We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

The role of miRNA in prostate cancer diagnosis, prognosis and treatment response: a narrative review

    Jorge Raul Vazquez-Urrutia

    Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México & Dirección General de Calidad y Educación en Salud, Secretaría de Salud, México

    ,
    Maria Iyali Torres-Bustamante

    Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México & Dirección General de Calidad y Educación en Salud, Secretaría de Salud, México

    ,
    Cesar Rodrigo Cerda-Cruz

    Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, México

    ,
    Alejandro Bravo-Cuellar

    División de Inmunología. Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jal., México

    &
    Pablo Cesar Ortiz-Lazareno

    *Author for correspondence: Tel.: +52 333 618 9410;

    E-mail Address: pablolazareno@gmail.com

    División de Inmunología. Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jal., México

    Published Online:https://doi.org/10.2217/fon-2022-0891

    To date, prostate cancer remains the most common tumor diagnosed in males and the second most common cause of cancer-related mortality. While current screening protocols can detect early disease, they lack enough sensitivity and specificity, leading to unnecessary biopsies and overtreatment. Furthermore, disease monitoring remains challenging, as current prognostic strategies rely on data obtained by invasive means such as biopsy, surgery and digital rectal examination. Additionally, there are no tools to predict tumor progression, risk reclassification and treatment response. As the need for accurate biomarkers continues, miRNAs are promising biomarkers for screening, surveillance, prognosis and treatment response in prostate cancer. In this review, the authors describe the current evidence regarding the accuracy and efficacy of these biomarkers for prostate cancer.

