We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Clinical Trial Protocol

SOLTI-1503 PROMETEO TRIAL: combination of talimogene laherparepvec with atezolizumab in early breast cancer

    Tomas Pascual

    Scientific Department, SOLTI Breast Cancer Research Group, Barcelona, Spain

    Medical Oncology Department, Hospital Clínic de Barcelona, Barcelona, Spain

    ,
    Juan M Cejalvo

    Medical Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain

    Breast Cancer Biology Research Group, Biomedical Research Institute INCLIVA, Valencia, Spain

    ,
    Mafalda Oliveira

    Scientific Department, SOLTI Breast Cancer Research Group, Barcelona, Spain

    Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain

    Breast Cancer Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain

    ,
    Maria Vidal

    Scientific Department, SOLTI Breast Cancer Research Group, Barcelona, Spain

    Medical Oncology Department, Hospital Clínic de Barcelona, Barcelona, Spain

    Translational Genomics and Targeted Therapies in Solid Tumours, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain

    Medicine Department, University of Barcelona, Barcelona, Spain

    ,
    Estela Vega

    Medical Oncology Department, Centro Integral Oncológico Clara Campal, Madrid, Spain

    ,
    Sergi Ganau

    Radiology Department, Hospital Clínic de Barcelona, Barcelona, Spain

    ,
    Ana Julve

    Radiology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain

    ,
    Esther Zamora

    Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain

    Breast Cancer Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain

    ,
    Ignacio Miranda

    Radiology Department, Breast Imaging Unit, Vall d'Hebron University Hospital, Barcelona, Spain

    ,
    Ana Delgado

    Radiology Department, Centro Integral Oncológico Clara Campal, Madrid, Spain

    ,
    Begoña Bermejo

    Medical Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain

    Breast Cancer Biology Research Group, Biomedical Research Institute INCLIVA, Valencia, Spain

    ,
    Luis de la Cruz-Merino

    Medical Oncology Department, Hospital Universitario Virgen Macarena. Sevilla, Spain

    Medicine Department, Universidad de Sevilla, Sevilla, Spain

    ,
    Manel Juan

    Scientific Department, SOLTI Breast Cancer Research Group, Barcelona, Spain

    Translational Genomics and Targeted Therapies in Solid Tumours, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain

    Biomedicine Department, University of Barcelona, Barcelona, Spain

    Immunogenetics of the Autoinflammatory Response, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain

    ,
    Juan M Ferrero-Cafiero

    Scientific Department, SOLTI Breast Cancer Research Group, Barcelona, Spain

    ,
    Jordi Canes

    Scientific Department, SOLTI Breast Cancer Research Group, Barcelona, Spain

    ,
    Xavier Gonzalez

    Scientific Department, SOLTI Breast Cancer Research Group, Barcelona, Spain

    Medical Oncology Department Hospital Universitari General de Catalunya, Sant Cugat del Vallès, Spain

    ,
    Patricia Villagrasa

    Scientific Department, SOLTI Breast Cancer Research Group, Barcelona, Spain

    &
    Aleix Prat

    *Author for correspondence:

    E-mail Address: alprat@clinic.cat

    Scientific Department, SOLTI Breast Cancer Research Group, Barcelona, Spain

    Medical Oncology Department, Hospital Clínic de Barcelona, Barcelona, Spain

    Translational Genomics and Targeted Therapies in Solid Tumours, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain

    Medicine Department, University of Barcelona, Barcelona, Spain

    Published Online:https://doi.org/10.2217/fon-2020-0246

    New treatment strategies such as immune checkpoint inhibitors and oncolytic viruses are opening new possibilities in cancer therapy. Preliminary results in melanoma and other tumors showed that the combination of talimogene laherparepvec with an anti-PD-1/PD-L1 or anti-CTLA4 has greater efficacy than either therapy alone, without additional safety concerns beyond those expected for each agent. The presence of residual cancer after neoadjuvant chemotherapy in early breast cancer patients is an unmet medical need. SOLTI-1503 PROMETEO is a window of opportunity trial, which evaluates the combination of talimogene laherparepvec in combination with atezolizumab in women with operable HER2-negative breast cancer who present residual disease after neoadjuvant chemotherapy. The primary end point is the rate of residual cancer burden 0/1.

