We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Pathogenic role of 25-hydroxycholesterol in cancer development and progression

    Sura Salman Ejam

    College of Medicine, University of Babylon, Babylon, Iraq

    ,
    Raed Obaid Saleh

    Department of Pharmacy, Al-Maarif University College, Al-Anbar, Iraq

    ,
    Maria Jade Catalan Opulencia

    College of Business Administration, Ajman University, Ajman, United Arab Emirates

    ,
    Mazin AA Najm

    Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq

    ,
    Aziza Makhmudova

    Department of Social Sciences & Humanities, Samarkand State Medical Institute, Samarkand, Uzbekistan

    Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, 100047, Uzbekistan

    ,
    Abduladheem Turki Jalil

    Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq

    ,
    Walid Kamal Abdelbasset

    Department of Health & Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia

    Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt

    ,
    Moaed E Al-Gazally

    College of Medicine, University of Al-Ameed, Karbala, Iraq

    ,
    Ali Thaeer Hammid

    Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq

    ,
    Yasser Fakri Mustafa

    Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq

    ,
    Sergushina Elena Sergeevna

    National Research Ogarev Mordovia State University, 68 Bolshevitskaya Street, Republic of Mordovia, Saransk, 430005, Russia

    ,
    Sajad Karampoor

    *Author for correspondence:

    E-mail Address: sajadkarampour1987@gmail.com

    Gastrointestinal & Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran

    &
    Rasoul Mirzaei

    **Author for correspondence:

    E-mail Address: rasul.micro92@gmail.com

    Venom & Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran

    Published Online:https://doi.org/10.2217/fon-2022-0819

    Cholesterol is an essential lipid that serves several important functions, including maintaining the homeostasis of cells, acting as a precursor to bile acid and steroid hormones and preserving the stability of membrane lipid rafts. 25-hydroxycholesterol (25-HC) is a cholesterol derivative that may be formed from cholesterol. 25-HC is a crucial component in various biological activities, including cholesterol metabolism. In recent years, growing evidence has shown that 25-HC performs a critical function in the etiology of cancer, infectious diseases and autoimmune disorders. This review will summarize the latest findings regarding 25-HC, including its biogenesis, immunomodulatory properties and role in innate/adaptive immunity, inflammation and the development of various types of cancer.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Caveolae and signalling in cancer. Nat. Rev. Cancer 15(4), 225–237 (2015).
    • 2. Mundal L, Sarancic M, Ose L et al. Mortality among patients with familial hypercholesterolemia: a registry-based study in Norway, 1992–2010. J. Am. Heart Assoc. 3(6), e001236 (2014).
    • 3. Jasim SA, Kzar HH, Hamad MH et al. The emerging role of 27-hydroxycholesterol in cancer development and progression: an update. Int. Immunopharmacol. 110, 109074 (2022).
    • 4. Zusman O, Avni T, Leibovici L et al. Systematic review and meta-analysis of in vitro synergy of polymyxins and carbapenems. Antimicrob. Agents Chemother. 57(10), 5104–5111 (2013).
    • 5. Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72, 137–174 (2003).
    • 6. Schroepfer GJ Jr. Oxysterols: modulators of cholesterol metabolism and other processes. Physiol. Rev. 80(1), 361–554 (2000).
    • 7. Cao Q, Liu Z, Xiong Y, Zhong Z, Ye Q. Multiple roles of 25-hydroxycholesterol in lipid metabolism, antivirus process, inflammatory response, and cell survival. Oxid. Med. Cell. Longev. 2020, 8893305 (2020).
    • 8. Lund EG, Kerr TA, Sakai J, Li WP, Russell DW. cDNA cloning of mouse and human cholesterol 25-hydroxylases, polytopic membrane proteins that synthesize a potent oxysterol regulator of lipid metabolism. J. Biol. Chem. 273(51), 34316–34327 (1998).
    • 9. Park K, Scott AL. Cholesterol 25-hydroxylase production by dendritic cells and macrophages is regulated by type I interferons. J. Leukoc. Biol. 88(6), 1081–1087 (2010).
    • 10. Liu Y, Wei Z, Ma X et al. 25-hydroxycholesterol activates the expression of cholesterol 25-hydroxylase in an LXR-dependent mechanism. J. Lipid Res. 59(3), 439–451 (2018).
    • 11. Diczfalusy U. On the formation and possible biological role of 25-hydroxycholesterol. Biochimie 95(3), 455–460 (2013).
    • 12. Honda A, Miyazaki T, Ikegami T et al. Cholesterol 25-hydroxylation activity of CYP3A. J. Lipid Res. 52(8), 1509–1516 (2011).
    • 13. Diczfalusy U, Björkhem I. Still another activity by the highly promiscuous enzyme CYP3A4: 25-hydroxylation of cholesterol. J. Lipid Res. 52(8), 1447–1449 (2011).
    • 14. Bah SY, Dickinson P, Forster T, Kampmann B, Ghazal P. Immune oxysterols: role in mycobacterial infection and inflammation. J. Steroid Biochem. Mol. Biol. 169, 152–163 (2017).
    • 15. Perucha E, Melchiotti R, Bibby JA et al. The cholesterol biosynthesis pathway regulates IL-10 expression in human Th1 cells. Nat. Commun. 10(1), 498 (2019).
    • 16. Bauman DR, Bitmansour AD, McDonald JG, Thompson BM, Liang G, Russell DW. 25-hydroxycholesterol secreted by macrophages in response to Toll-like receptor activation suppresses immunoglobulin A production. Proc. Natl Acad. Sci. USA 106(39), 16764–16769 (2009).
    • 17. McDonald JG, Russell DW. Editorial: 25-hydroxycholesterol: a new life in immunology. J. Leukoc. Biol. 88(6), 1071–1072 (2010).
    • 18. Brown MS, Goldstein JL. Cholesterol feedback: from Schoenheimer's bottle to SCAP's MELADL. J. Lipid Res. 50(Suppl.), S15–S27 (2009).
    • 19. Johnson KA, Morrow CJ, Knight GD, Scallen TJ. In vivo formation of 25-hydroxycholesterol from endogenous cholesterol after a single meal, dietary cholesterol challenge. J. Lipid Res. 35(12), 2241–2253 (1994).
    • 20. Lappano R, Recchia AG, De Francesco EM et al. The cholesterol metabolite 25-hydroxycholesterol activates estrogen receptor α-mediated signaling in cancer cells and in cardiomyocytes. PLOS ONE 6(1), e16631 (2011).
    • 21. Simigdala N, Gao Q, Pancholi S et al. Cholesterol biosynthesis pathway as a novel mechanism of resistance to estrogen deprivation in estrogen receptor-positive breast cancer. Breast Cancer Res. 18(1), 58 (2016).
    • 22. Chen L, Zhang L, Xian G, Lv Y, Lin Y, Wang Y. 25-hydroxycholesterol promotes migration and invasion of lung adenocarcinoma cells. Biochem. Biophys. Res. Commun. 484(4), 857–863 (2017).
    • 23. Eibinger G, Fauler G, Bernhart E et al. On the role of 25-hydroxycholesterol synthesis by glioblastoma cell lines. Implications for chemotactic monocyte recruitment. Exp. Cell Res. 319(12), 1828–1838 (2013).
    • 24. Wang S, Yao Y, Rao C, Zheng G, Chen W. 25-HC decreases the sensitivity of human gastric cancer cells to 5-fluorouracil and promotes cells invasion via the TLR2/NF-κB signaling pathway. Int. J. Oncol. 54(3), 966–980 (2019).
    • 25. Kuzu OF, Noory MA, Robertson GP. The role of cholesterol in cancer. Cancer Res. 76(8), 2063–2070 (2016).
    • 26. King RJ, Singh PK, Mehla K. The cholesterol pathway: impact on immunity and cancer. Trends Immunol. 43(1), 78–92 (2022).
    • 27. Llaverias G, Danilo C, Mercier I et al. Role of cholesterol in the development and progression of breast cancer. Am. J. Pathol. 178(1), 402–412 (2011).
    • 28. Allott EH, Howard LE, Cooperberg MR et al. Serum lipid profile and risk of prostate cancer recurrence: results from the SEARCH database. Cancer Epidemiol. Biomarkers Prev. 23(11), 2349–2356 (2014).
    • 29. Marwarha G, Raza S, Hammer K, Ghribi O. 27-hydroxycholesterol: a novel player in molecular carcinogenesis of breast and prostate cancer. Chem. Phys. Lipids 207(Pt B), 108–126 (2017).
    • 30. Cardwell CR, Hicks BM, Hughes C, Murray LJ. Statin use after colorectal cancer diagnosis and survival: a population-based cohort study. J. Clin. Oncol. 32(28), 3177–3183 (2014).
    • 31. Jacobs EJ, Newton CC, Thun MJ, Gapstur SM. Long-term use of cholesterol-lowering drugs and cancer incidence in a large United States cohort. Cancer Res. 71(5), 1763–1771 (2011).
    • 32. Murtola TJ, Tammela TL, Lahtela J, Auvinen A. Cholesterol-lowering drugs and prostate cancer risk: a population-based case–control study. Cancer Epidemiol. Biomarkers Prev. 16(11), 2226–2232 (2007).
    • 33. Nielsen SF, Nordestgaard BG, Bojesen SE. Statin use and reduced cancer-related mortality. N. Engl. J. Med. 367(19), 1792–1802 (2012).
    • 34. Bjerre LM, LeLorier J. Do statins cause cancer? A meta-analysis of large randomized clinical trials. Am. J. Med. 110(9), 716–723 (2001).
    • 35. Newman TB, Hulley SB. Carcinogenicity of lipid-lowering drugs. JAMA 275(1), 55–60 (1996).
    • 36. Pedersen TR, Wilhelmsen L, Faergeman O et al. Follow-up study of patients randomized in the Scandinavian simvastatin survival study (4S) of cholesterol lowering. Am. J. Cardiol. 86(3), 257–262 (2000).
    • 37. Montero J, Morales A, Llacuna L et al. Mitochondrial cholesterol contributes to chemotherapy resistance in hepatocellular carcinoma. Cancer Res. 68(13), 5246–5256 (2008).
    • 38. Vassilev B, Sihto H, Li S et al. Elevated levels of StAR-related lipid transfer protein 3 alter cholesterol balance and adhesiveness of breast cancer cells: potential mechanisms contributing to progression of HER2-positive breast cancers. Am. J. Pathol. 185(4), 987–1000 (2015).
    • 39. Freed-Pastor WA, Mizuno H, Zhao X et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 148(1–2), 244–258 (2012).
    • 40. Sorrentino G, Ruggeri N, Specchia V et al. Metabolic control of YAP and TAZ by the mevalonate pathway. Nat. Cell Biol. 16(4), 357–366 (2014).
    • 41. Swinnen JV, Brusselmans K, Verhoeven G. Increased lipogenesis in cancer cells: new players, novel targets. Curr. Opin. Clin. Nutr. Metab. Care 9(4), 358–365 (2006).
