A et al. Qualitative and quantitative polymerase chain reaction monitoring of minimal residual disease in relapsed chronic lymphocytic leukemia. early assessment can predict long-term outcome after reduced intensity allogeneic transplantation. Haematologica 94(5), 654–662 (2009).
    • 86 Hoogendoorn M, Jedema I, Barge RM et al. Characterization of graft-versus-leukemia responses in patients treated for advanced chronic lymphocytic leukemia with donor lymphocyte infusions after in vitro T-cell depleted allogeneic stem cell transplantation following reduced-intensity conditioning. Leukemia 21(12), 2569–2574 (2007).
    • 87 Schetelig J, Van Biezen A, Brand R et al. Allogeneic hematopoietic stem-cell transplantation for chronic lymphocytic leukemia with 17p deletion. a retrospective European Group for Blood and Marrow Transplantation analysis. J. Clin. Oncol. 26(31), 5094–5100 (2008).
    • 88 Delgado J, Thomson K, Russell N et al. Results of alemtuzumab-based reduced-intensity allogeneic transplantation for chronic lymphocytic leukemia. a British Society of Blood and Marrow Transplantation Study. Blood 107(4), 1724–1730 (2006).
    • 89 Dreger P, Corradini P, Kimby E et al. Indications for allogeneic stem cell transplantation in chronic lymphocytic leukemia. the EBMT transplant consensus. Leukemia 21(1), 12–17 (2007).
    • 90 Dreger P, Schnaiter A, Zenz T et al. TP53, SF3B1, and NOTCH1 mutations and outcome of allotransplantation for chronic lymphocytic leukemia. six-year follow-up of the GCLLSG CLL3X trial. Blood 121(16), 3284–3288 (2013).
    • 91 Khouri IF, Bassett R, Poindexter N et al. Nonmyeloablative allogeneic stem cell transplantation in relapsed/refractory chronic lymphocytic leukemia. long-term follow-up, prognostic factors, and effect of human leukocyte histocompatibility antigen subtype on outcome. Cancer 117(20), 4679–4688 (2011).
    • 92 Sorror ML, Storer BE, Sandmaier BM et al. Five-year follow-up of patients with advanced chronic lymphocytic leukemia treated with allogeneic hematopoietic cell transplantation after nonmyeloablative conditioning. J. Clin. Oncol. 26(30), 4912–4920 (2008).
    • 93 Brown JR, Kim HT, Armand P et al. Long-term follow-up of reduced-intensity allogeneic stem cell transplantation for chronic lymphocytic leukemia. prognostic model to predict outcome. Leukemia 27(2), 362–369 (2013).
    • 94 Herth I, Dietrich S, Benner A et al. The impact of allogeneic stem cell transplantation on the natural course of poor-risk chronic lymphocytic leukemia as defined by the EBMT consensus criteria. a retrospective donor versus no donor comparison. Ann. Oncol. 25(1), 200–206 (2014).
    • 95 Dreger P, Dohner H, Ritgen M et al. Allogeneic stem cell transplantation provides durable disease control in poor-risk chronic lymphocytic leukemia. long-term clinical and MRD results of the German CLL Study Group CLL3X trial. Blood 116(14), 2438–2447 (2010).
    • 96 Norde WJ, Overes IM, Maas F et al. Myeloid leukemic progenitor cells can be specifically targeted by minor histocompatibility antigen LRH-1-reactive cytotoxic T cells. Blood 113(10), 2312–2323 (2009).
    • 97 Norde WJ, Maas F, Hobo W et al. PD-1/PD-L1 interactions contribute to functional T-cell impairment in patients who relapse with cancer after allogeneic stem cell transplantation. Cancer Res. 71(15), 5111–5122 (2011).
    • 98 Cruz CRY, Micklethwaite KP, Savoldo B et al. Infusion of donor-derived CD19-redirected-virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant. A Phase I study. Blood (2013).
    • 99 Kochenderfer JN, Dudley ME, Carpenter RO et al. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood 122(25), 4129–4139 (2013).
    • 100 Larghero J, Rocha V, Porcher R et al. Association of bone marrow natural killer cell dose with neutrophil recovery and chronic graft-versus-host disease after HLA identical sibling bone marrow transplants. Br. J. Haematol. 138(1), 101–109 (2007).
    • 101 Kumar S, Chen MG, Gastineau DA et al. Lymphocyte recovery after allogeneic bone marrow transplantation predicts risk of relapse in acute lymphoblastic leukemia. Leukemia 17(9), 1865–1870 (2003).
    • 102 Cooley S, Weisdorf DJ, Guethlein LA et al. Donor selection for natural killer cell receptor genes leads to superior survival after unrelated transplantation for acute myelogenous leukemia. Blood 116(14), 2411–2419 (2010).
    • 103 Venstrom JM, Pittari G, Gooley TA et al. HLA-C-dependent prevention of leukemia relapse by donor activating KIR2DS1. N. Engl. J. Med. 367(9), 805–816 (2012).
