We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Organ tropism in solid tumor metastasis: an updated review

    Keywan Mortezaee

    *Author for correspondence:

    E-mail Address: Keywan987@yahoo.com

    Cancer & Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, 66177‐13446, Iran

    Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, 66177‐13446, Iran

    Published Online:https://doi.org/10.2217/fon-2020-1103

    Tumors are equipped with a highly complex machinery of interrelated events so as to adapt to hazardous conditions, preserve a growing cell mass and thrive at the site of metastasis. Tumor cells display metastatic propensity toward specific organs where the stromal milieu is appropriate for their further colonization. Effective colonization relies on the plasticity of tumor cells in adapting to the conditions of the new area by reshaping their epigenetic landscape. Breast cancer cells, for instance, are able to adopt brain-like or epithelial/osteoid features in order to pursue effective metastasis into brain and bone, respectively. The aim of this review is to discuss recent insights into organ tropism in tumor metastasis, outlining potential strategies to address this driver of tumor aggressiveness.

    Lay abstract

    Tumors of solid organs choose specific organs as their secondary foci; tumor cells dissociated from the primary tumor are not able to grow in all body tissues, so there are a number of organs designated to provide an appropriate growth environment for colonization of these detached cells. Brain, lymph nodes, bone, liver and lung are the five most common sites of metastasis for solid tumors. These organs attract disseminated tumor cells by displaying characteristics that can be either specific or shared among them. Detection of the promoters of organ tropism in cancer metastasis and their targeting can be a promising strategy for reducing the possibility of tumor dispersion.

    Papers of special note have been highlighted as: • of interest

    References

    • 1. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T. Migrating cancer stem cells – an integrated concept of malignant tumour progression. Nat. Rev. Cancer 5(9), 744–749 (2005).
    • 2. Kim YH, Choi YW, Lee J, Soh EY, Kim JH, Park TJ. Senescent tumor cells lead the collective invasion in thyroid cancer. Nat. Commun. 8, 15208 (2017).
    • 3. Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct. Target. Ther. 5(1), 28 (2020).
    • 4. Obradović MMS, Hamelin B, Manevski N et al. Glucocorticoids promote breast cancer metastasis. Nature 567(7749), 540–544 (2019).
    • 5. Guo F, Wang Y, Liu J, Mok SC, Xue F, Zhang W. CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene 35(7), 816–826 (2016).
    • 6. Birkbak NJ, McGranahan N. Cancer genome evolutionary trajectories in metastasis. Cancer Cell 37(1), 8–19 (2020).
    • 7. Tang Q, Su Z, Gu W, Rustgi AK. Mutant p53 on the path to metastasis. Trends Cancer 6(1), 62–73 (2020).
    • 8. Baek AE, Yu YA, He S et al. The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells. Nat. Commun. 8(1), 864 (2017).
    • 9. Yu X, Chen L, Liu J et al. Immune modulation of liver sinusoidal endothelial cells by melittin nanoparticles suppresses liver metastasis. Nat. Commun. 10(1), 574 (2019).
    • 10. Leslie PL, Chao YL, Tsai YH et al. Histone deacetylase 11 inhibition promotes breast cancer metastasis from lymph nodes. Nat. Commun. 10(1), 4192 (2019).
    • 11. Wang X, Liu R, Zhu W et al. UDP-glucose accelerates SNAI1 mRNA decay and impairs lung cancer metastasis. Nature 571(7763), 127–131 (2019).
    • 12. Lin B, Li Y, Wang T et al. CRMP2 is a therapeutic target that suppresses the aggressiveness of breast cancer cells by stabilizing RECK. Oncogene 39(37), 6024–6040 (2020).
    • 13. Follain G, Herrmann D, Harlepp S et al. Fluids and their mechanics in tumour transit: shaping metastasis. Nat. Rev. Cancer 20(2), 107–124 (2020).
    • 14. Zhang Z, Li J, Ou Y et al. CDK4/6 inhibition blocks cancer metastasis through a USP51–ZEB1-dependent deubiquitination mechanism. Signal Transduct. Target. Ther. 5(1), 25 (2020).
    • 15. Strilic B, Offermanns S. Intravascular survival and extravasation of tumor cells. Cancer Cell 32(3), 282–293 (2017).