    • 42. Mirzaei R, Babakhani S, Ajorloo P et al. The emerging role of exosomal miRNAs as a diagnostic and therapeutic biomarker in Mycobacterium tuberculosis infection. Mol. Med. 27(1), 1–31 (2021).
    • 43. Clendening JW, Pandyra A, Boutros PC et al. Dysregulation of the mevalonate pathway promotes transformation. Proc. Natl Acad. Sci. USA 107(34), 15051–15056 (2010).
    • 44. Ginestier C, Monville F, Wicinski J et al. Mevalonate metabolism regulates basal breast cancer stem cells and is a potential therapeutic target. Stem Cells 30(7), 1327–1337 (2012).
    • 45. Li HY, Appelbaum FR, Willman CL, Zager RA, Banker DE. Cholesterol-modulating agents kill acute myeloid leukemia cells and sensitize them to therapeutics by blocking adaptive cholesterol responses. Blood 101(9), 3628–3634 (2003).
    • 46. Mo H, Elson CE. Studies of the isoprenoid-mediated inhibition of mevalonate synthesis applied to cancer chemotherapy and chemoprevention. Exp. Biol. Med. (Maywood) 229(7), 567–585 (2004).
    • 47. Warburg O. On the origin of cancer cells. Science 123(3191), 309–314 (1956).
    • 48. Biswas S, Lunec J, Bartlett K. Non-glucose metabolism in cancer cells – is it all in the fat? Cancer Metastasis Rev. 31(3–4), 689–698 (2012).
    • 49. DuSell CD, McDonnell DP. 27-hydroxycholesterol: a potential endogenous regulator of estrogen receptor signaling. Trends Pharmacol. Sci. 29(10), 510–514 (2008).
    • 50. Umetani M, Domoto H, Gormley AK et al. 27-hydroxycholesterol is an endogenous SERM that inhibits the cardiovascular effects of estrogen. Nat. Med. 13(10), 1185–1192 (2007).
    • 51. Ørsted DD, Bojesen SE. The link between benign prostatic hyperplasia and prostate cancer. Nat. Rev. Urol. 10(1), 49–54 (2013).
    • 52. Crosignani A, Zuin M, Allocca M, Del Puppo M. Oxysterols in bile acid metabolism. Clin. Chim. Acta 412(23–24), 2037–2045 (2011).
    • 53. Cyster JG, Dang EV, Reboldi A, Yi T. 25-hydroxycholesterols in innate and adaptive immunity. Nat. Rev. Immunol. 14(11), 731–743 (2014).
    • 54. Mutemberezi V, Guillemot-Legris O, Muccioli GG. Oxysterols: from cholesterol metabolites to key mediators. Prog. Lipid Res. 64, 152–169 (2016).
    • 55. Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72(1), 137–174 (2003).
    • 56. Ma L, Nelson ER. Oxysterols and nuclear receptors. Mol. Cell. Endocrinol. 484, 42–51 (2019).
    • 57. Janowski BA, Grogan MJ, Jones SA et al. Structural requirements of ligands for the oxysterol liver X receptors LXRα and LXRβ. Proc. Natl Acad. Sci. USA 96(1), 266–271 (1999).
    • 58. Liu Y, Wei Z, Zhang Y et al. Activation of liver X receptor plays a central role in antiviral actions of 25-hydroxycholesterol. J. Lipid Res. 59(12), 2287–2296 (2018).
    • 59. Hannedouche S, Zhang J, Yi T et al. Oxysterols direct immune cell migration via EBI2. Nature 475(7357), 524–527 (2011).
    • 60. Liu C, Yang XV, Wu J et al. Oxysterols direct B-cell migration through EBI2. Nature 475(7357), 519–523 (2011).
    • 61. Endo-Umeda K, Makishima M. Liver X receptors regulate cholesterol metabolism and immunity in hepatic nonparenchymal cells. Int. J. Mol. Sci. 20(20), 5045 (2019).
    • 62. Leussink S, Aranda-Pardos I, Noelia A. Lipid metabolism as a mechanism of immunomodulation in macrophages: the role of liver X receptors. Curr. Opin. Pharmacol. 53, 18–26 (2020).
    • 63. Dzhagalov I, Zhang N, He YW. The roles of orphan nuclear receptors in the development and function of the immune system. Cell. Mol. Immunol. 1(6), 401–407 (2004).
    • 64. Zhao L, Zhou S, Gustafsson J-Å. Nuclear receptors: recent drug discovery for cancer therapies. Endocr. Rev. 40(5), 1207–1249 (2019).
    • 65. Kumar N, Solt LA, Conkright JJ et al. The benzenesulfoamide T0901317 [N-(2,2,2-trifluoroethyl)-N-[4-[2,2,2-trifluoro-1-hydroxy-1-(trifluoromethyl)ethyl]phenyl]-benzenesulfonamide] is a novel retinoic acid receptor-related orphan receptor-α/γ inverse agonist. Mol. Pharmacol. 77(2), 228–236 (2010).
    • 66. Jin L, Martynowski D, Zheng S, Wada T, Xie W, Li Y. Structural basis for hydroxycholesterols as natural ligands of orphan nuclear receptor RORγ. Mol. Endocrinol. 24(5), 923–929 (2010).
    • 67. Soroosh P, Wu J, Xue X et al. Oxysterols are agonist ligands of RORγt and drive Th17 cell differentiation. Proc. Natl Acad. Sci. USA 111(33), 12163–12168 (2014).
    • 68. Daugvilaite V, Arfelt KN, Benned-Jensen T, Sailer AW, Rosenkilde MM. Oxysterol-EBI2 signaling in immune regulation and viral infection. Eur. J. Immunol. 44(7), 1904–1912 (2014).
    • 69. Holthuis JC, Menon AK. Lipid landscapes and pipelines in membrane homeostasis. Nature 510(7503), 48–57 (2014).
    • 70. Wilkins C, Gale M Jr. Sterol-izing innate immunity. Immunity 38(1), 3–5 (2013).
    • 71. Mirzaei R, Zamani F, Hajibaba M et al. The pathogenic, therapeutic and diagnostic role of exosomal microrna in the autoimmune diseases. J. Neuroimmunol. 358, 577640 (2021).
    • 72. Brown MS, Goldstein JL. Suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and inhibition of growth of human fibroblasts by 7-ketocholesterol. J. Biol. Chem. 249(22), 7306–7314 (1974).
    • 73. Kandutsch AA, Chen HW. Inhibition of sterol synthesis in cultured mouse cells by cholesterol derivatives oxygenated in the side chain. J. Biol. Chem. 249(19), 6057–6061 (1974).
    • 74. Björkhem I. Are side-chain oxidized oxysterols regulators also in vivo? J. Lipid Res. 50, S213–S218 (2009).
    • 75. Diczfalusy U, Olofsson KE, Carlsson AM et al. Marked upregulation of cholesterol 25-hydroxylase expression by lipopolysaccharide. J. Lipid Res. 50(11), 2258–2264 (2009).
    • 76. Zhao J, Chen J, Li M, Chen M, Sun C. Multifaceted functions of CH25H and 25HC to modulate the lipid metabolism, immune responses, and broadly antiviral activities. Viruses 12(7), 727 (2020).
    • 77. Reboldi A, Dang EV, McDonald JG, Liang G, Russell DW, Cyster JG. Inflammation. 25-hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type I interferon. Science 345(6197), 679–684 (2014).
    • 78. Joseph SB, Bradley MN, Castrillo A et al. LXR-dependent gene expression is important for macrophage survival and the innate immune response. Cell 119(2), 299–309 (2004).
    • 79. Korf H, Vander Beken S, Romano M et al. Liver X receptors contribute to the protective immune response against Mycobacterium tuberculosis in mice. J. Clin. Invest. 119(6), 1626–1637 (2009).
    • 80. A-Gonzalez N, Bensinger SJ, Hong C et al. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31(2), 245–258 (2009).
    • 81. Li C, Deng YQ, Wang S et al. 25-hydroxycholesterol protects host against Zika virus infection and its associated microcephaly in a mouse model. Immunity 46(3), 446–456 (2017).
    • 82. Dang EV, McDonald JG, Russell DW, Cyster JG. Oxysterol restraint of cholesterol synthesis prevents AIM2 inflammasome activation. Cell 171(5), 1057–1071.e11 (2017).
    • 83. Jang J, Park S, Hur HJ et al. 25-hydroxycholesterol contributes to cerebral inflammation of X-linked adrenoleukodystrophy through activation of the NLRP3 inflammasome. Nat. Commun. 7(1), 1–11 (2016). •• Found that 25-HC promoted robust NLRP3 inflammasome assembly and activation via potassium efflux-, mitochondrial reactive oxygen species (ROS)- and liver X receptor (LXR)-mediated pathways.
    • 84. Preuss I, Ludwig MG, Baumgarten B et al. Transcriptional regulation and functional characterization of the oxysterol/EBI2 system in primary human macrophages. Biochem. Biophys. Res. Commun. 446(3), 663–668 (2014).
    • 85. Chalmin F, Rochemont V, Lippens C et al. Oxysterols regulate encephalitogenic CD4(+) T cell trafficking during central nervous system autoimmunity. J. Autoimmun. 56, 45–55 (2015).
    • 86. Forwell AL, Bernales CQ, Ross JP et al. Analysis of CH25H in multiple sclerosis and neuromyelitis optica. J. Neuroimmunol. 291, 70–72 (2016).
    • 87. Doms A, Sanabria T, Hansen JN, Altan-Bonnet N, Holm GH. 25-hydroxycholesterol production by the cholesterol-25-hydroxylase interferon-stimulated gene restricts mammalian reovirus infection. J. Virol. 92(18), e01047-18 (2018).
    • 88. Shrivastava-Ranjan P, Bergeron É. 25-hydroxycholesterol inhibition of Lassa virus infection through aberrant GP1 glycosylation. mBio 7(6), e01808-16 (2016).