    Clinical Trial Registration: NCT03802604

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Coudert BP, Arnould L, Moreau L et al. Pre-operative systemic (neo-adjuvant) therapy with trastuzumab and docetaxel for HER2-overexpressing stage II or III breast cancer: results of a multicenter phase II trial. Ann. Oncol. 17(3), 409–414 (2006).
    • 2. Colomer R, Saura C, Sánchez-Rovira P et al. Neoadjuvant management of early breast cancer: a clinical and investigational position statement. Oncologist 24(5), 603–611 (2019).
    • 3. Cortazar P, Zhang L, Untch M et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384(9938), 164–172 (2014). • Metanalysis shows the poor prognosis of residual disease following neoadjuvant chemotherapy in breast cancer patients.
    • 4. Minckwitz G, Fontanella C. State of the art in neoadjuvant therapy of breast cancer. EJC 11(Suppl. 2), 284–285 (2013).
    • 5. Wolff AC, Berry D, Carey LA et al. Research issues affecting preoperative systemic therapy for operable breast cancer. J. Clin. Oncol. 26(5), 806–813 (2008).
    • 6. Prowell TM, Pazdur R. Pathological complete response and accelerated drug approval in early breast cancer. N. Engl. J. Med. 366(26), 2438–2441 (2012).
    • 7. Berry DA, Hudis CA. Neoadjuvant therapy in breast cancer as a basis for drug approval. JAMA Oncol. 1(7), 875–876 (2015).
    • 8. Gianni L, Pienkowski T, Im YH et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, Phase II trial. Lancet Oncol. 13(1), 25–32 (2012).
    • 9. Von Minckwitz G, Untch M, Blohmer J-U et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J. Clin. Oncol. 30(15), 1796–1804 (2012).
    • 10. Karagiannis GS, Pastoriza JM, Wang Y et al. Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism. Sci. Transl. Med. 9(397), eaan0026 (2017).
    • 11. Von Minckwitz G, Rezai M, Loibl S et al. Capecitabine in addition to anthracycline-and taxane-based neoadjuvant treatment in patients with primary breast cancer: Phase III GeparQuattro study. J. Clin. Oncol. 28(12), 2015–2023 (2010).
    • 12. Bear HD, Tang G, Rastogi P et al. Bevacizumab added to neoadjuvant chemotherapy for breast cancer. N. Engl. J. Med. 366(4), 310–320 (2012).
    • 13. Reinisch M, Ataseven B, Kümmel S. Neoadjuvant dose-dense and dose-intensified chemotherapy in breast cancer-review of the literature. Breast Care 11(1), 13–20 (2016).
    • 14. Masuda N, Lee S-J, Ohtani S et al. Adjuvant capecitabine for breast cancer after preoperative chemotherapy. N. Engl. J. Med. 376(22), 2147–2159 (2017).
    • 15. Von Minckwitz G, Huang C-S, Mano MS et al. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N. Engl. J. Med. 380(7), 617–628 (2019).
    • 16. Loi S, Sirtaine N, Piette F et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J. Clin. Oncol. 31(7), 860–867 (2013).
    • 17. Denkert C, Von Minckwitz G, Darb-Esfahani S et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 19(1), 40–50 (2018).
    • 18. Luen SJ, Salgado R, Fox S et al. Tumour-infiltrating lymphocytes in advanced HER2-positive breast cancer treated with pertuzumab or placebo in addition to trastuzumab and docetaxel: a retrospective analysis of the CLEOPATRA study. Lancet Oncol. 18(1), 52–62 (2017).
    • 19. Adams S, Gray RJ, Demaria S et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J. Clin. Oncol. 32(27), 2959–2966 (2014).
    • 20. Nuciforo P, Pascual T, Cortés J et al. A predictive model of pathologic response based on tumor cellularity and tumor-infiltrating lymphocytes (CelTIL) in HER2-positive breast cancer treated with chemo-free dual HER2 blockade. Ann. Oncol. 29(1), 170–177 (2018).
    • 21. Disis ML, Stanton SE. Immunotherapy in breast cancer: an introduction. Breast 37, 196–199 (2017).
    • 22. Griguolo G, Pascual T, Dieci MV, Guarneri V, Prat A. Interaction of host immunity with HER2-targeted treatment and tumor heterogeneity in HER2-positive breast cancer. J. Immunother. Cancer 7(1), 90 (2019).
    • 23. Ali HR, Provenzano E, Dawson SJ et al. Association between CD8+ T-cell infiltration and breast cancer survival in 12,439 patients. Ann. Oncol. 25(8), 1536–1543 (2014).