    • 16. Anderson RL, Balasas T, Callaghan J et al. A framework for the development of effective anti-metastatic agents. Nat. Rev. Clin. Oncol. 16(3), 185–204 (2019).
    • 17. Zhang W, Bado I, Wang H, Lo HC, Zhang XH. Bone metastasis: find your niche and fit in. Trends Cancer 5(2), 95–110 (2019).
    • 18. Paget S. The distribution of secondary growths in cancer of the breast. Lancet 8(2), 98–101 (1889).
    • 19. Boire A, Brastianos PK, Garzia L, Valiente M. Brain metastasis. Nat. Rev. Cancer 20(1), 4–11 (2020).
    • 20. Achrol AS, Rennert RC, Anders C et al. Brain metastases. Nat. Rev. Dis. Primers 5(1), 5 (2019).
    • 21. Tsao MN, Xu W, Wong RK et al. Whole brain radiotherapy for the treatment of newly diagnosed multiple brain metastases. Cochrane Database Syst. Rev. 1(1), CD003869 (2018).
    • 22. Suh JH, Kotecha R, Chao ST, Ahluwalia MS, Sahgal A, Chang EL. Current approaches to the management of brain metastases. Nat. Rev. Clin. Oncol. 17(5), 279–299 (2020).
    • 23. Sprowls SA, Arsiwala TA, Bumgarner JR et al. Improving CNS delivery to brain metastases by blood–tumor barrier disruption. Trends Cancer 5(8), 495–505 (2019).
    • 24. Mulvenna P, Nankivell M, Barton R et al. Dexamethasone and supportive care with or without whole brain radiotherapy in treating patients with non-small cell lung cancer with brain metastases unsuitable for resection or stereotactic radiotherapy (QUARTZ): results from a Phase 3, non-inferiority, randomised trial. Lancet 388(10055), 2004–2014 (2016).
    • 25. Altorki NK, Markowitz GJ, Gao D et al. The lung microenvironment: an important regulator of tumour growth and metastasis. Nat. Rev. Cancer 19(1), 9–31 (2019).
    • 26. Brown PD, Ballman KV, Cerhan JH et al. Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC·3): a multicentre, randomised, controlled, Phase 3 trial. Lancet Oncol. 18(8), 1049–1060 (2017).
    • 27. Steeg PS, Camphausen KA, Smith QR. Brain metastases as preventive and therapeutic targets. Nat. Rev. Cancer 11(5), 352–363 (2011).
    • 28. Chung B, Esmaeili AA, Gopalakrishna-Pillai S et al. Human brain metastatic stroma attracts breast cancer cells via chemokines CXCL16 and CXCL12. NPJ Breast Cancer 3, 6 (2017).
    • 29. Liu J, Li J, Li P et al. DLG5 suppresses breast cancer stem cell-like characteristics to restore tamoxifen sensitivity by inhibiting TAZ expression. J. Cell. Mol. Med. 23(1), 512–521 (2019).
    • 30. Zeng Q, Michael IP, Zhang P et al. Synaptic proximity enables NMDAR signalling to promote brain metastasis. Nature 573(7775), 526–531 (2019).
    • 31. Cheng G, Zhang Q, Pan J et al. Targeting lonidamine to mitochondria mitigates lung tumorigenesis and brain metastasis. Nat. Commun. 10(1), 2205 (2019).
    • 32. Soffietti R, Ahluwalia M, Lin N, Rudà R. Management of brain metastases according to molecular subtypes. Nat. Rev. Neurol. 16(10), 557–574 (2020).
    • 33. Brown PD, Jaeckle K, Ballman KV et al. Effect of radiosurgery alone vs radiosurgery with whole brain radiation therapy on cognitive function in patients with 1 to 3 brain metastases: a randomized clinical trial. JAMA 316(4), 401–409 (2016).
    • 34. O’Melia MJ, Lund AW, Thomas SN. The biophysics of lymphatic transport: engineering tools and immunological consequences. iScience 22, 28–43 (2019).
    • 35. Naxerova K, Reiter JG, Brachtel E et al. Origins of lymphatic and distant metastases in human colorectal cancer. Science 357(6346), 55–60 (2017).
    • 36. Pelon F, Bourachot B, Kieffer Y et al. Cancer-associated fibroblast heterogeneity in axillary lymph nodes drives metastases in breast cancer through complementary mechanisms. Nat. Commun. 11(1), 404 (2020).