    • 89. Wang J, Zeng L, Zhang L et al. Cholesterol 25-hydroxylase acts as a host restriction factor on pseudorabies virus replication. J. Gen. Virol. 98(6), 1467–1476 (2017).
    • 90. Liu SY, Aliyari R, Chikere K et al. Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol. Immunity 38(1), 92–105 (2013).
    • 91. Ke W, Fang L, Jing H et al. Cholesterol 25-hydroxylase inhibits porcine reproductive and respiratory syndrome virus replication through enzyme activity-dependent and -independent mechanisms. J. Virol. 91(19), (2017).
    • 92. Song Z, Zhang Q, Liu X et al. Cholesterol 25-hydroxylase is an interferon-inducible factor that protects against porcine reproductive and respiratory syndrome virus infection. Vet. Microbiol. 210, 153–161 (2017).
    • 93. Karampoor S, Zahednasab H, Farahmand M et al. A possible pathogenic role of syndecan-1 in the pathogenesis of coronavirus disease 2019 (COVID-19). Int. Immunopharmacol. 97, 107684 (2021).
    • 94. Blanc M, Hsieh WY, Robertson KA et al. The transcription factor STAT-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response. Immunity 38(1), 106–118 (2013).
    • 95. Rasoul M, Rokhsareh M, Mohammad SM, Sajad K, Ahmadreza M. The human immune system against Staphylococcus epidermidis. Crit. Rev. Immunol. 39(3), (2019).
    • 96. Pereira JP, Kelly LM, Cyster JG. Finding the right niche: B-cell migration in the early phases of T-dependent antibody responses. Int. Immunol. 22(6), 413–419 (2010).
    • 97. Emgård J, Kammoun H, García-Cassani B et al. Oxysterol sensing through the receptor GPR183 promotes the lymphoid-tissue-inducing function of innate lymphoid cells and colonic inflammation. Immunity 48(1), 120–132.e8 (2018).
    • 98. Schüle R, Siddique T, Deng HX et al. Marked accumulation of 27-hydroxycholesterol in SPG5 patients with hereditary spastic paresis. J. Lipid Res. 51(4), 819–823 (2010).
    • 99. Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13(6), 397–411 (2013).
    • 100. Wu T, Ma F, Ma X et al. Regulating innate and adaptive immunity for controlling SIV infection by 25-hydroxycholesterol. Front. Immunol. 9, 2686 (2018).
    • 101. Smith LL. Cholesterol autoxidation 1981–1986. Chem. Phys. Lipids 44(2–4), 87–125 (1987).
    • 102. Malvitte L, Montange T, Joffre C et al. Analogies entre processus athéromateux et dégénérescence maculaire liée à l'âge: rôles présumés des oxystérols. J. Fr. Ophtalmol. 29(5), 570–578 (2006).
    • 103. Rodríguez IR, Larrayoz IM. Cholesterol oxidation in the retina: implications of 7KCh formation in chronic inflammation and age-related macular degeneration. J. Lipid Res. 51(10), 2847–2862 (2010).
    • 104. Dugas B, Charbonnier S, Baarine M et al. Effects of oxysterols on cell viability, inflammatory cytokines, VEGF, and reactive oxygen species production on human retinal cells: cytoprotective effects and prevention of VEGF secretion by resveratrol. Eur. J. Nutr. 49(7), 435–446 (2010).
    • 105. Lemaire-Ewing S, Prunet C, Montange T et al. Comparison of the cytotoxic, pro-oxidant and pro-inflammatory characteristics of different oxysterols. Cell Biol. Toxicol. 21(2), 97–114 (2005).
    • 106. Rydberg EK, Salomonsson L, Hultén LM et al. Hypoxia increases 25-hydroxycholesterol-induced interleukin-8 protein secretion in human macrophages. Atherosclerosis 170(2), 245–252 (2003).
    • 107. Prunet C, Montange T, Véjux A et al. Multiplexed flow cytometric analyses of pro- and anti-inflammatory cytokines in the culture media of oxysterol-treated human monocytic cells and in the sera of atherosclerotic patients. Cytometry A 69(5), 359–373 (2006).
    • 108. Yoon JH, Canbay AE, Werneburg NW, Lee SP, Gores GJ. Oxysterols induce cyclooxygenase-2 expression in cholangiocytes: implications for biliary tract carcinogenesis. Hepatology 39(3), 732–738 (2004).
    • 109. Yoshida T, Klinkspoor JH, Kuver R et al. Effects of bile salts on cholestan-3β,5α,6β-triol-induced apoptosis in dog gallbladder epithelial cells. Biochim. Biophys. Acta 1530(2–3), 199–208 (2001).
    • 110. Edwards PA, Kennedy MA, Mak PA. LXRs; oxysterol-activated nuclear receptors that regulate genes controlling lipid homeostasis. Vascul. Pharmacol. 38(4), 249–256 (2002).
    • 111. Vejux A, Malvitte L, Lizard G. Side effects of oxysterols: cytotoxicity, oxidation, inflammation, and phospholipidosis. Braz. J. Med. Biol. Res. 41(7), 545–556 (2008).
    • 112. Englund MC, Karlsson AL, Wiklund O, Bondjers G, Ohlsson BG. 25-hydroxycholesterol induces lipopolysaccharide-tolerance and decreases a lipopolysaccharide-induced TNF-alpha secretion in macrophages. Atherosclerosis 158(1), 61–71 (2001).
    • 113. Nelson ER, Wardell SE, Jasper JS et al. 27-hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science 342(6162), 1094–1098 (2013).
    • 114. Prunet C, Petit JM, Ecarnot-Laubriet A et al. High circulating levels of 7beta- and 7alpha-hydroxycholesterol and presence of apoptotic and oxidative markers in arterial lesions of normocholesterolemic atherosclerotic patients undergoing endarterectomy. Pathol. Biol. (Paris) 54(1), 22–32 (2006).
    • 115. Kloudova A, Guengerich FP, Soucek P. The role of oxysterols in human cancer. Trends Endocrinol. Metab. 28(7), 485–496 (2017).
    • 116. Dalenc F, Iuliano L, Filleron T et al. Circulating oxysterol metabolites as potential new surrogate markers in patients with hormone receptor-positive breast cancer: results of the OXYTAM study. J. Steroid Biochem. Mol. Biol. 169, 210–218 (2017).
    • 117. Ortiz A, Gui J, Zahedi F et al. An interferon-driven oxysterol-based defense against tumor-derived extracellular vesicles. Cancer Cell 35(1), 33–45.e6 (2019). • Found the importance of CH25H in defense against education of normal cells by tumor-derived extracellular vesicles (TEVs) and argue for the use of reserpine in adjuvant melanoma therapy.
    • 118. You JS, Lim H, Kim TH et al. 25-hydroxycholesterol induces death receptor-mediated extrinsic and mitochondria-dependent intrinsic apoptosis in head and neck squamous cell carcinoma cells. Anticancer Res. 40(2), 779–788 (2020).
    • 119. Wang S, Yao Y, Rao C, Zheng G, Chen W. 25-HC decreases the sensitivity of human gastric cancer cells to 5-fluorouracil and promotes cells invasion via the TLR2/NF-κB signaling pathway. Int. J. Oncol. 54(3), 966–980 (2019).
    • 120. Wang S, Fei R, Xu X et al. 25-hydroxycholesterol regulates migration, invasion and EMT of colorectal cancer through miR-92a-3p/ACAA1/NF-κB pathway (2021).
    • 121. Tanaka AR, Noguchi K, Fukazawa H, Igarashi Y, Arai H, Uehara Y. p38MAPK and Rho-dependent kinase are involved in anoikis induced by anicequol or 25-hydroxycholesterol in DLD-1 colon cancer cells. Biochem. Biophys. Res. Commun. 430(4), 1240–1245 (2013). •• Found that p38MAPK is involved in anicequol- and 25-HC-induced anoikis in DLD-1 cells and that activation of p38MAPK and ROCK pathways might provide a new therapeutic strategy against cancer and also raised the possibility that tumor metastasis is influenced by 25-HC under physiological conditions.
    • 122. Hitsuda A, Dan R, Urakawa A et al. 25-hydroxycholesterol-induced cell death via activation of ROCK/LIMK/cofilin axis in colorectal cancer cell spheroids. J. Steroid Biochem. Mol. Biol. 216, 106037 (2022).
    • 123. Kakimoto M, Yamamoto H, Tanaka AR. Spermine synthesis inhibitor blocks 25-hydroxycholesterol-induced-apoptosis via SREBP2 upregulation in DLD-1 cell spheroids. Biochem. Biophys. Rep. 22, 100754 (2020).
    • 124. Wang C, He H, Fang W. Oncogenic roles of the cholesterol metabolite 25-hydroxycholesterol in bladder cancer. Oncol. Lett. 19(6), 3671–3676 (2020).
    • 125. Eibinger G, Fauler G, Bernhart E et al. On the role of 25-hydroxycholesterol synthesis by glioblastoma cell lines. Implications for chemotactic monocyte recruitment. Exp. Cell Res. 319(12), 1828–1838 (2013).
    • 126. You JS, Lim H, Kim TH et al. 25-hydroxycholesterol induces death receptor-mediated extrinsic and mitochondria-dependent intrinsic apoptosis in head and neck squamous cell carcinoma cells. Anticancer Res. 40(2), 779–788 (2020).
    • 127. Villablanca EJ, Raccosta L, Zhou D et al. Tumor-mediated liver X receptor-α activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses. Nat. Med. 16(1), 98–105 (2010).
    • 128. Segala G, de Medina P, Iuliano L et al. 5,6-epoxy-cholesterols contribute to the anticancer pharmacology of tamoxifen in breast cancer cells. Biochem. Pharmacol. 86(1), 175–189 (2013).