    Tweetable abstract

    In prostate cancer, there remains a need for more accurate diagnostic, prognostic and treatment-response strategies utilizing less invasive sources. As such, miRNAs are promising biomarkers that, with further research, could be implemented to address this challenge.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Wang L, Lu B, He M, Wang Y, Wang Z, Du L. Prostate cancer incidence and mortality: global status and temporal trends in 89 countries from 2000 to 2019. Front. Public Health 10, 811044 (2022).
    • 2. American Cancer Society. Cancer Facts & Figures 2022 (2022). www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2022.html
    • 3. American Cancer Society. American Cancer Society recommendations for prostate cancer early detection (15/06). www.cancer.org/cancer/prostate-cancer/detection-diagnosis-staging/acs-recommendations.html#references
    • 4. Carter HB, Albertsen PC, Barry MJ et al. Early detection of prostate cancer: AUA guideline. J. Urol. 190(2), 419–426 (2013).
    • 5. Bhavsar T, Mccue P, Birbe R. Molecular diagnosis of prostate cancer: are we up to age? Semin. Oncol. 40(3), 259–275 (2013).
    • 6. Adhyam M ,.Gupta AK. A review on the clinical utility of PSA in cancer prostate. Indian J. Surg. Oncol. 3(2), 120–129 (2012).
    • 7. Jones D, Friend C, Dreher A, Allgar V, Macleod U. The diagnostic test accuracy of rectal examination for prostate cancer diagnosis in symptomatic patients: a systematic review. BMC Fam. Pract. 19(1), 79 (2018).
    • 8. Bruinsma SM, Bangma CH, Carroll PR et al. Active surveillance for prostate cancer: a narrative review of clinical guidelines. . Nat. Rev. Urol. 13(3), 151–167 (2016).
    • 9. Eastham JA, Auffenberg GB, Barocas DA et al. Clinically localized prostate cancer: AUA/ASTRO guideline, part i: introduction, risk assessment, staging, and risk-based management. J. Urol. 208(1), 10–18 (2022).
    • 10. Lowrance WT, Breau RH, Chou R et al. Advanced prostate cancer: AUA/ASTRO/SUO guideline part I. J. Urol. 205(1), 14–21 (2021).
    • 11. Briganti A, Fossati N, Catto JWF et al. Active surveillance for low-risk prostate cancer: the European Association of Urology position in 2018. Eur. Urol. 74(3), 357–368 (2018).
    • 12. D'amico AV, Whittington R, Malkowicz SB et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 280(11), 969–974 (1998).
    • 13. Cooperberg MR, Hilton JF, Carroll PR. The CAPRA-S score: a straightforward tool for improved prediction of outcomes after radical prostatectomy. Cancer 117(22), 5039–5046 (2011).
    • 14. Mohler J, Bahnson RR, Boston B et al. NCCN clinical practice guidelines in oncology: prostate cancer. J. Natl Compr. Canc. Netw. 8(2), 162–200 (2010).
    • 15. Bokhorst LP, Lepistö I, Kakehi Y et al. Complications after prostate biopsies in men on active surveillance and its effects on receiving further biopsies in the Prostate cancer Research International: Active Surveillance (PRIAS) study. BJU Int. 118(3), 366–371 (2016).
    • 16. Yadav SS, Stockert JA, Hackert V, Yadav KK, Tewari AK. Intratumor heterogeneity in prostate cancer. Urol. Oncol. 36(8), 349–360 (2018).
    • 17. Dexheimer PJ, Cochella L. MicroRNAs: from mechanism to organism. Front. Cell Dev. Biol. 8, 409 (2020).
    • 18. O'brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. (Lausanne) 9, 402 (2018).
    • 19. Ben-Hamo R, Efroni S. MicroRNA regulation of molecular pathways as a generic mechanism and as a core disease phenotype. Oncotarget 6(3), 1594–1604 (2015).
    • 20. Macfarlane LA, Murphy PR. MicroRNA: biogenesis, function and role in cancer. Curr. Genomics 11(7), 537–561 (2010).
    • 21. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2), 281–297 (2004).
    • 22. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science 318(5858), 1931–1934 (2007).