    • 37. Fukumura D, Kloepper J, Amoozgar Z, Duda DG, Jain RK. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat. Rev. Clin. Oncol. 15(5), 325–340 (2018).
    • 38. Brown M, Assen FP, Leithner A et al. Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science 359(6382), 1408–1411 (2018).
    • 39. Pereira ER, Kedrin D, Seano G et al. Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science 359(6382), 1403–1407 (2018).
    • 40. Horton BL, Fessenden TB, Spranger S. Tissue site and the cancer immunity cycle. Trends Cancer 5(10), 593–603 (2019).
    • 41. Jalkanen S, Salmi M. Lymphatic endothelial cells of the lymph node. Nat. Rev. Immunol. 20(9), 566–578 (2020).
    • 42. Jain RK, Martin JD, Stylianopoulos T. The role of mechanical forces in tumor growth and therapy. Annu. Rev. Biomed. Eng. 16, 321–346 (2014).
    • 43. Mortezaee K. Hypoxia induces core-to-edge transition of progressive tumoral cells: a critical review on differential yet corroborative roles for HIF-1α and HIF-2α. Life Sci. 242, 117145 (2020). • Outlines a new concept in tumor resistance and progression: the hypoxia-inducible effect on the transition of tumor cells from the interior toward the invasive front of the tumor.
    • 44. Najafi M, Farhood B, Mortezaee K, Kharazinejad E, Majidpoor J, Ahadi R. Hypoxia in solid tumors: a key promoter of cancer stem cell (CSC) resistance. J. Cancer Res. Clin. Oncol. 146(1), 19–31 (2020). • Focuses on the mechanisms by which hypoxia acts for promoting cancer stem cell resistance in tumors of solid organs.
    • 45. Wang L, Simons DL, Lu X et al. Breast cancer induces systemic immune changes on cytokine signaling in peripheral blood monocytes and lymphocytes. EBioMedicine 52, 102631 (2020).
    • 46. Li C, Wang S, Xing Z et al. A ROR1–HER3–lncRNA signalling axis modulates the Hippo–YAP pathway to regulate bone metastasis. Nat. Cell Biol. 19(2), 106–119 (2017).
    • 47. Zuo H, Yang D, Yang Q, Tang H, Fu YX, Wan Y. Differential regulation of breast cancer bone metastasis by PARP1 and PARP2. Nat. Commun. 11(1), 1578 (2020).
    • 48. Buschhaus JM, Humphries BA, Eckley SS et al. Targeting disseminated estrogen-receptor-positive breast cancer cells in bone marrow. Oncogene 1–14 (2020).
    • 49. Berish RB, Ali AN, Telmer PG, Ronald JA, Leong HS. Translational models of prostate cancer bone metastasis. Nat. Rev. Urol. 15(7), 403–421 (2018).
    • 50. Jiao S, Subudhi SK, Aparicio A et al. Differences in tumor microenvironment dictate T helper lineage polarization and response to immune checkpoint therapy. Cell 179(5), 1177–1190.e13 (2019).
    • 51. Romero-Moreno R, Curtis KJ, Coughlin TR et al. The CXCL5/CXCR2 axis is sufficient to promote breast cancer colonization during bone metastasis. Nat. Commun. 10(1), 4404 (2019).
    • 52. Yang Z, Yue Z, Ma X, Xu Z. Calcium homeostasis: a potential vicious cycle of bone metastasis in breast cancers. Front. Oncol. 10, 293 (2020).
    • 53. Lynch CC. Matrix metalloproteinases as master regulators of the vicious cycle of bone metastasis. Bone 48(1), 44–53 (2011).
    • 54. Teng S, Li YE, Yang M et al. Tissue-specific transcription reprogramming promotes liver metastasis of colorectal cancer. Cell Res. 30(1), 34–49 (2020).
    • 55. Scimeca M, Bonfiglio R, Urbano N, Schillaci O, Bonanno E. Adjuvant denosumab in early breast cancer. Lancet Oncol. 21(3), e122 (2020).
    • 56. Wang S, Li GX, Tan CC et al. FOXF2 reprograms breast cancer cells into bone metastasis seeds. Nat. Commun. 10(1), 2707 (2019).