    • 129. Poirot M, Silvente-Poirot S, Weichselbaum RR. Cholesterol metabolism and resistance to tamoxifen. Curr. Opin. Pharmacol. 12(6), 683–689 (2012).
    • 130. Silvente-Poirot S, Poirot M. Cholesterol epoxide hydrolase and cancer. Curr. Opin. Pharmacol. 12(6), 696–703 (2012).
    • 131. Poirot M, Silvente-Poirot S. Cholesterol-5,6-epoxides: chemistry, biochemistry, metabolic fate and cancer. Biochimie 95(3), 622–631 (2013).
    • 132. Lappano R, Recchia AG, De Francesco EM et al. The cholesterol metabolite 25-hydroxycholesterol activates estrogen receptor α-mediated signaling in cancer cells and in cardiomyocytes. PLOS ONE 6(1), e16631 (2011). •• Showed that estrogen action exerted by 25-hydroxycholesterol (25-HC) can be considered an additional factor involved in the progression of breast and ovarian tumors and that the estrogen-like activity of 25-HC elicited in the cardiovascular system can play a role in hypoxic environments.
    • 133. Dzeletovic S, Breuer O, Lund E, Diczfalusy U. Determination of cholesterol oxidation products in human plasma by isotope dilution–mass spectrometry. Anal. Biochem. 225(1), 73–80 (1995).
    • 134. Sharma I, Dhaliwal LK, Saha SC, Sangwan S, Dhawan V. Role of 8-iso-prostaglandin F2alpha and 25-hydroxycholesterol in the pathophysiology of endometriosis. Fertil. Steril. 94(1), 63–70 (2010).
    • 135. Chen JJ, Lukyanenko Y, Hutson JC. 25-hydroxycholesterol is produced by testicular macrophages during the early postnatal period and influences differentiation of Leydig cells in vitro. Biol. Reprod. 66(5), 1336–1341 (2002).
    • 136. Hanley K, Ng DC, He SS et al. Oxysterols induce differentiation in human keratinocytes and increase Ap-1-dependent involucrin transcription. J. Invest. Dermatol. 114(3), 545–553 (2000).
    • 137. Yokoyama S, Nozawa F, Mugita N, Ogawa M. Suppression of rat liver tumorigenesis by 25-hydroxycholesterol and all-trans retinoic acid: differentiation therapy for hepatocellular carcinoma. Int. J. Oncol. 15(3), 565–569 (1999).
    • 138. Ma Y, Xu L, Rodriguez-Agudo D et al. 25-hydroxycholesterol-3-sulfate regulates macrophage lipid metabolism via the LXR/SREBP-1 signaling pathway. Am. J. Physiol. Endocrinol. Metab. 295(6), e1369–e1379 (2008).
    • 139. Flötotto T, Djahansouzi S, Gläser M et al. Hormones and hormone antagonists: mechanisms of action in carcinogenesis of endometrial and breast cancer. Horm. Metab. Res. 33(8), 451–457 (2001).
    • 140. O'Donnell AJ, Macleod KG, Burns DJ, Smyth JF, Langdon SP. Estrogen receptor-alpha mediates gene expression changes and growth response in ovarian cancer cells exposed to estrogen. Endocr. Relat. Cancer 12(4), 851–866 (2005).
    • 141. Simigdala N, Gao Q, Pancholi S et al. Cholesterol biosynthesis pathway as a novel mechanism of resistance to estrogen deprivation in estrogen receptor-positive breast cancer. Breast Cancer Res. 18(1), 58 (2016).
    • 142. Mittempergher L, Saghatchian M, Wolf DM et al. A gene signature for late distant metastasis in breast cancer identifies a potential mechanism of late recurrences. Mol. Oncol. 7(5), 987–999 (2013).
    • 143. Madenspacher JH, Morrell ED, Gowdy KM et al. Cholesterol 25-hydroxylase promotes efferocytosis and resolution of lung inflammation. JCI Insight 5(11), e137189 (2020).
    • 144. Sugiura H, Koarai A, Ichikawa T et al. Increased 25-hydroxycholesterol concentrations in the lungs of patients with chronic obstructive pulmonary disease. Respirology 17(3), 533–540 (2012).
    • 145. Hosseinpour F, Wikvall K. Porcine microsomal vitamin D3 25-hydroxylase (CYP2D25): catalytic properties, tissue distribution, and comparison with human CYP2D6. J. Biol. Chem. 275(44), 34650–34655 (2000).
    • 146. Blanc M, Hsieh WY, Robertson KA et al. The transcription factor STAT-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response. Immunity 38(1), 106–118 (2013).
    • 147. Adams CM, Reitz J, De Brabander JK et al. Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanisms, both involving SCAP and INSIGs. J. Biol. Chem. 279(50), 52772–52780 (2004).
    • 148. Gold ES, Diercks AH, Podolsky I et al. 25-hydroxycholesterol acts as an amplifier of inflammatory signaling. Proc. Natl Acad. Sci. USA 111(29), 10666–10671 (2014).
    • 149. Pereira JP, Kelly LM, Cyster JG. Finding the right niche: B-cell migration in the early phases of T-dependent antibody responses. Int. Immunol. 22(6), 413–419 (2010).
    • 150. Yi T, Wang X, Kelly LM et al. Oxysterol gradient generation by lymphoid stromal cells guides activated B cell movement during humoral responses. Immunity 37(3), 535–548 (2012).
    • 151. Ecker J, Liebisch G, Englmaier M, Grandl M, Robenek H, Schmitz G. Induction of fatty acid synthesis is a key requirement for phagocytic differentiation of human monocytes. Proc. Natl Acad. Sci. USA 107(17), 7817–7822 (2010).
    • 152. Ichikawa T, Sugiura H, Koarai A et al. 25-hydroxycholesterol promotes fibroblast-mediated tissue remodeling through NF-κB dependent pathway. Exp. Cell Res. 319(8), 1176–1186 (2013).
    • 153. Rosklint T, Ohlsson B, Wiklund O, Noren K, Hulten L. Oxysterols induce interleukin-1β production in human macrophages. Eur. J. Clin. Invest. 32(1), 35–42 (2002).
    • 154. Fu H, Spieler F, Großmann J et al. Interleukin-1 potently contributes to 25-hydroxycholesterol-induced synergistic cytokine production in smooth muscle cell–monocyte interactions. Atherosclerosis 237(2), 443–452 (2014).
    • 155. Reboldi A, Dang EV, McDonald JG, Liang G, Russell DW, Cyster JG. 25-hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type I interferon. Science 345(6197), 679–684 (2014).
    • 156. Nelson ER, Wardell SE, Jasper JS et al. 27-hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science 342(6162), 1094–1098 (2013).
    • 157. Pencheva N, Buss CG, Posada J, Merghoub T, Tavazoie SF. Broad-spectrum therapeutic suppression of metastatic melanoma through nuclear hormone receptor activation. Cell 156(5), 986–1001 (2014).
    • 158. Gao C, Zhuang J, Zhou C et al. Prognostic value of aberrantly expressed methylation gene profiles in lung squamous cell carcinoma: a study based on The Cancer Genome Atlas. J. Cell. Physiol. 234(5), 6519–6528 (2019).
    • 159. Hardy MP, Zirkin BR, Ewing LL. Kinetic studies on the development of the adult population of Leydig cells in testes of the pubertal rat. Endocrinology 124(2), 762–770 (1989).
    • 160. Ariyaratne HB, Mendis-Handagama SC. Changes in the testis interstitium of Sprague Dawley rats from birth to sexual maturity. Biol. Reprod. 62(3), 680–690 (2000).
    • 161. Hutson JC. Development of cytoplasmic digitations between Leydig cells and testicular macrophages of the rat. Cell Tissue Res. 267(2), 385–389 (1992).
    • 162. Yee JB, Hutson JC. Effects of testicular macrophage-conditioned medium on Leydig cells in culture. Endocrinology 116(6), 2682–2684 (1985).
    • 163. Lukyanenko YO, Carpenter AM, Brigham DE, Stocco DM, Hutson JC. Regulation of Leydig cells through a steroidogenic acute regulatory protein-independent pathway by a lipophilic factor from macrophages. J. Endocrinol. 158(2), 267–275 (1998).
    • 164. Hutson JC, Garner CW, Doris PA. Purification and characterization of a lipophilic factor from testicular macrophages that stimulates testosterone production by Leydig cells. J. Androl. 17(5), 502–508 (1996).
    • 165. Nes WD, Lukyanenko YO, Jia ZH et al. Identification of the lipophilic factor produced by macrophages that stimulates steroidogenesis. Endocrinology 141(3), 953–958 (2000).
    • 166. Bergh A, Damber JE, van Rooijen N. Liposome-mediated macrophage depletion: an experimental approach to study the role of testicular macrophages in the rat. J. Endocrinol. 136(3), 407–413 (1993).
    • 167. Cohen PE, Hardy MP, Pollard JW. Colony-stimulating factor-1 plays a major role in the development of reproductive function in male mice. Mol. Endocrinol. 11(11), 1636–1650 (1997).
    • 168. Lukyanenko YO, Carpenter AM, Boone MM, Baker CR, McGunegle DE, Hutson JC. Specificity of a new lipid mediator produced by testicular and peritoneal macrophages on steroidogenesis. Int. J. Androl. 23(5), 258–265 (2000).
    • 169. Lukyanenko Y, Chen JJ, Hutson JC. Testosterone regulates 25-hydroxycholesterol production in testicular macrophages. Biol. Reprod. 67(5), 1435–1438 (2002).