    • 24. Loi S, Giobbie-Hurder A, Gombos A et al. Pembrolizumab plus trastuzumab in trastuzumab-resistant, advanced, HER2-positive breast cancer (PANACEA): a single-arm, multicentre, Phase Ib-II trial. Lancet Oncol. 20(3), 371–382 (2019).
    • 25. Swaika A, Hammond WA, Joseph RW. Current state of anti-PD-L1 and anti-PD-1 agents in cancer therapy. Mol. Immunol. 67(2 Pt A), 4–17 (2015).
    • 26. Herbst RS, Soria JC, Kowanetz M et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515(7528), 563–567 (2014).
    • 27. Bluestone JA, Small EJ. The future of cancer treatment: will it include immunotherapy? Cancer Cell 22(1), 7–8 (2012).
    • 28. Schmid P, Rugo HS, Adams S et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, Phase III trial. Lancet Oncol. 21(1), 44–59 (2019).
    • 29. Schmid P, Cortés J, Dent R et al. LBA8_PR KEYNOTE-522: phase III study of pembrolizumab (pembro)+ chemotherapy (chemo) vs placebo (pbo)+ chemo as neoadjuvant treatment, followed by pembro vs pbo as adjuvant treatment for early triple-negative breast cancer (TNBC). Ann. Oncol. 382(9), 810–821 (2020).
    • 30. Dieci MV, Criscitiello C, Goubar A et al. Prognostic value of tumor-infiltrating lymphocytes on residual disease after primary chemotherapy for triple-negative breast cancer: a retrospective multicenter study. Ann. Oncol. 25(3), 611–618 (2014).
    • 31. Miyashita M, Sasano H, Tamaki K et al. Prognostic significance of tumor-infiltrating CD8+ and FOXP3+ lymphocytes in residual tumors and alterations in these parameters after neoadjuvant chemotherapy in triple-negative breast cancer: a retrospective multicenter study. Breast Cancer Res. 17, 124 (2015).
    • 32. Loi S, Dushyanthen S, Beavis PA et al. RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin. Cancer Res. 22(6), 1499–1509 (2016).
    • 33. Luen S, Salgado R, Dieci M et al. Prognostic implications of residual disease tumor-infiltrating lymphocytes and residual cancer burden in triple-negative breast cancer patients after neoadjuvant chemotherapy. Ann. Oncol. 30(2), 236–242 (2018).
    • 34. Pinard C, Debled M, Ben Rejeb H et al. Residual cancer burden index and tumor-infiltrating lymphocyte subtypes in triple-negative breast cancer after neoadjuvant chemotherapy. Breast Cancer Res. Treat. 179(1), 11–23 (2019).
    • 35. Hu JC, Coffin RS, Davis CJ et al. A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin. Cancer Res. 12(22), 6737–6747 (2006).
    • 36. Senzer NN, Kaufman HL, Amatruda T et al. Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J. Clin. Oncol. 27(34), 5763 (2009).
    • 37. Dummer R, Gyorki DE, Hyngstrom JR et al. One-year (yr) recurrence-free survival (RFS) from a randomized, open label phase II study of neoadjuvant (neo) talimogene laherparepvec (T-VEC) plus surgery (surgx) versus surgx for resectable stage IIIB-IVM1a melanoma (MEL). J. Clin. Oncol. 37(Suppl. 15), 9520–9520 (2019).
    • 38. Andtbacka RH, Collichio F, Harrington KJ et al. Final analyses of OPTiM: a randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III–IV melanoma. J. Immunother. Cancer 7(1), 145 (2019). •• First randomized Phase III data demonstrate superior efficacy achieved by talimogene laherparepvec in unresectable stage III–IV melanoma.
    • 39. Andtbacka RH, Kaufman HL, Collichio F et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 33(25), 2780–2788 (2015).
    • 40. Puzanov I, Milhem MM, Andtbacka RHI et al. Primary analysis of a Phase Ib multicenter trial to evaluate safety and efficacy of talimogene laherparepvec (T-VEC) and ipilimumab (ipi) in previously untreated, unresected stage IIIB-IV melanoma. Clinical Oncology. 32(Suppl. 15),9029–9029 (2014).
    • 41. Chesney J, Puzanov I, Collichio F et al. Randomized, open-label Phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J. Clin. Oncol. 36(17), 1658 (2018).
    • 42. Ribas A, Dummer R, Puzanov I et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 170(6), 1109–1119. e1110 (2017).