    • 57. Colden M, Dar AA, Saini S et al. MicroRNA-466 inhibits tumor growth and bone metastasis in prostate cancer by direct regulation of osteogenic transcription factor RUNX2. Cell Death Dis. 8(1), e2572–e2572 (2018).
    • 58. Ji Q, Zhou L, Sui H et al. Primary tumors release ITGBL1-rich extracellular vesicles to promote distal metastatic tumor growth through fibroblast-niche formation. Nat. Commun. 11(1), 1211 (2020).
    • 59. Valkenburg KC, de Groot AE, Pienta KJ. Targeting the tumour stroma to improve cancer therapy. Nat. Rev. Clin. Oncol. 15(6), 366–381 (2018).
    • 60. Mortezaee K, Potes Y, Mirtavoos-Mahyari H et al. Boosting immune system against cancer by melatonin: a mechanistic viewpoint. Life Sci. 238, 116960 (2019).
    • 61. Mortezaee K, Parwaie W, Motevaseli E et al. Targets for improving tumor response to radiotherapy. Int. Immunopharmacol. 76, 105847 (2019).
    • 62. Coleman RE, Brown J, Holen I. Bone metastases. In: Abeloff's Clinical Oncology. 809–830. e3 (2020).
    • 63. Croucher PI, McDonald MM, Martin TJ. Bone metastasis: the importance of the neighbourhood. Nat. Rev. Cancer 16(6), 373–386 (2016).
    • 64. Steeg PS. Targeting metastasis. Nat. Rev. Cancer 16(4), 201–218 (2016).
    • 65. Esposito M, Mondal N, Greco TM et al. Bone vascular niche E-selectin induces mesenchymal–epithelial transition and Wnt activation in cancer cells to promote bone metastasis. Nat. Cell Biol. 21(5), 627–639 (2019).
    • 66. Takahashi N, Chen HY, Harris IS et al. Cancer cells co-opt the neuronal redox-sensing channel TRPA1 to promote oxidative-stress tolerance. Cancer Cell 33(6), 985–1003.e7 (2018).
    • 67. Macedo F, Ladeira K, Pinho F et al. Bone metastases: an overview. Oncol. Rev. 11(1), 321 (2017).
    • 68. Lee JW, Stone ML, Porrett PM et al. Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature 567(7747), 249–252 (2019).
    • 69. Yamaguchi N, Weinberg EM, Nguyen A et al. PCK1 and DHODH drive colorectal cancer liver metastatic colonization and nucleotide biosynthesis under hypoxia. bioRxiv 833186 (2019).
    • 70. Chen RX, Chen X, Xia LP et al. N 6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat. Commun. 10(1), 4695 (2019).
    • 71. Brodt P. Role of the microenvironment in liver metastasis: from pre-to prometastatic niches. Clin. Cancer Res. 22(24), 5971–5982 (2016).
    • 72. Hu M, Wang Y, Xu L et al. Relaxin gene delivery mitigates liver metastasis and synergizes with check point therapy. Nat. Commun. 10(1), 2993 (2019).
    • 73. Liu Y, Crowe WN, Wang L et al. An inhalable nanoparticulate STING agonist synergizes with radiotherapy to confer long-term control of lung metastases. Nat. Commun. 10(1), 5108 (2019).
    • 74. Gui J, Zahedi F, Ortiz A et al. Activation of p38α stress-activated protein kinase drives the formation of the pre-metastatic niche in the lungs. Nat. Cancer 1, 603–619 (2020).
    • 75. Aytes A, Giacobbe A, Mitrofanova A et al. NSD2 is a conserved driver of metastatic prostate cancer progression. Nat. Commun. 9(1), 5201 (2018).
    • 76. Aras S, Zaidi MR. TAMeless traitors: macrophages in cancer progression and metastasis. Br. J. Cancer 117(11), 1583–1591 (2017).
    • 77. Mollinedo F. Neutrophil degranulation, plasticity, and cancer metastasis. Trends Immunol. 40(3), 228–242 (2019).
    • 78. Ghasemi A, De Palma M. Tweaking the DNA of myeloid cells curbs cancer spread. Nature 579(7798), 196–197 (2020).
    • 79. Garner H, de Visser KE. Immune crosstalk in cancer progression and metastatic spread: a complex conversation. Nat. Rev. Immunol. 20(8), 483–497 (2020).