    • 170. Mirzaei R, Afaghi A, Babakhani S et al. Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomed. Pharmacother. 139, 111619 (2021).
    • 171. Mirzaei R, Mirzaei H, Alikhani MY et al. Bacterial biofilm in colorectal cancer: what is the real mechanism of action? Microb. Pathog. 142, 104052 (2020).
    • 172. Zeljkovic A, Vekic J, Mihajlovic M et al. Revealing the role of high-density lipoprotein in colorectal cancer. Int. J. Mol. Sci. 22(7), 3352 (2021).
    • 173. Jusakul A, Yongvanit P, Loilome W, Namwat N, Kuver R. Mechanisms of oxysterol-induced carcinogenesis. Lipids Health Dis. 10(1), 44 (2011).
    • 174. Leonarduzzi G, Scavazza A, Biasi F et al. The lipid peroxidation end product 4-hydroxy-2,3-nonenal up-regulates transforming growth factor beta1 expression in the macrophage lineage: a link between oxidative injury and fibrosclerosis. FASEB J. 11(11), 851–857 (1997).
    • 175. Biasi F, Tessitore L, Zanetti D et al. Associated changes of lipid peroxidation and transforming growth factor beta1 levels in human colon cancer during tumour progression. Gut 50(3), 361–367 (2002).
    • 176. Kitahara CM, de González AB, Freedman ND et al. Total cholesterol and cancer risk in a large prospective study in Korea. J. Clin. Oncol. 29(12), 1592–1598 (2011).
    • 177. Rodriguez-Broadbent H, Law PJ. Mendelian randomisation implicates hyperlipidaemia as a risk factor for colorectal cancer. Int. J. Cancer 140(12), 2701–2708 (2017).
    • 178. Ito H, Matsuo K, Hosono S et al. Association between CYP7A1 and the risk of proximal colon cancer in Japanese. Int. J. Mol. Epidemiol. Genet. 1(1), 35–46 (2010).
    • 179. Hagiwara T, Kono S, Yin G et al. Genetic polymorphism in cytochrome P450 7A1 and risk of colorectal cancer: the Fukuoka Colorectal Cancer Study. Cancer Res. 65(7), 2979–2982 (2005).
    • 180. Aune D, Chan DS, Lau R et al. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose–response meta-analysis of prospective studies. BMJ 343, d6617 (2011).
    • 181. Zhu Y, Soroka D, Sang S. Oxyphytosterols as active ingredients in wheat bran suppress human colon cancer cell growth: identification, chemical synthesis, and biological evaluation. J. Agric. Food Chem. 63(8), 2264–2276 (2015).
    • 182. Biasi F, Mascia C, Astegiano M et al. Pro-oxidant and proapoptotic effects of cholesterol oxidation products on human colonic epithelial cells: a potential mechanism of inflammatory bowel disease progression. Free Radic. Biol. Med. 47(12), 1731–1741 (2009).
    • 183. Warns J, Marwarha G, Freking N, Ghribi O. 27-hydroxycholesterol decreases cell proliferation in colon cancer cell lines. Biochimie 153, 171–180 (2018).
    • 184. Biasi F, Chiarpotto E, Sottero B et al. Evidence of cell damage induced by major components of a diet-compatible mixture of oxysterols in human colon cancer Caco-2 cell line. Biochimie 95(3), 632–640 (2013).
    • 185. Roussi S, Winter A, Gosse F et al. Different apoptotic mechanisms are involved in the antiproliferative effects of 7beta-hydroxysitosterol and 7beta-hydroxycholesterol in human colon cancer cells. Cell Death Differ. 12(2), 128–135 (2005).
    • 186. Maier G, Bing G, Falken U, Wagner E, Unger C. Antitumor activity and induction of apoptosis by water-soluble derivatives of 7 beta-hydroxycholesterol in human colon carcinoma cell lines. Anticancer Res. 19(5B), 4251–4256 (1999).
    • 187. Chalubinski M, Wojdan K, Gorzelak P, Borowiec M, Broncel M. The effect of oxidized cholesterol on barrier functions and IL-10 mRNA expression in human intestinal epithelium co-cultured with dendritic cells in the transwell system. Food Chem. Toxicol. 69, 289–293 (2014).
    • 188. Lee WH, Lee CS, Kwon K et al. 7-ketocholesterol induces endoplasmic reticulum stress in HT-29 cells. Z. Naturforsch. C J. Biosci. 64(3–4), 307–310 (2009).
    • 189. Alemany L, Laparra JM, Barberá R, Alegría A. Evaluation of the cytotoxic effect of 7keto-stigmasterol and 7keto-cholesterol in human intestinal (Caco-2) cells. Food Chem. Toxicol. 50(9), 3106–3113 (2012).
    • 190. Vedin LL, Gustafsson J, Steffensen KR. The oxysterol receptors LXRα and LXRβ suppress proliferation in the colon. Mol. Carcinog. 52(11), 835–844 (2013).
    • 191. Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nat. Rev. Immunol. 18(5), 309–324 (2018).
    • 192. Englund MC, Karlsson ALK, Wiklund O, Bondjers G, Ohlsson BG. 25-hydroxycholesterol induces lipopolysaccharide-tolerance and decreases a lipopolysaccharide-induced TNF-α secretion in macrophages. Atherosclerosis 158(1), 61–71 (2001).
    • 193. Wong MY, Lewis M, Doherty J et al. 25-Hydroxycholesterol amplifies microglial IL-1beta production in an APOE isoform-dependent manner. Alzheimers Dement. 16, e043097 (2020).
    • 194. Russo L, Muir L, Geletka L et al. Cholesterol 25-hydroxylase (CH25H) as a promoter of adipose tissue inflammation in obesity and diabetes. Mol. Metab. 39, 100983 (2020). • Found a critical role for CH25H/25-HC in the progression of meta-inflammation and insulin resistance in obese humans and mouse models of obesity.
    • 195. Derangère V, Chevriaux A, Courtaut F et al. Liver X receptor β activation induces pyroptosis of human and murine colon cancer cells. Cell Death Differ. 21(12), 1914–1924 (2014). • Demonstrated that LXR-β, through pannexin 1 interaction, can specifically induce caspase-1-dependent colon cancer cell death by pyroptosis.
    • 196. Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. Biochim. Biophys. Acta 1833(12), 3481–3498 (2013).
    • 197. Brown MS, Radhakrishnan A, Goldstein JL. Retrospective on cholesterol homeostasis: the central role of SCAP. Annu. Rev. Biochem. 87, 783–807 (2018).
    • 198. Lembo D, Cagno V, Civra A, Poli G. Oxysterols: an emerging class of broad spectrum antiviral effectors. Mol. Aspects Med. 49, 23–30 (2016).
    • 199. Shimano H, Sato R. SREBP-regulated lipid metabolism: convergent physiology-divergent pathophysiology. Nat. Rev. Endocrinol. 13(12), 710–730 (2017).
    • 200. Cheng X, Li J, Guo D. SCAP/SREBPs are central players in lipid metabolism and novel metabolic targets in cancer therapy. Curr. Top. Med. Chem. 18(6), 484–493 (2018).
    • 201. Oguro H. The roles of cholesterol and its metabolites in normal and malignant hematopoiesis. Front. Endocrinol. (Lausanne) 10, 204 (2019).
    • 202. Ikonen E. Cellular cholesterol trafficking and compartmentalization. Nat. Rev. Mol. Cell Biol. 9(2), 125–138 (2008).
    • 203. Zou T, Garifulin O, Berland R, Boyartchuk VL. Listeria monocytogenes infection induces prosurvival metabolic signaling in macrophages. Infect. Immun. 79(4), 1526–1535 (2011).
    • 204. Liu SY, Aliyari R, Chikere K et al. Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol. Immunity 38(1), 92–105 (2013).
    • 205. Gold ES, Ramsey SA, Sartain MJ et al. ATF3 protects against atherosclerosis by suppressing 25-hydroxycholesterol-induced lipid body formation. J. Exp. Med. 209(4), 807–817 (2012).
    • 206. Gatto D, Paus D, Basten A, Mackay CR, Brink R. Guidance of B cells by the orphan G protein-coupled receptor EBI2 shapes humoral immune responses. Immunity 31(2), 259–269 (2009).
    • 207. Pereira JP, Kelly LM, Xu Y, Cyster JG. EBI2 mediates B cell segregation between the outer and centre follicle. Nature 460(7259), 1122–1126 (2009).
    • 208. Gatto D, Wood K, Caminschi I et al. The chemotactic receptor EBI2 regulates the homeostasis, localization and immunological function of splenic dendritic cells. Nat. Immunol. 14(5), 446–453 (2013).
    • 209. Li J, Lu E, Yi T, Cyster JG. EBI2 augments Tfh cell fate by promoting interaction with IL-2-quenching dendritic cells. Nature 533(7601), 110–114 (2016).
    • 210. Nevius E, Pinho F, Dhodapkar M et al. Oxysterols and EBI2 promote osteoclast precursor migration to bone surfaces and regulate bone mass homeostasis. J. Exp. Med. 212(11), 1931–1946 (2015).
    • 211. Bennett JM, Catovsky D, Daniel MT et al. Proposals for the classification of the myelodysplastic syndromes. Br. J. Haematol. 51(2), 189–199 (1982).
    • 212. Tsujioka T, Yokoi A, Itano Y et al. Five-aza-2′-deoxycytidine-induced hypomethylation of cholesterol 25-hydroxylase gene is responsible for cell death of myelodysplasia/leukemia cells. Sci. Rep. 5, 16709 (2015). •• Raises the possibility that DNA methyltransferase (DNMT) inhibitors activate the CH25H–oxysterol pathway via their hypomethylating mechanism and induce leukemia cell death.