    • 23. Condrat CE, Thompson DC, Barbu MG et al. miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells 9(2), 276 (2020).
    • 24. Alles J, Fehlmann T, Fischer U et al. An estimate of the total number of true human miRNAs. Nucleic Acids Res. 47(7), 3353–3364 (2019).
    • 25. Ludwig N, Leidinger P, Becker K et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 44(8), 3865–3877 (2016).
    • 26. Landgraf P, Rusu M, Sheridan R et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7), 1401–1414 (2007).
    • 27. Callis TE, Chen JF, Wang DZ. MicroRNAs in skeletal and cardiac muscle development. DNA Cell Biol. 26(4), 219–225 (2007).
    • 28. Bradner JE, Hnisz D, Young RA. Transcriptional addiction in cancer. Cell 168(4), 629–643 (2017).
    • 29. Peng Y, Croce CM. The role of microRNAs in human cancer. Signal Transduct. Target Ther. 1, 15004 (2016).
    • 30. Svoronos AA, Engelman DM, Slack FJ. OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer Res. 76(13), 3666–3670 (2016).
    • 31. Zenner ML, Baumann B, Nonn L. Oncogenic and tumor-suppressive microRNAs in prostate cancer. Curr. Opin. Endocr. Metab. Res. 10, 50–59 (2020).
    • 32. Wang H, Peng R, Wang J, Qin Z, Xue L. Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage. Clin. Epigenetics 10, 59 (2018).
    • 33. Lan H, Lu H, Wang X, Jin H. MicroRNAs as potential biomarkers in cancer: opportunities and challenges. Biomed. Res. Int. 2015, 125094 (2015).
    • 34. Saliminejad K, Khorram Khorshid HR, Ghaffari SH. Why have microRNA biomarkers not been translated from bench to clinic? Future Oncol. 15(8), 801–803 (2019).
    • 35. Nik Mohamed Kamal N, Shahidan WNS. Non-exosomal and exosomal circulatory microRNAs: which are more valid as biomarkers? Front. Pharmacol. 10, 1500 (2019).
    • 36. Zhou X, Wen W, Zhu J et al. A six-microRNA signature in plasma was identified as a potential biomarker in diagnosis of esophageal squamous cell carcinoma. Oncotarget 8(21), 34468–34480 (2017).
    • 37. Schitcu VH, Raduly L, Nutu A et al. MicroRNA dysregulation in prostate cancer. Pharmgenomics Pers. Med. 15, 177–193 (2022).
    • 38. Shiina M, Hashimoto Y, Kulkarni P et al. Role of miR-182/PDCD4 axis in aggressive behavior of prostate cancer in the African Americans. BMC Cancer 21(1), 1028 (2021). • Offers a plausible molecular explanation of the differences in prostate cancer (PCa) in different populations.
    • 39. Byun YJ, Piao XM, Jeong P et al. Urinary microRNA-1913 to microRNA-3659 expression ratio as a non-invasive diagnostic biomarker for prostate cancer. Investig. Clin. Urol. 62(3), 340–348 (2021).
    • 40. Liu HP, Lai HM, Guo Z. Prostate cancer early diagnosis: circulating microRNA pairs potentially beyond single microRNAs upon 1231 serum samples. Brief Bioinform. 22(3), bbaa111 (2021).
    • 41. Fredsøe J, Rasmussen AKI, Laursen EB et al. Independent validation of a diagnostic noninvasive 3-microRNA ratio model (uCaP) for prostate cancer in cell-free urine. Clin. Chem. 65(4), 540–548 (2019). •• This model is completely noninvasive, was validated in two different cohorts and requires no additional normalization, making it suitable for further testing.
    • 42. Barceló M, Castells M, Bassas L, Vigués F, Larriba S. Semen miRNAs contained in exosomes as non-invasive biomarkers for prostate cancer diagnosis. Sci. Rep. 9(1), 13772 (2019).
    • 43. Paunescu IA, Bardan R, Marcu A et al. Biomarker potential of plasma microRNA-150-5p in prostate cancer. Medicina (Kaunas) 55(9), 564 (2019).
    • 44. Mello-Grand M, Gregnanin I, Sacchetto L et al. Circulating microRNAs combined with PSA for accurate and non-invasive prostate cancer detection. Carcinogenesis 40(2), 246–253 (2019).