    • 80. Liu T, Zhou L, Li D, Andl T, Zhang Y. Cancer-associated fibroblasts build and secure the tumor microenvironment. Front. Cell Dev. Biol. 7, 60 (2019).
    • 81. Salmon H, Remark R, Gnjatic S, Merad M. Host tissue determinants of tumour immunity. Nat. Rev. Cancer 19(4), 215–227 (2019).
    • 82. Zeltz C, Primac I, Erusappan P, Alam J, Noel A, Gullberg D. Cancer-associated fibroblasts in desmoplastic tumors: emerging role of integrins. Semin. Cancer Biol. 62, 166–181 (2020).
    • 83. Najafi M, Mortezaee K, Majidpoor J. Stromal reprogramming: a target for tumor therapy. Life Sci. 239, 117049 (2019). • Focuses on the function of cancer-associated fibroblasts as the critical drivers of tumorigenesis, from initiation until progression toward metastasis.
    • 84. Liu Y, Cao X. Characteristics and significance of the pre-metastatic niche. Cancer Cell 30(5), 668–681 (2016).
    • 85. Liu XQ, Fourel L, Dalonneau F et al. Biomaterial-enabled delivery of SDF-1α at the ventral side of breast cancer cells reveals a crosstalk between cell receptors to promote the invasive phenotype. Biomaterials 127, 61–74 (2017).
    • 86. Mortezaee K. CXCL12/CXCR4 axis in the microenvironment of solid tumors: a critical mediator of metastasis. Life Sci. 249, 117534 (2020). • Outlines the importance of CXCL12/CXCR4 signaling in the promotion of metastasis.
    • 87. Egeblad M, Nakasone ES, Werb Z. Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell 18(6), 884–901 (2010).
    • 88. Tan HX, Gong WZ, Zhou K et al. CXCR4/TGF-β1 mediated hepatic stellate cells differentiation into carcinoma-associated fibroblasts and promoted liver metastasis of colon cancer. Cancer Biol. Ther. 21(3), 258–268 (2020).
    • 89. Urosevic J, Blasco MT, Llorente A et al. ERK1/2 signaling induces upregulation of ANGPT2 and CXCR4 to mediate liver metastasis in colon cancer. Cancer Res. 80(21), 4668–4680 (2020).
    • 90. Chen IX, Chauhan VP, Posada J et al. Blocking CXCR4 alleviates desmoplasia, increases T-lymphocyte infiltration, and improves immunotherapy in metastatic breast cancer. Proc. Natl Acad. Sci. USA 116(10), 4558–4566 (2019).
    • 91. Zhang Q, Zhou N, Wang W, Zhou S. A novel autocrine CXCL14/ACKR2 axis: the achilles’ heel of cancer metastasis? Clin. Cancer Res. 25(12), 3476–3478 (2019).
    • 92. Inoue C, Miki Y, Saito R et al. PD-L1 induction by cancer-associated fibroblast-derived factors in lung adenocarcinoma cells. Cancers 11(9), 1257 (2019).
    • 93. Gui Y, Aguilar-Mahecha A, Krzemien U et al. Metastatic breast carcinoma–associated fibroblasts have enhanced protumorigenic properties related to increased IGF2 expression. Clin. Cancer Res. 25(23), 7229–7242 (2019).
    • 94. Farhood B, Najafi M, Mortezaee K. Cancer-associated fibroblasts: secretions, interactions, and therapy. J. Cell. Biochem. 120(3), 2791–2800 (2019).
    • 95. Najafi M, Mortezaee K, Majidpoor J. Cancer stem cell (CSC) resistance drivers. Life Sci. 234, 116781 (2019) • Focuses on the adaptive mechanisms used by cancer stem cells for their growth in the primary and secondary areas.
    • 96. Li H, Zhang Q, Wu Q et al. Interleukin-22 secreted by cancer-associated fibroblasts regulates the proliferation and metastasis of lung cancer cells via the PI3K–Akt–mTOR signaling pathway. Am. J. Transl. Res. 11(7), 4077–4088 (2019).
    • 97. Wen S, Hou Y, Fu L et al. Cancer-associated fibroblast (CAF)-derived IL32 promotes breast cancer cell invasion and metastasis via integrin β3–p38 MAPK signalling. Cancer Lett. 442, 320–332 (2019).
