Abstract
Metastatic melanoma accounts for approximately 80% of skin cancer-related deaths. Up to now there has been no effective treatment for stage IV melanoma patients due to the complexity and dissemination potential of this disease. Melanomas are heterogeneous tumors in which conventional therapies fail to improve overall survival. Targeted therapies are being developed, but the final outcome can be hampered by the incomplete knowledge of the process of melanoma progression. Even if the intracellular pathways are similar, the interaction of the cells with the surrounding environment should be taken into consideration. This article seeks to highlight some of the advances in the understanding of the molecular mechanisms underlying melanoma dissemination.
Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest
References
- 1 Ferlay J, Parkin DM, Steliarova-Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. Eur. J. Cancer46(4),765–781 (2010).
- 2 Howe HL, Wingo PA, Thun MJ et al. Annual report to the nation on the status of cancer (1973 through 1998), featuring cancers with recent increasing trends. J. Natl Cancer Inst.93(11),824–842 (2001).
- 3 Balch CM, Gershenwald JE, Soong SJ et al. Final version of 2009 AJCC melanoma staging and classification. J. Clin. Oncol.27(36),6199–6206 (2009).
- 4 Balch CM, Soong SJ, Gershenwald JE et al. Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J. Clin. Oncol.19(16),3622–3634 (2001).
- 5 Balch CM, Houghton AN, Sober AJ, Soong S. Cutaneous Melanoma (4th Edition). Quality Medical Publishing, MO, USA (2003).
- 6 Eggermont AM, Kirkwood JM. Re-evaluating the role of dacarbazine in metastatic melanoma: what have we learned in 30 years? Eur. J. Cancer40(12),1825–1836 (2004).
- 7 Atkins MB, Lotze MT, Dutcher JP et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol.17(7),2105–2116 (1999).
- 8 Slominski A, Zmijewski MA, Pawelek J. L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment Cell Melanoma Res.25(1),14–27 (2012).
- 9 Miller AJ, Mihm MC Jr. Melanoma. N. Engl. J. Med.355(1),51–65 (2006).
- 10 Bennett DC. How to make a melanoma: what do we know of the primary clonal events? Pigment Cell Melanoma Res.21(1),27–38 (2008).
- 11 Damsky WE, Curley DP, Santhanakrishnan M et al. Beta-catenin signaling controls metastasis in Braf-activated Pten-deficient melanomas. Cancer Cell20(6),741–754 (2011).▪▪ In vivo demonstration that β-catenin is a central mediator of melanoma metastasis.
- 12 Omholt K, Platz A, Kanter L, Ringborg U, Hansson J. NRAS and BRAF mutations arise early during melanoma pathogenesis and are preserved throughout tumor progression. Clin. Cancer Res.9(17),6483–6488 (2003).
- 13 Edlundh-Rose E, Egyhazi S, Omholt K et al.NRAS and BRAF mutations in melanoma tumours in relation to clinical characteristics: a study based on mutation screening by pyrosequencing. Melanoma Res.16(6),471–478 (2006).
- 14 Colombino M, Capone M, Lissia A et al.BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J. Clin. Oncol.30(20),2522–2529 (2012).
- 15 Berger MF, Hodis E, Heffernan TP et al. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature485(7399),502–506 (2012).
- 16 Hodis E, Watson IR, Kryukov GV et al. A landscape of driver mutations in melanoma. Cell150(2),251–263 (2012).
- 17 Nikolaev SI, Rimoldi D, Iseli C et al. Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nat. Genet.44(2),133–139 (2011).
- 18 Stark MS, Woods SL, Gartside MG et al. Frequent somatic mutations in MAP3K5 and MAP3K9 in metastatic melanoma identified by exome sequencing. Nat. Genet.44(2),165–169 (2011).
- 19 Greene VR, Johnson MM, Grimm EA, Ellerhorst JA. Frequencies of NRAS and BRAF mutations increase from the radial to the vertical growth phase in cutaneous melanoma. J. Invest. Dermatol.129(6),1483–1488 (2009).
- 20 Conway C, Beswick S, Elliott F et al. Deletion at chromosome arm 9p in relation to BRAF/NRAS mutations and prognostic significance for primary melanoma. Genes Chromosomes Cancer49(5),425–438 (2010).
- 21 Pleasance ED, Cheetham RK, Stephens PJ et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature463(7278),191–196 (2010).