    • 45. Urabe F, Matsuzaki J, Yamamoto Y et al. Large-scale circulating microRNA profiling for the liquid biopsy of prostate cancer. Clin. Cancer Res. 25(10), 3016–3025 (2019).
    • 46. Bidarra D, Constâncio V, Barros-Silva D et al. Circulating microRNAs as biomarkers for prostate cancer detection and metastasis development prediction. Front. Oncol. 9, 900 (2019).
    • 47. Bhagirath D, Yang TL, Bucay N et al. microRNA-1246 is an exosomal biomarker for aggressive prostate cancer. Cancer Res. 78(7), 1833–1844 (2018).
    • 48. Paziewska A, Mikula M, Dabrowska M et al. Candidate diagnostic miRNAs that can detect cancer in prostate biopsy. Prostate 78(3), 178–185 (2018).
    • 49. Matin F, Jeet V, Moya L et al. A plasma biomarker panel of four microRNAs for the diagnosis of prostate cancer. Sci. Rep. 8(1), 6653 (2018).
    • 50. Fredsøe J, Rasmussen AKI, Thomsen AR et al. Diagnostic and prognostic microRNA biomarkers for prostate cancer in cell-free urine. Eur. Urol. Focus 4(6), 825–833 (2018).
    • 51. Rodríguez M, Bajo-Santos C, Hessvik NP et al. Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes. Mol. Cancer 16(1), 156 (2017).
    • 52. Kim MY, Shin H, Moon HW, Park YH, Park J, Lee JY. Urinary exosomal microRNA profiling in intermediate-risk prostate cancer. Sci. Rep. 11(1), 7355 (2021).
    • 53. Shin S, Park YH, Jung SH et al. Urinary exosome microRNA signatures as a noninvasive prognostic biomarker for prostate cancer. NPJ Genom. Med. 6(1), 45 (2021).
    • 54. Guo T, Wang Y, Jia J et al. The identification of plasma exosomal miR-423-3p as a potential predictive biomarker for prostate cancer castration-resistance development by plasma exosomal miRNA sequencing. Front. Cell Dev. Biol. 8, 602493 (2020).
    • 55. Zhao Z, Weickmann S, Jung M et al. A novel predictor tool of biochemical recurrence after radical prostatectomy based on a five-microRNA tissue signature. Cancers (Basel) 11(10), 1603 (2019).
    • 56. Strand SH, Bavafaye-Haghighi E, Kristensen H et al. A novel combined miRNA and methylation marker panel (miMe) for prediction of prostate cancer outcome after radical prostatectomy. Int. J. Cancer 145(12), 3445–3452 (2019). •• Proposes a validated model that can reclassify low and intermediate Cancer of the Prostate Risk Assessment risk groups, allowing early adjuvant treatment.
    • 57. Nam RK, Benatar T, Wallis CJD et al. MicroRNA-139 is a predictor of prostate cancer recurrence and inhibits growth and migration of prostate cancer cells through cell cycle arrest and targeting IGF1R and AXL. Prostate 79(12), 1422–1438 (2019).
    • 58. Guan H, You Z, Wang C et al. MicroRNA-200a suppresses prostate cancer progression through BRD4/AR signaling pathway. Cancer Med. 8(4), 1474–1485 (2019).
    • 59. Fredsøe J, Rasmussen AKI, Mouritzen P, Borre M, Ørntoft T, Sørensen KD. A five-microRNA model (pCaP) for predicting prostate cancer aggressiveness using cell-free urine. Int. J. Cancer 145(9), 2558–2567 (2019).
    • 60. Schmidt L, Fredsøe J, Kristensen H et al. Training and validation of a novel 4-miRNA ratio model (MiCaP) for prediction of postoperative outcome in prostate cancer patients. Ann. Oncol. 29(9), 2003–2009 (2018).
    • 61. Liu RSC, Olkhov-Mitsel E, Jeyapala R et al. Assessment of serum microRNA biomarkers to predict reclassification of prostate cancer in patients on active surveillance. J. Urol. 199(6), 1475–1481 (2018).
    • 62. Nam RK, Benatar T, Amemiya Y et al. MicroRNA-652 induces NED in LNCaP and EMT in PC3 prostate cancer cells. Oncotarget 9(27), 19159–19176 (2018).
    • 63. Daniunaite K, Dubikaityte M, Gibas P et al. Clinical significance of miRNA host gene promoter methylation in prostate cancer. Hum. Mol. Genet. 26(13), 2451–2461 (2017).