    • 213. Cazzola M, Malcovati L. Myelodysplastic syndromes – coping with ineffective hematopoiesis. N. Engl. J. Med. 352(6), 536–538 (2005).
    • 214. Issa JP, Kantarjian HM. Targeting DNA methylation. Clin. Cancer Res. 15(12), 3938–3946 (2009).
    • 215. Quintás-Cardama A, Santos FP, Garcia-Manero G. Therapy with azanucleosides for myelodysplastic syndromes. Nat. Rev. Clin. Oncol. 7(8), 433–444 (2010).
    • 216. Silverman LR, Demakos EP, Peterson BL et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J. Clin. Oncol. 20(10), 2429–2440 (2002).
    • 217. Kornblith AB, Herndon JE 2nd, Silverman LR et al. Impact of azacytidine on the quality of life of patients with myelodysplastic syndrome treated in a randomized phase III trial: a cancer and leukemia group B study. J. Clin. Oncol. 20(10), 2441–2452 (2002).
    • 218. Kantarjian H, Issa JP, Rosenfeld CS et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 106(8), 1794–1803 (2006).
    • 219. Lübbert M, Suciu S, Baila L et al. Low-dose decitabine versus best supportive care in elderly patients with intermediate- or high-risk myelodysplastic syndrome (MDS) ineligible for intensive chemotherapy: final results of the randomized phase III study of the European Organisation for Research and Treatment of Cancer Leukemia Group and the German MDS Study Group. J. Clin. Oncol. 29(15), 1987–1996 (2011).
    • 220. Flotho C, Claus R, Batz C et al. The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia 23(6), 1019–1028 (2009).
    • 221. Hollenbach PW, Nguyen AN, Brady H et al. A comparison of azacitidine and decitabine activities in acute myeloid leukemia cell lines. PLOS ONE 5(2), e9001 (2010).
    • 222. Qin T, Youssef EM, Jelinek J et al. Effect of cytarabine and decitabine in combination in human leukemic cell lines. Clin. Cancer Res. 13(14), 4225–4232 (2007).
    • 223. Tsujioka T, Yokoi A, Uesugi M et al. Effects of DNA methyltransferase inhibitors (DNMTIs) on MDS-derived cell lines. Exp. Hematol. 41(2), 189–197 (2013).
    • 224. Wang JH, Tuohimaa P. Regulation of cholesterol 25-hydroxylase expression by vitamin D3 metabolites in human prostate stromal cells. Biochem. Biophys. Res. Commun. 345(2), 720–725 (2006).
    • 225. Larsson O, Zetterberg A. Existence of a commitment program for mitosis in early G1 in tumour cells. Cell Prolif. 28(1), 33–43 (1995).
    • 226. Zhou RH, Yao M, Lee TS, Zhu Y, Martins-Green M, Shyy JY. Vascular endothelial growth factor activation of sterol regulatory element binding protein: a potential role in angiogenesis. Circ. Res. 95(5), 471–478 (2004).
    • 227. Ayala-Torres S, Zhou F, Thompson EB. Apoptosis induced by oxysterol in CEM cells is associated with negative regulation of c-myc. Exp. Cell Res. 246(1), 193–202 (1999).
    • 228. Banker DE, Mayer SJ, Li HY, Willman CL, Appelbaum FR, Zager RA. Cholesterol synthesis and import contribute to protective cholesterol increments in acute myeloid leukemia cells. Blood 104(6), 1816–1824 (2004).
    • 229. Zhang F, Dai X, Wang Y. 5-aza-2′-deoxycytidine induced growth inhibition of leukemia cells through modulating endogenous cholesterol biosynthesis. Mol. Cell. Proteomics 11(7), M111.016915 (2012).
    • 230. Hu J, La Vecchia C, de Groh M, Negri E, Morrison H, Mery L. Dietary cholesterol intake and cancer. Ann. Oncol. 23(2), 491–500 (2012).
    • 231. Mouritsen OG, Bagatolli LA. Lipid domains in model membranes: a brief historical perspective. Essays Biochem. 57, 1–19 (2015).
    • 232. Chichili GR, Rodgers W. Cytoskeleton–membrane interactions in membrane raft structure. Cell. Mol. Life Sci. 66(14), 2319–2328 (2009).
    • 233. George KS, Wu S. Lipid raft: a floating island of death or survival. Toxicol. Appl. Pharmacol. 259(3), 311–319 (2012).
    • 234. Hamm R, Chen YR, Seo EJ et al. Induction of cholesterol biosynthesis by archazolid B in T24 bladder cancer cells. Biochem. Pharmacol. 91(1), 18–30 (2014).
    • 235. Lu DL, Sookthai D, Le Cornet C et al. Reproducibility of serum oxysterols and lanosterol among postmenopausal women: results from EPIC–Heidelberg. Clin. Biochem. 52, 117–122 (2018).
    • 236. Wang C, He H, Fang W. Oncogenic roles of the cholesterol metabolite 25-hydroxycholesterol in bladder cancer. Oncol. Lett. 19(6), 3671–3676 (2020).
    • 237. Stupp R, Hegi ME, van den Bent MJ et al. Changing paradigms – an update on the multidisciplinary management of malignant glioma. Oncologist 11(2), 165–180 (2006).
    • 238. Bouzari B, Mohammadi S, Bokov DO et al. Angioregulatory role of miRNAs and exosomal miRNAs in glioblastoma pathogenesis. Biomed. Pharmacother. 148, 112760 (2022).
    • 239. Makoukji J, Shackleford G, Meffre D et al. Interplay between LXR and Wnt/β-catenin signaling in the negative regulation of peripheral myelin genes by oxysterols. J. Neurosci. 31(26), 9620–9629 (2011). • Reveals new endogenous mechanisms for the negative regulation of myelin gene expression, highlights the importance of oxysterols and LXR in peripheral nerve myelination and opens new perspectives for treating demyelinating diseases with LXR agonists.
    • 240. Guo D, Hildebrandt IJ, Prins RM et al. The AMPK agonist AICAR inhibits the growth of EGFRvIII-expressing glioblastomas by inhibiting lipogenesis. Proc. Natl Acad. Sci. USA 106(31), 12932–12937 (2009).
    • 241. Guo D, Reinitz F, Youssef M et al. An LXR agonist promotes glioblastoma cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR-dependent pathway. Cancer Discov. 1(5), 442–456 (2011).
    • 242. Liu Y, Hultén LM, Wiklund O. Macrophages isolated from human atherosclerotic plaques produce IL-8, and oxysterols may have a regulatory function for IL-8 production. Arterioscler. Thromb. Vasc. Biol. 17(2), 317–323 (1997).
    • 243. Nachtergaele S, Mydock LK, Krishnan K et al. Oxysterols are allosteric activators of the oncoprotein Smoothened. Nat. Chem. Biol. 8(2), 211–220 (2012).
    • 244. Corcoran RB, Scott MP. Oxysterols stimulate Sonic Hedgehog signal transduction and proliferation of medulloblastoma cells. Proc. Natl Acad. Sci. USA 103(22), 8408–8413 (2006).
    • 245. Xu L, Shen S, Ma Y et al. 25-hydroxycholesterol-3-sulfate attenuates inflammatory response via PPARγ signaling in human THP-1 macrophages. Am. J. Physiol. Endocrinol. Metab. 302(7), e788–e799 (2012). • Concluded that 25-HC-3-sulfate acts in macrophages as a PPAR-γ ligand and suppresses inflammatory responses via the PPAR-γ/IκB/NF-κB signaling pathway.
    • 246. Russo V. Metabolism, LXR/LXR ligands, and tumor immune escape. J. Leukoc. Biol. 90(4), 673–679 (2011).
    • 247. Marcuzzi A, Tricarico PM, Piscianz E, Kleiner G, Vecchi Brumatti L, Crovella S. Lovastatin induces apoptosis through the mitochondrial pathway in an undifferentiated SH-SY5Y neuroblastoma cell line. Cell Death Dis. 4(4), e585 (2013).
    • 248. Tricarico PM, Crovella S, Celsi F. Mevalonate pathway blockade, mitochondrial dysfunction and autophagy: a possible link. Int. J. Mol. Sci. 16(7), 16067–16084 (2015).
    • 249. Tricarico PM, Gratton R, Braga L, Celsi F, Crovella S. 25-hydroxycholesterol and inflammation in lovastatin-deregulated mevalonate pathway. Int. J. Biochem. Cell Biol. 92, 26–33 (2017).
    • 250. Mirzaei R, Bouzari B, Hosseini-Fard SR et al. Role of microbiota-derived short-chain fatty acids in nervous system disorders. Biomed. Pharmacother. 139, 111661 (2021).
    • 251. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J. Clin. 65(2), 87–108 (2015).
    • 252. Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F. Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol. Biomarkers Prev. 23(5), 700–713 (2014).
    • 253. Kitayama J, Hatano K, Kaisaki S, Suzuki H, Fujii S, Nagawa H. Hyperlipidaemia is positively correlated with lymph node metastasis in men with early gastric cancer. Br. J. Surg. 91(2), 191–198 (2004).
    • 254. Guo E, Chen L, Xie Q, Chen J, Tang Z, Wu Y. Serum HDL-C as a potential biomarker for nodal stages in gastric cancer. Ann. Surg. Oncol. 14(9), 2528–2534 (2007).
    • 255. Chen G, Feng W, Zhang S et al. Metformin inhibits gastric cancer via the inhibition of HIF1α/PKM2 signaling. Am. J. Cancer Res. 5(4), 1423–1434 (2015).
    • 256. Valaee S, Yaghoobi MM, Shamsara M. Metformin inhibits gastric cancer cells metastatic traits through suppression of epithelial–mesenchymal transition in a glucose-independent manner. PLOS ONE 12(3), e0174486 (2017).