- 22 Wilmott JS, Tembe V, Howle JR et al. Intratumoral molecular heterogeneity in a BRAF-mutant, BRAF inhibitor-resistant melanoma: a case illustrating the challenges for personalized medicine. Mol. Cancer Ther.11(12),2704–2708 (2012).
- 23 Hoek K, Rimm DL, Williams KR et al. Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Res.64(15),5270–5282 (2004).
- 24 Gupta PB, Kuperwasser C, Brunet JP et al. The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nat. Genet.37(10),1047–1054 (2005).
- 25 Garraway LA, Widlund HR, Rubin MA et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature436(7047),117–122 (2005).
- 26 Hao L, Ha JR, Kuzel P, Garcia E, Persad S. cadherin switch from E- to N-cadherin in melanoma progression is regulated by the PI3K/PTEN pathway through Twist and Snail. Br. J. Dermatol.166(6),1184–1197 (2012).
- 27 Wels C, Joshi S, Koefinger P, Bergler H, Schaider H. Transcriptional activation of ZEB1 by Slug leads to cooperative regulation of the epithelial–mesenchymal transition-like phenotype in melanoma. J. Invest. Dermatol.131(9),1877–1885 (2011).
- 28 Levy C, Khaled M, Fisher DE. MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol. Med.12(9),406–414 (2006).
- 29 Pinner S, Jordan P, Sharrock K et al. Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination. Cancer Res.69(20),7969–7977 (2009).▪▪ Visualization of the dynamic behavior of cancer cells in vivo.
- 30 Goodall J, Carreira S, Denat L et al. Brn-2 represses microphthalmia-associated transcription factor expression and marks a distinct subpopulation of microphthalmia-associated transcription factor-negative melanoma cells. Cancer Res.68(19),7788–7794 (2008).
- 31 Kim M, Gans JD, Nogueira C et al. Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell125(7),1269–1281 (2006).▪ Identifies a melanoma metastasis gene by comparative oncogenomics.
- 32 Ahn J, Sanz-Moreno V, Marshall CJ. The metastasis gene NEDD9 product acts through integrin beta3 and Src to promote mesenchymal motility and inhibit amoeboid motility. J. Cell Sci.125(Pt 7),1814–1826 (2012).
- 33 Sanz-Moreno V, Gadea G, Ahn J et al. Rac activation and inactivation control plasticity of tumor cell movement. Cell135(3),510–523 (2008).
- 34 Quintana E, Shackleton M, Foster HR et al. Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell18(5),510–523 (2010).▪ Interpretation of melanoma heterogeneity by in vivo transplantation of human melanoma cells obtained from patients.
- 35 Hoek KS, Schlegel NC, Brafford P et al. Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Res.19(4),290–302 (2006).
- 36 Hoek KS, Eichhoff OM, Schlegel NC et al.In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res.68(3),650–656 (2008).▪ Supports and extends the phenotype switching theory with in vivo data.
- 37 Carreira S, Goodall J, Denat L et al. Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev.20(24),3426–3439 (2006).
- 38 Villanueva J, Herlyn M. Melanoma and the tumor microenvironment. Curr. Oncol. Rep.10(5),439–446 (2008).
- 39 Braeuer RR, Zigler M, Villares GJ, Dobroff AS, Bar-Eli M. Transcriptional control of melanoma metastasis: the importance of the tumor microenvironment. Semin. Cancer Biol.21(2),83–88 (2011).
- 40 Wheelock MJ, Shintani Y, Maeda M, Fukumoto Y, Johnson KR. Cadherin switching. J. Cell Sci.121(Pt 6),727–735 (2008).
- 41 Haass NK, Smalley KS, Herlyn M. The role of altered cell–cell communication in melanoma progression. J. Mol. Histol.35(3),309–318 (2004).
- 42 Harris TJ, Tepass U. Adherens junctions: from molecules to morphogenesis. Nat. Rev. Mol. Cell. Biol.11(7),502–514 (2010).
- 43 John JK, Paraiso KH, Rebecca VW et al. GSK3beta inhibition blocks melanoma cell/host interactions by downregulating N-cadherin expression and decreasing FAK phosphorylation. J. Invest. Dermatol.132(12),2818–2827 (2012).
- 44 Liu S, Kumar SM, Lu H et al. MicroRNA-9 up-regulates E-cadherin through inhibition of NF-kappaB1-snail1 pathway in melanoma. J. Pathol.226(1),61–72 (2012).
- 45 Fenouille N, Tichet M, Dufies M et al. The epithelial-mesenchymal transition (EMT) regulatory factor slug (SNAI2) is a downstream target of SPARC and AKT in promoting melanoma cell invasion. PLoS One7(7),e40378 (2012).