    • 64. Lin HM, Mahon KL, Spielman C et al. Phase 2 study of circulating microRNA biomarkers in castration-resistant prostate cancer. Br. J. Cancer 116(8), 1002–1011 (2017).
    • 65. Smith RA, Andrews KS, Brooks D et al. Cancer screening in the United States, 2018: a review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J. Clin. 68(4), 297–316 (2018).
    • 66. Foj L, Ferrer F, Serra M et al. Exosomal and non-exosomal urinary miRNAs in prostate cancer detection and prognosis. Prostate 77(6), 573–583 (2017).
    • 67. Porzycki P, Ciszkowicz E, Semik M, Tyrka M. Combination of three miRNA (miR-141, miR-21, and miR-375) as potential diagnostic tool for prostate cancer recognition. Int. Urol. Nephrol. 50(9), 1619–1626 (2018).
    • 68. Rajendiran S, Maji S, Haddad A et al. MicroRNA-940 as a potential serum biomarker for prostate cancer. Front. Oncol. 11, 628094 (2021).
    • 69. Ghorbanmehr N, Gharbi S, Korsching E, Tavallaei M, Einollahi B, Mowla SJ. miR-21-5p, miR-141-3p, and miR-205-5p levels in urine-promising biomarkers for the identification of prostate and bladder cancer. Prostate 79(1), 88–95 (2019).
    • 70. Xu Y, Qin S, An T, Tang Y, Huang Y, Zheng L. MiR-145 detection in urinary extracellular vesicles increase diagnostic efficiency of prostate cancer based on hydrostatic filtration dialysis method. Prostate 77(10), 1167–1175 (2017). •• Offers a method to extract exosomal miRNA with easy access that is straightforward and less expensive, which could be valuable for its use.
    • 71. Bhagirath D, Yang TL, Akoto T, Patel N, Tabatabai LZ, Saini S. MicroRNA-4287 is a novel tumor suppressor microRNA controlling epithelial-to-mesenchymal transition in prostate cancer. Oncotarget 11(51), 4681–4692 (2020).
    • 72. Zhu C, Hou X, Zhu J, Jiang C, Wei W. Expression of miR-30c and miR-29b in prostate cancer and its diagnostic significance. Oncol. Lett. 16(3), 3140–3144 (2018).
    • 73. Waseem M, Ahmad MK, Serajuddin M, Bhaskar V, Sankhwar SN, Mahdi AA. MicroRNA-183-5p: a new potential marker for prostate cancer. Indian J. Clin. Biochem. 34(2), 207–212 (2019).
    • 74. Bhagirath D, Yang TL, Tabatabai ZL et al. Role of a novel race-related tumor suppressor microRNA located in frequently deleted chromosomal locus 8p21 in prostate cancer progression. Carcinogenesis 40(5), 633–642 (2019).
    • 75. Ali R, El Tabbakh S, El Delgawy W, Kotb A, Desouky MN. microRNA-141 as a diagnostic and prognostic biomarker for prostate cancer in Egyptian population: pilot study. Afr. J. Urol. 24(4), 347–352 (2018).
    • 76. Ibrahim NH, Abdellateif MS, Thabet G et al. Combining PHI and miRNAs as biomarkers in prostate cancer diagnosis and prognosis. Clin. Lab. 65(7), (2019).
    • 77. Al-Kafaji G, Said HM, Alam MA, Al Naieb ZT. Blood-based microRNAs as diagnostic biomarkers to discriminate localized prostate cancer from benign prostatic hyperplasia and allow cancer-risk stratification. Oncol. Lett. 16(1), 1357–1365 (2018).
    • 78. Zhao Y, Tang X, Zhao Y, Yu Y, Liu S. Diagnostic significance of microRNA-1255b-5p in prostate cancer patients and its effect on cancer cell function. Bioengineered 12(2), 11451–11460 (2021).
    • 79. Endzeliņš E, Berger A, Melne V et al. Detection of circulating miRNAs: comparative analysis of extracellular vesicle-incorporated miRNAs and cell-free miRNAs in whole plasma of prostate cancer patients. BMC Cancer 17(1), 730 (2017).
    • 80. Feng S, Qian X, Li H, Zhang X. Combinations of elevated tissue miRNA-17-92 cluster expression and serum prostate-specific antigen as potential diagnostic biomarkers for prostate cancer. Oncol. Lett. 14(6), 6943–6949 (2017).
    • 81. Lazzeri M, Haese A, Abrate A et al. Clinical performance of serum prostate-specific antigen isoform [-2]proPSA (p2PSA) and its derivatives, %p2PSA and the prostate health index (PHI), in men with a family history of prostate cancer: results from a multicentre European study, the PROMEtheuS project. BJU Int. 112(3), 313–321 (2013).