    • 98. Zhou Q, Wu X, Wang X et al. The reciprocal interaction between tumor cells and activated fibroblasts mediated by TNF-α/IL-33/ST2L signaling promotes gastric cancer metastasis. Oncogene 39(7), 1414–1428 (2020).
    • 99. Li Q, Zhu CC, Ni B et al. Lysyl oxidase promotes liver metastasis of gastric cancer via facilitating the reciprocal interactions between tumor cells and cancer associated fibroblasts. EBioMedicine 49, 157–171 (2019).
    • 100. Wu HJ, Hao M, Yeo SK, Guan JL. FAK signaling in cancer-associated fibroblasts promotes breast cancer cell migration and metastasis by exosomal miRNAs-mediated intercellular communication. Oncogene 39(12), 2539–2549 (2020).
    • 101. Ren J, Smid M, Iaria J et al. Cancer-associated fibroblast-derived gremlin 1 promotes breast cancer progression. Breast Cancer Res. 21(1), 109 (2019).
    • 102. Yan Z, Ohuchida K, Fei S et al. Inhibition of ERK1/2 in cancer-associated pancreatic stellate cells suppresses cancer–stromal interaction and metastasis. J. Exp. Clin. Cancer Res. 38(1), 221 (2019).
    • 103. Schuijs MJ, Png S, Richard AC et al. ILC2-driven innate immune checkpoint mechanism antagonizes NK cell antimetastatic function in the lung. Nat. Immunol. 21(9), 998–1009 (2020).
    • 104. Mortezaee K, Najafi M. Immune system in cancer radiotherapy: resistance mechanisms and therapy perspectives. Crit. Rev. Oncol. Hematol. 157, 103180 (2020).
    • 105. Huntington ND, Cursons J, Rautela J. The cancer – natural killer cell immunity cycle. Nat. Rev. Cancer 20(8), 437–454 (2020).
    • 106. Chen EB, Zhou ZJ, Xiao K et al. The miR-561-5p/CX3CL1 signaling axis regulates pulmonary metastasis in hepatocellular carcinoma involving CX3CR1+ natural killer cells infiltration. Theranostics 9(16), 4779–4794 (2019).
    • 107. Lo HC, Xu Z, Kim IS et al. Resistance to natural killer cell immunosurveillance confers a selective advantage to polyclonal metastasis. Nat. Cancer 1, 709–722 (2020).
    • 108. Nakamura K, Smyth MJ. Immunoediting of cancer metastasis by NK cells. Nat. Cancer 1, 670–671 (2020).
    • 109. Chan IS, Knútsdóttir H, Ramakrishnan G et al. Cancer cells educate natural killer cells to a metastasis-promoting cell state. J. Cell Biol. 219(9), e202001134 (2020).
    • 110. Harmon C, Robinson MW, Hand F et al. Lactate-mediated acidification of tumor microenvironment induces apoptosis of liver-resident NK cells in colorectal liver metastasis. Cancer Immunol. Res. 7(2), 335–346 (2019).
    • 111. Smeda M, Przyborowski K, Stojak M, Chlopicki S. The endothelial barrier and cancer metastasis: does the protective facet of platelet function matter? Biochem. Pharmacol. 176, 113886 (2020).
    • 112. Mammadova-Bach E, Jesus Gil-Pulido, Edita Sarukhanyan et al. Platelet glycoprotein VI promotes metastasis through interaction with cancer cell-derived galectin-3. Blood 135(14), 1146–1160 (2020).
    • 113. Zhuang M, Xin G, Wei Z et al. Dihydrodiosgenin inhibits endothelial cell-derived factor VIII and platelet-mediated hepatocellular carcinoma metastasis. Cancer Manag. Res. 11, 4871–4882 (2019).
    • 114. Gaertner F, Massberg S. Patrolling the vascular borders: platelets in immunity to infection and cancer. Nat. Rev. Immunol. 19(12), 747–776 (2019).
    • 115. Schlesinger M. Role of platelets and platelet receptors in cancer metastasis. J. Hematol. Oncol. 11(1), 125 (2018).
    • 116. Menter DG, Kopetz S, Hawk E et al. Platelet ‘first responders’ in wound response, cancer, and metastasis. Cancer Metastasis Rev. 36(2), 199–213 (2017).
    • 117. Zhang Y, Cedervall J, Hamidi A et al. Platelet-specific PDGFB ablation impairs tumor vessel integrity and promotes metastasis. Cancer Res. 80(16), 3345–3358 (2020).