- 46 Haass NK, Smalley KS, Li L, Herlyn M. Adhesion, migration and communication in melanocytes and melanoma. Pigment Cell Res.18(3),150–159 (2005).
- 47 Cavallaro U, Christofori G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat. Rev. Cancer4(2),118–132 (2004).▪▪ Inspiring review on the relationships between cell adhesion and signaling.
- 48 Lehmann JM, Holzmann B, Breitbart EW, Schmiegelow P, Riethmuller G, Johnson JP. Discrimination between benign and malignant cells of melanocytic lineage by two novel antigens, a glycoprotein with a molecular weight of 113,000 and a protein with a molecular weight of 76,000. Cancer Res.47(3),841–845 (1987).
- 49 Mills L, Tellez C, Huang S et al. Fully human antibodies to MCAM/MUC18 inhibit tumor growth and metastasis of human melanoma. Cancer Res.62(17),5106–5114 (2002).
- 50 Zigler M, Villares GJ, Dobroff AS et al. Expression of Id-1 is regulated by MCAM/MUC18: a missing link in melanoma progression. Cancer Res.71(10),3494–3504 (2011).
- 51 Fogel M, Mechtersheimer S, Huszar M et al. L1 adhesion molecule (CD 171) in development and progression of human malignant melanoma. Cancer Lett.189(2),237–247 (2003).
- 52 Thies A, Schachner M, Moll I et al. Overexpression of the cell adhesion molecule L1 is associated with metastasis in cutaneous malignant melanoma. Eur. J. Cancer38(13),1708–1716 (2002).
- 53 Mechtersheimer S, Gutwein P, Agmon-Levin N et al. Ectodomain shedding of L1 adhesion molecule promotes cell migration by autocrine binding to integrins. J. Cell. Biol.155(4),661–673 (2001).
- 54 Meier F, Busch S, Gast D et al. The adhesion molecule L1 (CD171) promotes melanoma progression. Int. J. Cancer119(3),549–555 (2006).
- 55 Cavallaro U, Dejana E. Adhesion molecule signalling: not always a sticky business. Nat. Rev. Mol. Cell. Biol.12(3),189–197 (2011).
- 56 Pinon P, Wehrle-Haller B. Integrins: versatile receptors controlling melanocyte adhesion, migration and proliferation. Pigment Cell Melanoma Res.24(2),282–294 (2011).
- 57 Barczyk M, Carracedo S, Gullberg D. Integrins. Cell Tissue Res.339(1),269–280 (2010).
- 58 Abram CL, Lowell CA. The ins and outs of leukocyte integrin signaling. Annu. Rev. Immunol.27,339–362 (2009).
- 59 Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer10(1),9–22 (2010).
- 60 Klemke M, Rafael MT, Wabnitz GH et al. Phosphorylation of ectopically expressed L-plastin enhances invasiveness of human melanoma cells. Int. J. Cancer120(12),2590–2599 (2007).
- 61 Schadendorf D, Gawlik C, Haney U, Ostmeier H, Suter L, Czarnetzki BM. Tumour progression and metastatic behaviour in vivo correlates with integrin expression on melanocytic tumours. J. Pathol.170(4),429–434 (1993).
- 62 Schadendorf D, Heidel J, Gawlik C, Suter L, Czarnetzki BM. Association with clinical outcome of expression of VLA-4 in primary cutaneous malignant melanoma as well as P-selectin and E-selectin on intratumoral vessels. J. Natl Cancer Inst.87(5),366–371 (1995).
- 63 Byron A, Humphries JD, Craig SE, Knight D, Humphries MJ. Proteomic analysis of alpha4beta1 integrin adhesion complexes reveals alpha-subunit-dependent protein recruitment. Proteomics12(13),2107–2114 (2012).
- 64 Schmidt J, Bosserhoff AK. Processing of MIA protein during melanoma cell migration. Int. J. Cancer125(7),1587–1594 (2009).
- 65 Cai W, Sam Gambhir S, Chen X. Multimodality tumor imaging targeting integrin alphavbeta3. Biotechniques39(6 Suppl.),S14–S25 (2005).
- 66 Nasulewicz-Goldeman A, Uszczynska B, Szczaurska-Nowak K, Wietrzyk J. siRNA-mediated silencing of integrin beta3 expression inhibits the metastatic potential of B16 melanoma cells. Oncol. Rep.28(5),1567–1573 (2012).