    • 82. Stav K, Judith S, Merald H, Leibovici D, Lindner A, Zisman A. Does prostate biopsy Gleason score accurately express the biologic features of prostate cancer? Urol. Oncol. 25(5), 383–386 (2007).
    • 83. Mohler JL, Antonarakis ES, Armstrong AJ et al. Prostate Cancer, Version 2.2019, NCCN Clinical Practice Guidelines in Oncology. J. Natl Compr. Canc. Netw. 17(5), 479–505 (2019).
    • 84. Suer I, Guzel E, Karatas OF, Creighton CJ, Ittmann M, Ozen M. MicroRNAs as prognostic markers in prostate cancer. Prostate 79(3), 265–271 (2019).
    • 85. Bhagirath D, Liston M, Patel N et al. MicroRNA determinants of neuroendocrine differentiation in metastatic castration-resistant prostate cancer. Oncogene 39(49), 7209–7223 (2020).
    • 86. Colden M, Dar AA, Saini S et al. MicroRNA-466 inhibits tumor growth and bone metastasis in prostate cancer by direct regulation of osteogenic transcription factor RUNX2. Cell Death Dis. 8(1), e2572 (2017).
    • 87. Zhao F, Vesprini D, Liu RSC et al. Combining urinary DNA methylation and cell-free microRNA biomarkers for improved monitoring of prostate cancer patients on active surveillance. Urol. Oncol. 37(5), 297.e299–297.e217 (2019).
    • 88. Valera VA, Parra-Medina R, Walter BA, Pinto P, Merino MJ. microRNA expression profiling in young prostate cancer patients. J. Cancer 11(14), 4106–4114 (2020).
    • 89. Ruiz-Plazas X, Altuna-Coy A, Alves-Santiago M et al. Liquid biopsy-based exo-oncomiRNAs can predict prostate cancer aggressiveness. Cancers (Basel) 13(2), 250 (2021).
    • 90. Peng P, Chen T, Wang Q et al. Decreased miR-218-5p levels as a serum biomarker in bone metastasis of prostate cancer. Oncol. Res. Treat. 42(4), 165–185 (2019).
    • 91. Stoen MJ, Andersen S, Rakaee M et al. High expression of miR-17-5p in tumor epithelium is a predictor for poor prognosis for prostate cancer patients. Sci. Rep. 11(1), 13864 (2021).
    • 92. Wang G, Cheng B, Jia R, Tan B, Liu W. Altered expression of microRNA-92b-3p predicts survival outcomes of patients with prostate cancer and functions as an oncogene in tumor progression. Oncol. Lett. 21(1), 4 (2021).
    • 93. Liu J, Quan Z, Gao Y, Wu X, Zheng Y. MicroRNA-199b-3p suppresses malignant proliferation by targeting phospholipase Cε and correlated with poor prognosis in prostate cancer. Biochem. Biophys. Res. Commun. 576, 73–79 (2021).
    • 94. Cai B, Chen W, Pan Y et al. Inhibition of microRNA-500 has anti-cancer effect through its conditional downstream target of TFPI in human prostate cancer. Prostate 77(10), 1057–1065 (2017).
    • 95. Wang C, Tian S, Zhang D et al. Increased expression of microRNA-93 correlates with progression and prognosis of prostate cancer. Medicine (Baltimore) 99(22), e18432 (2020).
    • 96. Fu F, Wan X, Wang D et al. MicroRNA-19a acts as a prognostic marker and promotes prostate cancer progression via inhibiting VPS37A expression. Oncotarget 9(2), 1931–1943 (2018).
    • 97. Zhang R, Li F, Wang Y, Yao M, Chi C. Prognostic value of microRNA-20b expression level in patients with prostate cancer. Histol. Histopathol. 35(8), 827–831 (2020).
    • 98. Liu JB, Yan YJ, Shi J et al. Upregulation of microRNA-191 can serve as an independent prognostic marker for poor survival in prostate cancer. Medicine (Baltimore) 98(29), e16193 (2019).
    • 99. Nam RK, Wallis CJD, Amemiya Y, Benatar T, Seth A. Identification of a novel microRNA panel associated with metastasis following radical prostatectomy for prostate cancer. Anticancer Res. 38(9), 5027–5034 (2018).
    • 100. Richardsen E, Andersen S, Melbø-Jørgensen C et al. MicroRNA 141 is associated to outcome and aggressive tumor characteristics in prostate cancer. Sci. Rep. 9(1), 386 (2019).
