We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Computational metabolism modeling predicts risk of distant relapse-free survival in breast cancer patients

    Lucía Trilla-Fuertes

    Biomedica Molecular Medicine SL, C/ Faraday 7, Madrid 28049, Spain

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Angelo Gámez-Pozo

    Biomedica Molecular Medicine SL, C/ Faraday 7, Madrid 28049, Spain

    Molecular Oncology & Pathology Lab, Institute of Medical & Molecular Genetics-INGEMM, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, Madrid 28046, Spain

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Mariana Díaz-Almirón

    Biostatistics Unit, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, Madrid 28046, Spain

    ,
    Guillermo Prado-Vázquez

    Biomedica Molecular Medicine SL, C/ Faraday 7, Madrid 28049, Spain

    ,
    Andrea Zapater-Moros

    Molecular Oncology & Pathology Lab, Institute of Medical & Molecular Genetics-INGEMM, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, Madrid 28046, Spain

    ,
    Rocío López-Vacas

    Molecular Oncology & Pathology Lab, Institute of Medical & Molecular Genetics-INGEMM, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, Madrid 28046, Spain

    ,
    Paolo Nanni

    Functional Genomics Centre Zurich, University of Zurich/ETH Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland

    ,
    Pilar Zamora

    Medical Oncology Service, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, Madrid 28046, Spain

    Cátedra UAM-Amgen, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid 28049, Spain

    Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, C/ Melchor Fernández Almagro, 3, Madrid 28029, Spain

    ,
    Enrique Espinosa

    Medical Oncology Service, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, Madrid 28046, Spain

    Cátedra UAM-Amgen, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid 28049, Spain

    Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, C/ Melchor Fernández Almagro, 3, Madrid 28029, Spain

    &
    Juan Ángel Fresno Vara

    *Author for correspondence:

    E-mail Address: juanangel.fresno@salud.madrid.org

    Molecular Oncology & Pathology Lab, Institute of Medical & Molecular Genetics-INGEMM, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, Madrid 28046, Spain

    Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, C/ Melchor Fernández Almagro, 3, Madrid 28029, Spain

    Published Online:https://doi.org/10.2217/fon-2018-0698

    Aim: Differences in metabolism among breast cancer subtypes suggest that metabolism plays an important role in this disease. Flux balance analysis is used to explore these differences as well as drug response. Materials & methods: Proteomics data from breast tumors were obtained by mass-spectrometry. Flux balance analysis was performed to study metabolic networks. Flux activities from metabolic pathways were calculated and used to build prognostic models. Results: Flux activities of vitamin A, tetrahydrobiopterin and β-alanine metabolism pathways split our population into low- and high-risk patients. Additionally, flux activities of glycolysis and glutamate metabolism split triple negative tumors into low- and high-risk groups. Conclusion: Flux activities summarize flux balance analysis data and can be associated with prognosis in cancer.

    References

    • 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J. Clin. 68(1), 7–30 (2018).
    • 2. Gámez-Pozo A, Trilla-Fuertes L, Berges-Soria J et al. Functional proteomics outlines the complexity of breast cancer molecular subtypes. Sci. Rep. 7(1), 10100 (2017).
    • 3. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011).
    • 4. Warburg O. The metabolism of carcinoma cells. J. Cancer Res. 9, 148–163 (1925).
    • 5. DeBerardinis RJ, Mancuso A, Daikhin E et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl Acad. Sci. USA 104(49), 19345–19350 (2007).
    • 6. Gámez-Pozo A, Berges-Soria J, Arevalillo JM et al. Combined label-free quantitative proteomics and microRNA expression analysis of breast cancer unravel molecular differences with clinical implications. Cancer Res. 75(11), 2243–2253 (2015).
    • 7. Orth J, Thiele I, Palsson B. What is flux balance analysis? Nat. Biotechnol. 28(3), 245–248 (2010).
    • 8. Trilla-Fuertes L, Gámez-Pozo A, Arevalillo JM et al. Molecular characterization of breast cancer cell response to metabolic drugs. Oncotarget 9(11), 9645–9660 (2018).
    • 9. Gámez-Pozo A, Ferrer NI, Ciruelos E et al. Shotgun proteomics of archival triple-negative breast cancer samples. Proteomics Clin. Appl. 7(3-4), 283–291 (2013).
    • 10. Gámez-Pozo A, Sánchez-Navarro I, Calvo E et al. Protein phosphorylation analysis in archival clinical cancer samples by shotgun and targeted proteomics approaches. Mol. Biosyst. 7(8), 2368–2374 (2011).
    • 11. Tyanova S, Temu T, Sinitcyn P et al. The Perseus computational platform for comprehensive analysis of proteomics data. Nat. Methods 13(9), 731–740 (2016).
    • 12. Schellenberger J, Que R, Fleming R et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat. Protoc. 6(9), 1290–1307 (2011).
    • 13. Thiele I, Swainston N, Fleming RM et al. A community-driven global reconstruction of human metabolism. Nat. Biotechnol. 31(5), 419–425 (2013).
    • 14. Barker BE, Sadagopan N, Wang Y et al. A robust and efficient method for estimating enzyme complex abundance and metabolic flux from expression data. Comput. Biol. Chem. 59(Pt B), 98–112 (2015).
    • 15. Colijn C, Brandes A, Zucker J et al. Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production. PLoS Comput. Biol. e1000489 doi:10.1371/journal.pcbi.1000489 (2009) (Epub ahead of print).
    • 16. Shlomi T, Benyamini T, Gottlieb E, Sharan R, Ruppin E. Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the Warbug effect. PLoS Comput. Biol. 7(3), e1002018 (2011).
    • 17. Simon R. Roadmap for developing and validating therapeutically relevant genomic classifiers. J. Clin. Oncol. 23(29), 7332–7341 (2005).
    • 18. Mahalingaiah PK, Ponnusamy L, Singh KP. Chronic oxidative stress causes estrogen-independent aggressive phenotype, and epigenetic inactivation of estrogen receptor alpha in MCF-7 breast cancer cells. Breast Cancer Res. Treat. 153(1), 41–56 (2015).
    • 19. Pelicano H, Zhang W, Liu J et al. Mitochondrial dysfunction in some triple-negative breast cancer cell lines: role of mTOR pathway and therapeutic potential. Breast Cancer Res. 16(5), 434 (2014).
    • 20. Terunuma A, Putluri N, Mishra P et al. MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J. Clin. Invest. 124(1), 398–412 (2014).
    • 21. Formelli F, Meneghini E, Cavadini E et al. Plasma retinol and prognosis of postmenopausal breast cancer patients. Cancer Epidemiol. Biomarkers Prev. 18(1), 42–48 (2009).
    • 22. McCleland ML, Adler AS, Shang Y et al. An integrated genomic screen identifies LDHB as an essential gene for triple-negative breast cancer. Cancer Res. 72(22), 5812–5823 (2012).
    • 23. Kim S, Kim DH, Jung WH, Koo JS. Expression of glutamine metabolism-related proteins according to molecular subtype of breast cancer. Endocr. Relat. Cancer 20(3), 339–348 (2013).
    • 24. Lampa M, Arlt H, He T et al. Glutaminase is essential for the growth of triple-negative breast cancer cells with a deregulated glutamine metabolism pathway and its suppression synergizes with mTOR inhibition. PLoS ONE 12(9), e0185092 (2017).