- 67 Bauvois B. New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers: outside-in signaling and relationship to tumor progression. Biochim. Biophys. Acta1825(1),29–36 (2011).▪ Insight on the nonenzymatic, signal transduction roles of surface-bound gelatinases.
- 68 Jiao Y, Feng X, Zhan Y et al. Matrix metalloproteinase-2 promotes alphavbeta3 integrin-mediated adhesion and migration of human melanoma cells by cleaving fibronectin. PLoS One7(7),e41591 (2012).
- 69 Kim KB, Prieto V, Joseph RW et al. A randomized Phase II study of cilengitide (EMD 121974) in patients with metastatic melanoma. Melanoma Res.22(4),294–301 (2012).
- 70 Nikkola J, Vihinen P, Vuoristo MS, Kellokumpu-Lehtinen P, Kahari VM, Pyrhonen S. High serum levels of matrix metalloproteinase-9 and matrix metalloproteinase-1 are associated with rapid progression in patients with metastatic melanoma. Clin. Cancer Res.11(14),5158–5166 (2005).
- 71 Pardo A, Selman M. MMP-1: the elder of the family. Int. J. Biochem. Cell Biol.37(2),283–288 (2005).
- 72 Durko M, Navab R, Shibata HR, Brodt P. Suppression of basement membrane type IV collagen degradation and cell invasion in human melanoma cells expressing an antisense RNA for MMP-1. Biochim. Biophys. Acta1356(3),271–280 (1997).
- 73 Wang YG, Kim SJ, Baek JH, Lee HW, Jeong SY, Chun KH. Galectin-3 increases the motility of mouse melanoma cells by regulating matrix metalloproteinase-1 expression. Exp. Mol. Med.44(6),387–393 (2012).
- 74 Shellman YG, Makela M, Norris DA. Induction of secreted matrix metalloproteinase-9 activity in human melanoma cells by extracellular matrix proteins and cytokines. Melanoma Res.16(3),207–211 (2006).
- 75 Corte MD, Gonzalez LO, Corte MG et al. Collagenase-3 (MMP-13) expression in cutaneous malignant melanoma. Int. J. Biol. Markers20(4),242–248 (2005).
- 76 Quirt I, Bodurth A, Lohmann R et al. Phase II study of marimastat (BB-2516) in malignant melanoma: a clinical and tumor biopsy study of the National Cancer Institute of Canada Clinical Trials Group. Invest. New Drugs20(4),431–437 (2002).
- 77 Eskens FA, Dumez H, Hoekstra R et al. Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of cilengitide (EMD 121974), a novel inhibitor of the integrins alphavbeta3 and alphavbeta5 in patients with advanced solid tumours. Eur. J. Cancer39(7),917–926 (2003).
- 78 Kim KB, Prieto V, Joseph RW et al. A randomized Phase II study of cilengitide (EMD 121974) in patients with metastatic melanoma. Melanoma Res.22(4),294–301 (2012).
- 79 Trikha M, Zhou Z, Nemeth JA et al. CNTO 95, a fully human monoclonal antibody that inhibits alphav integrins, has antitumor and antiangiogenic activity in vivo. Int. J. Cancer110(3),326–335 (2004).
- 80 O’day SJ, Pavlick AC, Albertini MR et al. Clinical and pharmacologic evaluation of two dose levels of intetumumab (CNTO 95) in patients with melanoma or angiosarcoma. Invest. New Drugs30(3),1074–1081 (2012).
- 81 Guilluy C, Garcia-Mata R, Burridge K. Rho protein crosstalk: another social network? Trends Cell Biol.21(12),718–726 (2011).
- 82 Bishop AL, Hall A. Rho GTPases and their effector proteins. Biochem. J.348(Pt 2),241–255 (2000).
- 83 Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell70(3),401–410 (1992).
- 84 Nobes CD, Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell81(1),53–62 (1995).
- 85 Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell70(3),389–399 (1992).
- 86 Pankova K, Rosel D, Novotny M, Brabek J. The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell. Mol. Life Sci.67(1),63–71 (2010).
- 87 Wolf K, Mazo I, Leung H et al. Compensation mechanism in tumor cell migration: mesenchymal–amoeboid transition after blocking of pericellular proteolysis. J. Cell. Biol.160(2),267–277 (2003).
- 88 Sahai E, Marshall CJ. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat. Cell. Biol.5(8),711–719 (2003).