    • 101. Bucay N, Bhagirath D, Sekhon K et al. A novel microRNA regulator of prostate cancer epithelial-mesenchymal transition. Cell Death Differ. 24(7), 1263–1274 (2017).
    • 102. Wei W, Leng J, Shao H, Wang W. MiR-1, a potential predictive biomarker for recurrence in prostate cancer after radical prostatectomy. Am. J. Med. Sci. 353(4), 315–319 (2017).
    • 103. Lin BB, Lei HQ, Xiong HY et al. MicroRNA-regulated transcriptome analysis identifies four major subtypes with prognostic and therapeutic implications in prostate cancer. Comput. Struct. Biotechnol. J. 19, 4941–4953 (2021). • Identifies subtypes of PCa that have different progression and treatment susceptibilities that could be used to personalize treatment.
    • 104. Puca L, Vlachostergios PJ, Beltran H. Neuroendocrine differentiation in prostate cancer: emerging biology, models, and therapies. Cold Spring Harb. Perspect. Med. 9(2), 30593 (2019).
    • 105. Yang X, Jiang D, Li Y et al. Which way to choose for the treatment of metastatic prostate cancer: a case report and literature review. Front. Oncol. 11, 659442 (2021).
    • 106. Cheng HH, Plets M, Li H et al. Circulating microRNAs and treatment response in the phase II SWOG S0925 study for patients with new metastatic hormone-sensitive prostate cancer. Prostate 78(2), 121–127 (2018).
    • 107. Zedan AH, Hansen TF, Assenholt J, Pleckaitis M, Madsen JS, Osther PJS. microRNA expression in tumour tissue and plasma in patients with newly diagnosed metastatic prostate cancer. Tumour Biol. 40(5), 1010428318775864 (2018).
    • 108. Zedan AH, Hansen TF, Assenholt J, Madsen JS, Osther PJS. Circulating miRNAs in localized/locally advanced prostate cancer patients after radical prostatectomy and radiotherapy. Prostate 79(4), 425–432 (2019).
    • 109. Zedan AH, Osther PJS, Assenholt J, Madsen JS, Hansen TF. Circulating miR-141 and miR-375 are associated with treatment outcome in metastatic castration resistant prostate cancer. Sci. Rep. 10(1), 227 (2020).
    • 110. Someya M, Hori M, Gocho T et al. Prediction of acute gastrointestinal and genitourinary radiation toxicity in prostate cancer patients using lymphocyte microRNA. Jpn J. Clin. Oncol. 48(2), 167–174 (2018). • To date, the only study to assess the performance of miRNA for any treatment-related outcomes, as most studies only address associations.
    • 111. Kopcalic K, Petrovic N, Stanojkovic TP et al. Association between miR-21/146a/155 level changes and acute genitourinary radiotoxicity in prostate cancer patients: a pilot study. Pathol. Res. Pract. 215(4), 626–631 (2019).
    • 112. Wu G, Wang J, Chen G, Zhao X. microRNA-204 modulates chemosensitivity and apoptosis of prostate cancer cells by targeting zinc-finger E-box-binding homeobox 1 (ZEB1). Am. J. Transl. Res. 9(8), 3599–3610 (2017).
    • 113. Kok MG, Halliani A, Moerland PD, Meijers JC, Creemers EE, Pinto-Sietsma SJ. Normalization panels for the reliable quantification of circulating microRNAs by RT-qPCR. FASEB J. 29(9), 3853–3862 (2015).
    • 114. Zedan AH, Blavnsfeldt SG, Hansen TF et al. Heterogeneity of miRNA expression in localized prostate cancer with clinicopathological correlations. PLOS ONE 12(6), e0179113 (2017).
    • 115. Sauerbrei W, Taube SE, Mcshane LM, Cavenagh MM, Altman DG. Reporting recommendations for tumor marker prognostic studies (REMARK): an abridged explanation and elaboration. J. Natl Cancer Inst. 110(8), 803–811 (2018).
    • 116. Lin Y, Qi X, Chen J, Shen B. Multivariate competing endogenous RNA network characterization for cancer microRNA biomarker discovery: a novel bioinformatics model with application to prostate cancer metastasis. Precis. Clin. Med. 5(1), pbac001 (2022).