    • 104 Verneris MR. Natural killer cells and regulatory T cells: how to manipulate a graft for optimal GVL. Hematol. Am. Soc. Hematol. Educ. Program 335–341 (2013) (2013).
    • 105 Shah N, Martin-Antonio B, Yang H et al. Antigen presenting cell-mediated expansion of human umbilical cord blood yields log-scale expansion of natural killer cells with anti-myeloma activity. PLoS ONE 8(10), e76781 (2013).
    • 106 Mehta RS, Di Stasi A, Hosing C et al. Lenalidomide-induced graft-vs-Leukemia effect in a patient with chronic lymphocytic leukemia who relapsed after allogeneic stem cell transplant. Clin. Lymphoma Myeloma Leukemia 14(3), e105–e109 (2014).
    • 107 Hodi FS, O'Day SJ, Mcdermott DF et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363(8), 711–723 (2010).
    • 108 Hamid O, Robert C, Daud A et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 369(2), 134–144 (2013).
    • 109 Topalian SL, Hodi FS, Brahmer JR et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366(26), 2443–2454 (2012).
    • 110 Armand P, Nagler A, Weller EA et al. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma. results of an international Phase II trial. J. Clin. Oncol. 31(33), 4199–4206 (2013).
    • 111 Wolchok JD, Kluger H, Callahan MK et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369(2), 122–133 (2013).
    • 112 Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature 480(7378), 480–489 (2011).
    • 113 Brahmer JR, Drake CG, Wollner I et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors. safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28(19), 3167–3175 (2010).
    • 114 Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11(2), 141–151 (1999).
    • 115 Nishimura H, Okazaki T, Tanaka Y et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291(5502), 319–322 (2001).
    • 116 Jensen MC, Popplewell L, Cooper LJ et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol. Blood Marrow Transplant 16(9), 1245–1256 (2010).
    • 117 Singh H, Manuri PR, Olivares S et al. Redirecting specificity of T-cell populations for CD19 using the Sleeping Beauty system. Cancer Res. 68(8), 2961–2971 (2008).
    • 118 Kalamasz D, Long SA, Taniguchi R, Buckner JH, Berenson RJ, Bonyhadi M. Optimization of human T-cell expansion ex vivo using magnetic beads conjugated with anti-CD3 and Anti-CD28 antibodies. J. Immunother. 27(5), 405–418 (2004).
    • 119 Maus MV, Thomas AK, Leonard DG et al. Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4–1BB. Nat. Biotechnol. 20(2), 143–148 (2002).
    • 120 Brentjens RJ, Riviere I, Park JH et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118(18), 4817–4828 (2011).
    • 121 Savoldo B, Ramos CA, Liu E et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J. Clin. Invest. 121(5), 1822–1826 (2011).
    • 122 Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365(8), 725–733 (2011).•• Extremely exciting results showing MRD-negative complete remissions in heavily pre-treated patients with CLL through the use of CAR T-cells.
    • 123 Kalos M, Frey NV, Grupp SA et al. Chimeric antigen receptor modified T cells directed against CD19 (CTL019 cells) have long-term persistence and induce durable responses in relapsed, refractory CLL. Blood 122(21), 4162 (2013).
    • 124 Kochenderfer JN, Dudley ME, Feldman SA et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119(12), 2709–2720 (2012).
    • 125 Grupp SA, Porter DL, Teachey DT et al. CD19-redirected chimeric antigen receptor T (CART19) cells induce a cytokine release syndrome (CRS) and induction of treatable macrophage activation syndrome (MAS) that can be managed by the IL-6 antagonist tocilizumab (toc). ASH Annual Meeting Abstracts 120(21), 2604- (2012).
    • 126 Tsimberidou AM, Keating MJ. Richter syndrome: biology, incidence, and therapeutic strategies. Cancer 103(2), 216–228 (2005).
    • 127 Bruggemann M, Droese J, Bolz I et al. Improved assessment of minimal residual disease in B cell malignancies using fluorogenic consensus probes for real-time quantitative PCR. Leukemia 14(8), 1419–1425 (2000).
    • 128 Ghia P. A look into the future: can minimal residual disease guide therapy and predict prognosis in chronic lymphocytic leukemia? Hematol. Am. Soc. Hematol. Educ. Program 97–104 (2012) (2012).
    • 129 Rawstron AC, Villamor N, Ritgen M et al. International standardized approach for flow cytometric residual disease monitoring in chronic lymphocytic leukaemia. Leukemia 21(5), 956–964 (2007).
    • 130 O'Brien SM, Kantarjian HM, Thomas DA et al. Alemtuzumab as treatment for residual disease after chemotherapy in patients with chronic lymphocytic leukemia. Cancer 98(12), 2657–2663 (2003).
    • 131 Montillo M, Tedeschi A, Miqueleiz S et al. Alemtuzumab as consolidation after a response to fludarabine is effective in purging residual disease in patients with chronic lymphocytic leukemia. J. Clin. Oncol. 24(15), 2337–2342 (2006).