- 89 Gadea G, Sanz-Moreno V, Self A, Godi A, Marshall CJ. DOCK10-mediated Cdc42 activation is necessary for amoeboid invasion of melanoma cells. Curr. Biol.18(19),1456–1465 (2008).
- 90 Pasini L, Turco MY, Luzi L, Aladowicz E, Fagiani E, Lanfrancone L. Melanoma: targeting signaling pathways and RaLP. Expert Opin. Ther. Targets13(1),93–104 (2009).
- 91 Turco M, Furia L, Dietze A et al. Cellular heterogeneity during embryonic stem cell differentiation to epiblast stem cells is revealed by the ShcD/RaLP adaptor protein. Stem Cells30(11),2423–2436 (2012).
- 92 Hawley SP, Wills MK, Rabalski AJ, Bendall AJ, Jones N. Expression patterns of ShcD and Shc family adaptor proteins during mouse embryonic development. Dev. Dyn.240(1),221–231 (2012).
- 93 Colombo S, Champeval D, Rambow F, Larue L. Transcriptomic analysis of mouse embryonic skin cells reveals previously unreported genes expressed in melanoblasts. J. Invest. Dermatol.132(1),170–178 (2012).
- 94 Jones N, Hardy WR, Friese MB et al. Analysis of a Shc family adaptor protein, ShcD/Shc4, that associates with muscle-specific kinase. Mol. Cell. Biol.27(13),4759–4773 (2007).
- 95 Fagiani E, Giardina G, Luzi L et al. RaLP, a new member of the Src homology and collagen family, regulates cell migration and tumor growth of metastatic melanomas. Cancer Res.67(7),3064–3073 (2007).▪▪ First identification and characterization of RaLP/ShcD.
- 96 Mayer TC. The migratory pathway of neural crest cells into the skin of mouse embryos. Dev. Biol.34(1),39–46 (1973).
- 97 Theveneau E, Mayor R. Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration. Dev. Biol.366(1),34–54 (2012).
- 98 Bailey CM, Morrison JA, Kulesa PM. Melanoma revives an embryonic migration program to promote plasticity and invasion. Pigment Cell Melanoma Res.25(5),573–583 (2012).
- 99 Strub T, Kobi D, Koludrovic D, Davidson I. A POU3F2-MITF-SHC4 axis in phenotype switching of melanoma cells. In: Research on Melanoma – a Glimpse into Current Directions and Future Trends. Murph M (Ed.). InTech, Vienna, Austria (2011).
- 100 Thurber AE, Douglas G, Sturm EC et al. Inverse expression states of the BRN2 and MITF transcription factors in melanoma spheres and tumour xenografts regulate the NOTCH pathway. Oncogene30(27),3036–3048 (2011).
- 101 Goodall J, Wellbrock C, Dexter TJ, Roberts K, Marais R, Goding CR. The Brn-2 transcription factor links activated BRAF to melanoma proliferation. Mol. Cell. Biol.24(7),2923–2931 (2004).
- 102 Goodall J, Martinozzi S, Dexter TJ et al. Brn-2 expression controls melanoma proliferation and is directly regulated by beta-catenin. Mol. Cell. Biol.24(7),2915–2922 (2004).
- 103 Javelaud D, Alexaki VI, Pierrat MJ et al. GLI2 and M-MITF transcription factors control exclusive gene expression programs and inversely regulate invasion in human melanoma cells. Pigment Cell Melanoma Res.24(5),932–943 (2011).
- 104 Pierrat MJ, Marsaud V, Mauviel A, Javelaud D. Expression of microphthalmia-associated transcription factor (MITF), which is critical for melanoma progression, is inhibited by both transcription factor GLI2 and transforming growth factor-beta. J. Biol. Chem.287(22),17996–18004 (2012).
- 105 Alexaki VI, Javelaud D, Van Kempen LC et al. GLI2-mediated melanoma invasion and metastasis. J. Natl Cancer Inst.102(15),1148–1159 (2010).
- 106 Smith AP, Hoek K, Becker D. Whole-genome expression profiling of the melanoma progression pathway reveals marked molecular differences between nevi/melanoma in situ and advanced-stage melanomas. Cancer Biol. Ther.4(9),1018–1029 (2005).
- 107 Jönsson G, Busch C, Knappskog S et al. Gene expression profiling-based identification of molecular subtypes in stage IV melanomas with different clinical outcome. Clin. Cancer Res.16(13),3356–3367 (2010).