    • 118. Xiong G, Chen J, Zhang G et al. Hsp47 promotes cancer metastasis by enhancing collagen-dependent cancer cell-platelet interaction. Proc. Natl Acad. Sci. USA 117(7), 3748–3758 (2020).
    • 119. Mortezaee K. Immune escape: a critical hallmark in solid tumors. Life Sci. 258, 118110 (2020). • Focuses on immune evasion mechanisms exploited by tumor cells to take a metastatic route.
    • 120. Dickson I. NETs promote liver metastasis via CCDC25. Nat. Rev. Gastroenterol. Hepatol. 17(8), 451–451 (2020).
    • 121. Park J, Wysocki RW, Amoozgar Z et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci. Transl. Med. 8(361), 361ra138–361ra138 (2016).
    • 122. Spicer JD, McDonald B, Cools-Lartigue JJ et al. Neutrophils promote liver metastasis via Mac-1-mediated interactions with circulating tumor cells. Cancer Res. 72(16), 3919–3927 (2012).
    • 123. Wculek SK, Malanchi I. Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 528(7582), 413–417 (2015).
    • 124. Huh SJ, Liang S, Sharma A, Dong C, Robertson GP. Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res. 70(14), 6071–6082 (2010).
    • 125. Li P, Lu M, Shi J et al. Dual roles of neutrophils in metastatic colonization are governed by the host NK cell status. Nat. Commun. 11(1), 4387 (2020).
    • 126. Kang T, Zhu Q, Wei D et al. Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis. ACS Nano 11(2), 1397–1411 (2017).
    • 127. Rodrigues G, Hoshino A, Kenific CM et al. Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nat. Cell Biol. 21(11), 1403–1412 (2019).
    • 128. Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW, Simpson RJ. Extracellular vesicles in cancer – implications for future improvements in cancer care. Nat. Rev. Clin. Oncol. 15(10), 617–638 (2018).
    • 129. Zeng Z, Li Y, Pan Y et al. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat. Commun. 9(1), 5395 (2018).
    • 130. Howe EN, Burnette MD, Justice ME et al. Rab11b-mediated integrin recycling promotes brain metastatic adaptation and outgrowth. Nat. Commun. 11(1), 3017 (2020).
    • 131. Mortezaee K, Najafi M, Farhood B, Ahmadi A, Shabeeb D, Musa AE. NF-κB targeting for overcoming tumor resistance and normal tissues toxicity. J. Cell. Physiol. 234(10), 17187–17204 (2019). • Provides an overview of the activity of NF-κB in resistance of tumors.
    • 132. Najafi M, Salehi E, Farhood B et al. Adjuvant chemotherapy with melatonin for targeting human cancers: a review. J. Cell. Physiol. 234(3), 2356–2372 (2019).
    • 133. Mortezaee K, Najafi M, Farhood B et al. Modulation of apoptosis by melatonin for improving cancer treatment efficiency: an updated review. Life Sci. 228, 228–241 (2019).
    • 134. Farhood B, Goradel NH, Mortezaee K et al. Melatonin as an adjuvant in radiotherapy for radioprotection and radiosensitization. Clin. Transl. Oncol. 21(3), 268–279 (2019).
    • 135. Seike T, Fujita K, Yamakawa Y et al. Interaction between lung cancer cells and astrocytes via specific inflammatory cytokines in the microenvironment of brain metastasis. Clin. Exp. Metastasis 28(1), 13–25 (2011).
    • 136. Mortezaee K. Redox tolerance and metabolic reprogramming in solid tumors. Cell Biol. Int. 45(2), 273–286 (2020). • Focuses over the two important adaptive mechanisms taken by tumor cells, important for their successful seeding in the secondary target organs.
    • 137. Mortezaee K, Goradel NH, Amini P et al. NADPH oxidase as a target for modulation of radiation response; implications to carcinogenesis and radiotherapy. Curr. Mol. Pharmacol. 12(1), 50–60 (2019).
    • 138. Segar J, Shroff RT. Charging forward in locally advanced pancreatic cancer. Lancet Gastroenterol. Hepatol. 5(3), 234–236 (2020).
    • 139. Giuliano AE, Ballman KV, McCall L et al. Effect of axillary dissection vs no axillary dissection on 10-year overall survival among women with invasive breast cancer and sentinel node metastasis: the ACOSOG Z0011 (Alliance) randomized clinical trial. JAMA 318(10), 918–926 (2017).