    • 132 Schweighofer CD, Ritgen M, Eichhorst BF et al. Consolidation with alemtuzumab improves progression-free survival in patients with chronic lymphocytic leukaemia (CLL) in first remission. Long-term follow-up of a randomized Phase III trial of the German CLL Study Group (GCLLSG). Br J Haematol 144(1), 95–98 (2009).
    • 133 Lamanna N, Jurcic JG, Noy A et al. Sequential therapy with fludarabine, high-dose cyclophosphamide, and rituximab in previously untreated patients with chronic lymphocytic leukemia produces high-quality responses. Molecular remissions predict for durable complete responses. J. Clin. Oncol. 27(4), 491–497 (2009).
    • 134 Del Poeta G, Del Principe MI, Buccisano F et al. Consolidation and maintenance immunotherapy with rituximab improve clinical outcome in patients with B-cell chronic lymphocytic leukemia. Cancer 112(1), 119–128 (2008).
    • 135 Schweighofer CD, Hallek M, Wendtner CM. Eradication of minimal residual disease in chronic lymphocytic leukemia. Curr. Hematol. Malignancy Rep. 3(1), 54–60 (2008).
    • 136 Mertens D, Stilgenbauer S. Prognostic and predictive factors in patients with chronic lymphocytic leukemia: relevant in the era of novel treatment approaches? J. Clin. Oncol. 32(9), 869–872 (2014).
    • 137 Zenz T, Krober A, Scherer K et al. Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia. Results from a detailed genetic characterization with long-term follow-up. Blood 112(8), 3322–3329 (2008).
    • 138 Dicker F, Herholz H, Schnittger S et al. The detection of TP53 mutations in chronic lymphocytic leukemia independently predicts rapid disease progression and is highly correlated with a complex aberrant karyotype. Leukemia 23(1), 117–124 (2009).
    • 139 Rossi D, Khiabanian H, Spina V et al. Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia. Blood 123(14), 2139–2147 (2014).
    • 140 Rossi D, Rasi S, Fabbri G et al. Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood 119(2), 521–529 (2012).
    • 141 Wang L, Lawrence MS, Wan Y et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N. Engl. J. Med. 365(26), 2497–2506 (2011).
    • 142 Jeromin S, Weissmann S, Haferlach C et al. SF3B1 mutations correlated to cytogenetics and mutations in NOTCH1, FBXW7, MYD88, XPO1 and TP53 in 1160 untreated CLL patients. Leukemia 28(1), 108–117 (2014).
    • 143 Ferrajoli A, Shanafelt TD, Ivan C et al. Prognostic value of miR-155 in individuals with monoclonal B-cell lymphocytosis and patients with B chronic lymphocytic leukemia. Blood 122(11), 1891–1899 (2013).
    • 144 Asslaber D, Pinon JD, Seyfried I et al. microRNA-34a expression correlates with MDM2 SNP309 polymorphism and treatment-free survival in chronic lymphocytic leukemia. Blood 115(21), 4191–4197 (2010).
    • 145 Claus R, Lucas DM, Stilgenbauer S et al. Quantitative DNA methylation analysis identifies a single CpG dinucleotide important for ZAP-70 expression and predictive of prognosis in chronic lymphocytic leukemia. J. Clin. Oncol. 30(20), 2483–2491 (2012).
    • 146 Bosch F, Abrisqueta P, Villamor N et al. Rituximab, fludarabine, cyclophosphamide, and mitoxantrone. a new, highly active chemoimmunotherapy regimen for chronic lymphocytic leukemia. J. Clin. Oncol. 27(27), 4578–4584 (2009).
    • 147 Parikh SA, Keating MJ, O'Brien S et al. Frontline chemoimmunotherapy with fludarabine, cyclophosphamide, alemtuzumab, and rituximab for high-risk chronic lymphocytic leukemia. Blood 118(8), 2062–2068 (2011).
    • 148 Fink A-M, Busch R, Lange E et al. Chemoimmunotherapy with fludarabine (F), cyclophosphamide (C), and rituximab (R) (FCR) versus bendamustine and rituximab (BR) in previously untreated and physically fit patients (pts) with advanced chronic lymphocytic leukemia (CLL). Results of a planned interim analysis of the CLL10 trial, an international, randomized study of the German CLL Study Group (GCLLSG). Blood 122(21), 526 (2013).
    • 149 O'Brien S, Kingsley CD, Eradat H et al. Safety and efficacy of obinutuzumab (GA101) with fludarabine/cyclophosphamide (G-FC) or bendamustine (G-B) in the initial therapy of patients with chronic lymphocytic leukemia (CLL). Results from the Phase 1b Galton trial (GAO4779g). Blood 122(21), 523 (2013).
    • 150 Mathews Griner LA, Guha R, Shinn P et al. High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell-like diffuse large B-cell lymphoma cells. Proc. Natl Acad. Sci. USA 111(6), 2349–2354 (2014).
    • 151 Bojarczuk K, Siernicka M, Dwojak M et al. B-cell receptor pathway inhibitors affect CD20 levels and impair antitumor activity of anti-CD20 monoclonal antibodies. Leukemia 28(5), 1163–1167 (2014).