- 108 Bogunovic D, O’neill DW, Belitskaya-Levy I et al. Immune profile and mitotic index of metastatic melanoma lesions enhance clinical staging in predicting patient survival. Proc. Natl Acad. Sci. USA106(48),20429–20434 (2009).
- 109 Harbst K, Staaf J, Lauss M et al. Molecular profiling reveals low- and high-grade forms of primary melanoma. Clin. Cancer Res.18(15),4026–4036 (2012).
- 110 Slominski A, Zbytek B, Slominski R. Inhibitors of melanogenesis increase toxicity of cyclophosphamide and lymphocytes against melanoma cells. Int. J. Cancer124(6),1470–1477 (2009).
- 111 Bagnato A, Loizidou M, Pflug BR, Curwen J, Growcott J. Role of the endothelin axis and its antagonists in the treatment of cancer. Br. J. Pharmacol.163(2),220–233 (2011).
- 112 Pavan WJ, Tilghman SM. Piebald lethal (sl) acts early to disrupt the development of neural crest-derived melanocytes. Proc. Natl Acad. Sci. USA91(15),7159–7163 (1994).
- 113 Baynash AG, Hosoda K, Giaid A et al. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell79(7),1277–1285 (1994).
- 114 Lee HO, Levorse JM, Shin MK. The endothelin receptor-B is required for the migration of neural crest-derived melanocyte and enteric neuron precursors. Dev. Biol.259(1),162–175 (2003).
- 115 Shin MK, Levorse JM, Ingram RS, Tilghman SM. The temporal requirement for endothelin receptor-B signalling during neural crest development. Nature402(6761),496–501 (1999).
- 116 Lahav R, Heffner G, Patterson PH. An endothelin receptor B antagonist inhibits growth and induces cell death in human melanoma cells in vitro and in vivo. Proc. Natl Acad. Sci. USA96(20),11496–11500 (1999).
- 117 Jamal S, Schneider RJ. UV-induction of keratinocyte endothelin-1 downregulates E-cadherin in melanocytes and melanoma cells. J. Clin. Invest.110(4),443–452 (2002).
- 118 Bagnato A, Rosano L, Spinella F, Di Castro V, Tecce R, Natali PG. Endothelin B receptor blockade inhibits dynamics of cell interactions and communications in melanoma cell progression. Cancer Res.64(4),1436–1443 (2004).
- 119 Spinella F, Rosano L, Di Castro V et al. Endothelin-1 and endothelin-3 promote invasive behavior via hypoxia-inducible factor-1alpha in human melanoma cells. Cancer Res.67(4),1725–1734 (2007).
- 120 Spinella F, Rosano L, Del Duca M et al. Endothelin-1 inhibits prolyl hydroxylase domain 2 to activate hypoxia-inducible factor-1alpha in melanoma cells. PLoS One5(6),e11241 (2010).
- 121 Berger Y, Bernasconi CC, Juillerat-Jeanneret L. Targeting the endothelin axis in human melanoma: combination of endothelin receptor antagonism and alkylating agents. Exp. Biol. Med.231(6),1111–1119 (2006).
- 122 Kefford R, Beith JM, Van Hazel GA et al. A Phase II study of bosentan, a dual endothelin receptor antagonist, as monotherapy in patients with stage IV metastatic melanoma. Invest. New Drugs25(3),247–252 (2007).
- 123 Kefford RF, Clingan PR, Brady B, Ballmer A, Morganti A, Hersey P. A randomized, double-blind, placebo-controlled study of high-dose bosentan in patients with stage IV metastatic melanoma receiving first-line dacarbazine chemotherapy. Mol. Cancer9,69 (2010).
- 124 Cruz-Munoz W, Jaramillo ML, Man S et al. Roles for endothelin receptor B and BCL2A1 in spontaneous CNS metastasis of melanoma. Cancer Res.72(19),4909–4919 (2012).
- 125 Mocellin S, Rossi CR. The melanoma molecular map project. Melanoma Res.18(3),163–165 (2008).
- 126 Mocellin S, Shrager J, Scolyer R et al. Targeted Therapy Database (TTD): a model to match patient’s molecular profile with current knowledge on cancer biology. PLoS One5(8),e11965 (2010).
- 201 Ries LaG, Melbert D, Krapcho M et al. SEER Cancer Statistics Review, 1975–2004. http://seer.cancer.gov/csr/1975_2004/
- 202 Gene Expression Omnibus. www.ncbi.nlm.nih.gov/geo/
- 203 Oncomine. www.oncomine.org