    • 140. Graham TA, Shibata D. Navigating the path to distant metastasis. Nat. Genet. 52(7), 642–643 (2020).
    • 141. Zhang C, Zhang L, Xu T et al. Mapping the spreading routes of lymphatic metastases in human colorectal cancer. Nat. Commun. 11(1), 1993 (2020).
    • 142. Reiter JG, Hung WT, Lee IH et al. Lymph node metastases develop through a wider evolutionary bottleneck than distant metastases. Nat. Genet. 52(7), 692–700 (2020).
    • 143. Milette S, Hashimoto M, Perrino S et al. Sexual dimorphism and the role of estrogen in the immune microenvironment of liver metastases. Nat. Commun. 10(1), 5745 (2019).
    • 144. Achinger-Kawecka J, Valdes-Mora F, Luu PL et al. Epigenetic reprogramming at estrogen-receptor binding sites alters 3D chromatin landscape in endocrine-resistant breast cancer. Nat. Commun. 11(1), 320 (2020).
    • 145. Contreras-Zárate MJ, Day NL, Ormond DR et al. Estradiol induces BDNF/TrkB signaling in triple-negative breast cancer to promote brain metastases. Oncogene 38(24), 4685–4699 (2019).
    • 146. Gomes AP, Ilter D, Low V et al. Dynamic incorporation of histone H3 variants into chromatin is essential for acquisition of aggressive traits and metastatic colonization. Cancer Cell 36(4), 402–417 (2019).
    • 147. Najafi M, Ahmadi A, Mortezaee K. Extracellular-signal-regulated kinase/mitogen-activated protein kinase signaling as a target for cancer therapy: an updated review. Cell Biol. Int. 43(11), 1206–1222 (2019).
    • 148. Ahmadi A, Najafi M, Farhood B, Mortezaee K. Transforming growth factor-β signaling: tumorigenesis and targeting for cancer therapy. J. Cell. Physiol. 234(8), 12173–12187 (2019).
    • 149. Boire A, Coffelt SB, Quezada SA, Vander Heiden MG, Weeraratna AT. Tumour dormancy and reawakening: opportunities and challenges. Trends Cancer 5(12), 762–765 (2019).
    • 150. Rosel D, Fernandes M, Sanz-Moreno V, Brábek J. Migrastatics: redirecting R&D in solid cancer towards metastasis? Trends Cancer 5(12), 755–756 (2019).
    • 151. Tang X, Shi L, Xie N et al. SIRT7 antagonizes TGF-β signaling and inhibits breast cancer metastasis. Nat. Commun. 8(1), 318 (2017).
    • 152. Gandalovičová A, Rosel D, Fernandes M et al. Migrastatics – anti-metastatic and anti-invasion drugs: promises and challenges. Trends Cancer 3(6), 391–406 (2017).
    • 153. Hoj JP, Mayro B, Pendergast AM. A TAZ–AXL–ABL2 feed-forward signaling axis promotes lung adenocarcinoma brain metastasis. Cell Rep. 29(11), 3421–3434.e8 (2019).
    • 154. Duruisseaux M. Lorlatinib: a new treatment option for ROS1-positive lung cancer. Lancet Oncol. 20(12), 1622–1623 (2019).
    • 155. Zhuang X, Zhang H, Li X et al. Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1. Nat. Cell Biol. 19(10), 1274–1285 (2017).
    • 156. Le A, Udupa S, Zhang C. The metabolic interplay between cancer and other diseases. Trends Cancer 5(12), 809–821 (2019).
    • 157. Peck B, Schulze A. Lipid metabolism at the nexus of diet and tumor microenvironment. Trends Cancer 5(11), 693–703 (2019).
    • 158. Batlle E, Massagué J. Transforming growth factor-β signaling in immunity and cancer. Immunity 50(4), 924–940 (2019).
    • 159. Majidpoor J, Mortezaee K. Steps in metastasis: an updated review. Med. Oncol. 38(1), 3 (2021).
    • 160. Mortezaee K. Enriched cancer stem cells, dense stroma, and cold immunity: Interrelated events in pancreatic cancer. J. Biochem. Mol. Toxicol. doi: 10.1002/jbt.22708 (2021) (Epub ahead of print).