    • 43. Harrington KJ, Kong AH, Mach N et al. Safety and preliminary efficacy of talimogene laherparepvec (T-VEC) in combination (combo) with pembrobrolizumab (Pembro) in patients (pts) with recurrent or metastatic squamous cell carcinoma of the head and neck.Clinical Oncology. 36(Suppl. 15), 6036–6036 (2018).
    • 44. Kelly CM, Antonescu CR, Bowler T et al. Objective response rate among patients with locally advanced or metastatic sarcoma treated with talimogene laherparepvec in combination with pembrolizumab: a Phase II clinical trial. JAMA Oncol. 6(3), 402–408 (2020).
    • 45. Chang KJ, Senzer NN, Binmoeller K, Goldsweig H, Coffin R. Phase I dose-escalation study of talimogene laherparepvec (T-VEC) for advanced pancreatic cancer (ca). (Journal of Clinical Oncology. 30(Suppl. 15), e14546–e14546 (2012).
    • 46. Soliman H, Hogue D, Han H et al. Abstract CT040: a Phase I trial of talimogene laherparepvec combined with neoadjuvant chemotherapy for non-metastatic triple negative breast cancer. Cancer Res. 79(Suppl. 13), CT040–CT040 (2019).
    • 47. Ledford H. Cancer-fighting viruses win approval. Nature 526(7575), 622 (2015).
    • 48. Raman SS, Hecht JR, Chan E. Talimogene laherparepvec: review of its mechanism of action and clinical efficacy and safety. Immunotherapy 11(8), 705–723 (2019). • Rationale for use of talimogene laherparepvec in combination with immune checkpoint inhibitors.
    • 49. Emens LA, Cruz C, Eder JP et al. Long-term clinical outcomes and biomarker analyses of atezolizumab therapy for patients with metastatic triple-negative breast cancer: a phase 1 study. JAMA Oncol. 5(1), 74–82 (2018). • Long-term outcomes from Phase I clinical trial of atezolizumab monotherapy in triple negative breast cancer.
    • 50. Adams S, Diamond JR, Hamilton E et al. Atezolizumab plus nab-paclitaxel in the treatment of metastatic triple-negative breast cancer with 2-year survival follow-up: a Phase Ib clinical trial atezolizumab plus nab-paclitaxel in the treatment of metastatic triple-negative breast canceratezolizumab plus nab-paclitaxel in the treatment of metastatic triple-negative breast cancer. JAMA Oncol. 5(3), 334–342 (2019).
    • 51. Schmid P, Adams S, Rugo HS et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 379(22), 2108–2121 (2018). •• First randomized Phase III data demonstrate superior efficacy achieved by combining atezolizumab with nab-paclitaxel in first-line for triple-negative breast cancer.
    • 52. Schmid P, Cortes J, Pusztai L et al. Pembrolizumab for early triple-negative breast cancer. N. Engl. J. Med. 382(9), 810–821 (2020). •• First randomized Phase III data demonstrate superior efficacy achieved by pembrolizumab in combination with neoadjuvant chemotherapy in triple negative breast cancer.
    • 53. Loibl S, Untch M, Burchardi N et al. A randomised Phase II study investigating durvalumab in addition to an anthracycline taxane-based neoadjuvant therapy in early triple-negative breast cancer: clinical results and biomarker analysis of GeparNuevo study. Ann. Oncol. 30(8), 1279–1288 (2019).
    • 54. Gianni L, Huang C-S, Egle D et al. Abstract GS3-04: pathologic complete response (pCR) to neoadjuvant treatment with or without atezolizumab in triple negative, early high-risk and locally advanced breast cancer. NeoTRIPaPDL1 Michelangelo randomized study. 80(Suppl. 4), (2020).
    • 55. Robert C, Schachter J, Long GV et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372(26), 2521–2532 (2015).
    • 56. Symmans WF, Peintinger F, Hatzis C et al. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J. Clin. Oncol. 25(28), 4414–4422 (2007).
    • 57. Danaher P, Warren S, Lu R et al. Pan-cancer adaptive immune resistance as defined by the Tumor Inflammation Signature (TIS): results from The Cancer Genome Atlas (TCGA). J. Immunother. Cancer 6(1), 63 (2018).
    • 58. Parker JS, Mullins M, Cheang MC et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 27(8), 1160 (2009).
    • 59. Rosner B. Fundamentals of biostatistics. Nelson Education (2015). https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.4710350205