    • 257. Singh PP, Singh S. Statins are associated with reduced risk of gastric cancer: a systematic review and meta-analysis. Ann. Oncol. 24(7), 1721–1730 (2013).
    • 258. Burkard I, von Eckardstein A, Waeber G, Vollenweider P, Rentsch KM. Lipoprotein distribution and biological variation of 24S- and 27-hydroxycholesterol in healthy volunteers. Atherosclerosis 194(1), 71–78 (2007).
    • 259. Yang P, Zhou Y, Chen B et al. Overweight, obesity and gastric cancer risk: results from a meta-analysis of cohort studies. Eur. J. Cancer 45(16), 2867–2873 (2009).
    • 260. Guo F, Hong W, Yang M et al. Upregulation of 24(R/S),25-epoxycholesterol and 27-hydroxycholesterol suppresses the proliferation and migration of gastric cancer cells. Biochem. Biophys. Res. Commun. 504(4), 892–898 (2018).
    • 261. Bonneterre J, Thürlimann B, Robertson JF et al. Anastrozole versus tamoxifen as first-line therapy for advanced breast cancer in 668 postmenopausal women: results of the Tamoxifen or Arimidex Randomized Group Efficacy and Tolerability study. J. Clin. Oncol. 18(22), 3748–3757 (2000).
    • 262. Forbes JF, Cuzick J, Buzdar A, Howell A, Tobias JS, Baum M. Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 100-month analysis of the ATAC trial. Lancet Oncol. 9(1), 45–53 (2008).
    • 263. Markopoulos CJ. Minimizing early relapse and maximizing treatment outcomes in hormone-sensitive postmenopausal breast cancer: efficacy review of AI trials. Cancer Metastasis Rev. 29(4), 581–594 (2010).
    • 264. Arpino G, Green SJ, Allred DC et al. HER-2 amplification, HER-1 expression, and tamoxifen response in estrogen receptor-positive metastatic breast cancer: a Southwest Oncology Group study. Clin. Cancer Res. 10(17), 5670–5676 (2004).
    • 265. Martin LA, Farmer I, Johnston SR, Ali S, Dowsett M. Elevated ERK1/ERK2/estrogen receptor cross-talk enhances estrogen-mediated signaling during long-term estrogen deprivation. Endocr. Relat. Cancer 12(Suppl. 1), S75–S84 (2005).
    • 266. Ma CX, Reinert T, Chmielewska I, Ellis MJ. Mechanisms of aromatase inhibitor resistance. Nat. Rev. Cancer 15(5), 261–275 (2015).
    • 267. Ellis MJ, Ding L, Shen D et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486(7403), 353–360 (2012).
    • 268. Gao Q, Patani N, Dunbier AK et al. Effect of aromatase inhibition on functional gene modules in estrogen receptor-positive breast cancer and their relationship with antiproliferative response. Clin. Cancer Res. 20(9), 2485–2494 (2014).
    • 269. Peck B, Schulze A. Cholesteryl esters: fueling the fury of prostate cancer. Cell Metab. 19(3), 350–352 (2014).
    • 270. Kovač U, Skubic C, Bohinc L, Rozman D, Režen T. Oxysterols and gastrointestinal cancers around the clock. Front. Endocrinol. (Lausanne) 10, 483 (2019).
    • 271. Zhong S, Zhang X, Chen L, Ma T, Tang J, Zhao J. Statin use and mortality in cancer patients: systematic review and meta-analysis of observational studies. Cancer Treat. Rev. 41(6), 554–567 (2015).
    • 272. Liu Y, Tang W, Wang J et al. Association between statin use and colorectal cancer risk: a meta-analysis of 42 studies. Cancer Causes Control 25(2), 237–249 (2014).
    • 273. Zhou YY, Zhu GQ, Wang Y et al. Systematic review with network meta-analysis: statins and risk of hepatocellular carcinoma. Oncotarget 7(16), 21753–21762 (2016).
    • 274. Singh S, Singh PP, Singh AG, Murad MH, Sanchez W. Statins are associated with a reduced risk of hepatocellular cancer: a systematic review and meta-analysis. Gastroenterology 144(2), 323–332 (2013).
    • 275. Shi M, Zheng H, Nie B, Gong W, Cui X. Statin use and risk of liver cancer: an update meta-analysis. BMJ Open 4(9), e005399 (2014).
    • 276. Tsan YT, Lee CH, Ho WC, Lin MH, Wang JD, Chen PC. Statins and the risk of hepatocellular carcinoma in patients with hepatitis C virus infection. J. Clin. Oncol. 31(12), 1514–1521 (2013).
    • 277. Tsan YT, Lee CH, Wang JD, Chen PC. Statins and the risk of hepatocellular carcinoma in patients with hepatitis B virus infection. J. Clin. Oncol. 30(6), 623–630 (2012).
    • 278. Hsiang JC, Wong GL, Tse YK, Wong VW, Yip TC, Chan HL. Statin and the risk of hepatocellular carcinoma and death in a hospital-based hepatitis B-infected population: a propensity score landmark analysis. J. Hepatol. 63(5), 1190–1197 (2015).
    • 279. Chen CI, Kuan CF, Fang YA et al. Cancer risk in HBV patients with statin and metformin use: a population-based cohort study. Medicine (Baltimore) 94(6), e462 (2015).
    • 280. Janicko M, Drazilova S, Pella D, Fedacko J, Jarcuska P. Pleiotropic effects of statins in the diseases of the liver. World J. Gastroenterol. 22(27), 6201–6213 (2016).
    • 281. Nishio T, Taura K, Nakamura N et al. Impact of statin use on the prognosis of patients with hepatocellular carcinoma undergoing liver resection: a subgroup analysis of patients without chronic hepatitis viral infection. Surgery 163(2), 264–269 (2018).
    • 282. Kawaguchi Y, Sakamoto Y, Ito D et al. Statin use is associated with a reduced risk of hepatocellular carcinoma recurrence after initial liver resection. Biosci. Trends 11(5), 574–580 (2017).
    • 283. Archibugi L, Arcidiacono PG, Capurso G. Statin use is associated to a reduced risk of pancreatic cancer: a meta-analysis. Dig. Liver Dis. 51(1), 28–37 (2019).
    • 284. Hamada T, Khalaf N, Yuan C et al. Statin use and pancreatic cancer risk in two prospective cohort studies. J. Gastroenterol. 53(8), 959–966 (2018).
    • 285. Singh S, Singh PP, Roberts LR, Sanchez W. Chemopreventive strategies in hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 11(1), 45–54 (2014).
    • 286. Lipkin SM, Chao EC, Moreno V et al. Genetic variation in 3-hydroxy-3-methylglutaryl CoA reductase modifies the chemopreventive activity of statins for colorectal cancer. Cancer Prev. Res. (Phila.) 3(5), 597–603 (2010).
    • 287. Amin S, Boffetta P, Lucas AL. The role of common pharmaceutical agents on the prevention and treatment of pancreatic cancer. Gut Liver 10(5), 665–671 (2016).
    • 288. Li N, Zhou ZS, Shen Y et al. Inhibition of the sterol regulatory element-binding protein pathway suppresses hepatocellular carcinoma by repressing inflammation in mice. Hepatology 65(6), 1936–1947 (2017).
    • 289. Kim YS, Lee YM, Oh TI et al. Emodin sensitizes hepatocellular carcinoma cells to the anti-cancer effect of sorafenib through suppression of cholesterol metabolism. Int. J. Mol. Sci. 19(10), (2018).
    • 290. Gabitova L, Gorin A, Astsaturov I. Molecular pathways: sterols and receptor signaling in cancer. Clin. Cancer Res. 20(1), 28–34 (2014).
    • 291. Chuu CP. Modulation of liver X receptor signaling as a prevention and therapy for colon cancer. Med. Hypotheses 76(5), 697–699 (2011).
    • 292. Bellomo C, Caja L, Fabregat I. Snail mediates crosstalk between TGFβ and LXRα in hepatocellular carcinoma. Cell Death Differ. 25(5), 885–903 (2018).
    • 293. Pattanayak SP, Bose P, Sunita P, Siddique MUM, Lapenna A. Bergapten inhibits liver carcinogenesis by modulating LXR/PI3K/Akt and IDOL/LDLR pathways. Biomed. Pharmacother. 108, 297–308 (2018).
    • 294. Lo Sasso G, Bovenga F, Murzilli S et al. Liver X receptors inhibit proliferation of human colorectal cancer cells and growth of intestinal tumors in mice. Gastroenterology 144(7), 1497–1507, 1507; e1–13 (2013).
    • 295. De Boussac H, Alioui A, Viennois E et al. Oxysterol receptors and their therapeutic applications in cancer conditions. Expert Opin. Ther. Targets 17(9), 1029–1038 (2013).
    • 296. Peng Z, Chen J, Drachenberg CB, Raufman JP, Xie G. Farnesoid X receptor represses matrix metalloproteinase 7 expression, revealing this regulatory axis as a promising therapeutic target in colon cancer. J. Biol. Chem. 294(21), 8529–8542 (2019).
    • 297. Alawad AS, Levy C. FXR agonists: from bench to bedside, a guide for clinicians. Dig. Dis. Sci. 61(12), 3395–3404 (2016).
    • 298. Kowdley KV, Luketic V, Chapman R et al. A randomized trial of obeticholic acid monotherapy in patients with primary biliary cholangitis. Hepatology 67(5), 1890–1902 (2018).
    • 299. Fu T, Coulter S, Yoshihara E et al. FXR regulates intestinal cancer stem cell proliferation. Cell 176(5), 1098–1112.e18 (2019).
    • 300. Ortiz A, Gui J, Zahedi F et al. An interferon-driven oxysterol-based defense against tumor-derived extracellular vesicles. Cancer Cell 35(1), 33–45.e6 (2019).