We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Developments in miRNA gene signaling pathways in pancreatic cancer

    Christina Vorvis

    Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA

    Authors contributed equally

    Search for more papers by this author

    ,
    Marina Koutsioumpa

    Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA

    Authors contributed equally

    Search for more papers by this author

    &
    Dimitrios Iliopoulos

    *Author for correspondence:

    E-mail Address: diliopoulos@mednet.ucla.edu

    Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA

    Published Online:https://doi.org/10.2217/fon-2015-0050

    Pancreatic cancer is a devastating malignancy that ranks as the fourth leading cause of cancer-related deaths worldwide. Dismal prognosis is mainly attributable to limited knowledge of the molecular pathogenesis of the disease. miRNAs have been found to be deregulated in pancreatic cancer, affecting several steps of initiation and aggressiveness of the disease by regulating important signaling pathways, such as the KRAS and Notch pathways. Moreover, the effect of miRNAs on regulating cell cycle events and expression of transcription factors has gained a lot of attention. Recent studies have highlighted the application of miRNAs as biomarkers and therapeutic tools. The current review focuses on latest advances with respect to the roles of miRNAs in pancreatic ductal adenocarcinoma associated signaling pathways and miRNA-based therapeutics.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Li D, Xie K, Wolff R, Abbruzzese JL. Pancreatic cancer. Lancet 363(9414), 1049–1057 (2004).
    • 2 Morris JPT, Wang SC, Hebrok M. KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat. Rev. Cancer 10(10), 683–695 (2010).
    • 3 Cancer Facts & Figures 2015. American Cancer Society, Atlanta, GA, USA (2015).
    • 4 Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5), 843–854 (1993).
    • 5 Calin GA, Dumitru CD, Shimizu M et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 99(24), 15524–15529 (2002). •• Presents evidence for the involvement of miRNA genes in human tumors.
    • 6 Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2), 281–297 (2004).
    • 7 Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1), 15–20 (2005).
    • 8 Cheng AM, Byrom MW, Shelton J, Ford LP. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 33(4), 1290–1297 (2005).
    • 9 Tanno B, Cesi V, Vitali R et al. Silencing of endogenous IGFBP-5 by micro RNA interference affects proliferation, apoptosis and differentiation of neuroblastoma cells. Cell Death Differ. 12(3), 213–223 (2005).
    • 10 Iliopoulos D, Hirsch HA, Struhl K. An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139(4), 693–706 (2009).
    • 11 Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol. Cell 39(4), 493–506 (2010).
    • 12 Hatziapostolou M, Iliopoulos D. Epigenetic aberrations during oncogenesis. Cell Mol. Life Sci. 68(10), 1681–1702 (2011).
    • 13 Hatziapostolou M, Polytarchou C, Aggelidou E et al. An HNF4alpha-miRNA inflammatory feedback circuit regulates hepatocellular oncogenesis. Cell 147(6), 1233–1247 (2011).
    • 14 Bakirtzi K, Hatziapostolou M, Karagiannides I et al. Neurotensin signaling activates microRNAs-21 and -155 and Akt, promotes tumor growth in mice, and is increased in human colon tumors. Gastroenterology 141(5), 1749–1761.e1741 (2011).
    • 15 Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet. 10(10), 704–714 (2009). •• Highlights the dependence of malignant pathologies on the deregulated expression of miRNA genes.
    • 16 Xue J, Niu J, Wu J, Wu ZH. MicroRNAs in cancer therapeutic response: friend and foe. World J. Clin. Oncol. 5(4), 730–743 (2014).
    • 17 Kasinski AL, Slack FJ. Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat. Rev. Cancer 11(12), 849–864 (2011).
    • 18 Lu J, Getz G, Miska EA et al. MicroRNA expression profiles classify human cancers. Nature 435(7043), 834–838 (2005).
    • 19 Volinia S, Calin GA, Liu CG et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl Acad. Sci. USA 103(7), 2257–2261 (2006).
    • 20 Jamieson NB, Morran DC, Morton JP et al. MicroRNA molecular profiles associated with diagnosis, clinicopathologic criteria, and overall survival in patients with resectable pancreatic ductal adenocarcinoma. Clin. Cancer Res. 18(2), 534–545 (2012).
    • 21 Frampton AE, Giovannetti E, Jamieson NB et al. A microRNA meta-signature for pancreatic ductal adenocarcinoma. Expert Rev. Mol. Diagn. 14(3), 267–271 (2014).
    • 22 Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11(9), 597–610 (2010).
    • 23 Drakaki A, Iliopoulos D. MicroRNA gene networks in oncogenesis. Curr. Genomics 10(1), 35–41 (2009).
    • 24 Bardeesy N, Depinho RA. Pancreatic cancer biology and genetics. Nat. Rev. Cancer 2(12), 897–909 (2002).
    • 25 Iacobuzio-Donahue CA, Hruban RH. Gene expression in neoplasms of the pancreas: applications to diagnostic pathology. Adv. Anat. Pathol. 10(3), 125–134 (2003).
    • 26 Li Y, Vandenboom TG 2nd, Kong D et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 69(16), 6704–6712 (2009).
    • 27 Ji Q, Hao X, Zhang M et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS ONE 4(8), e6816 (2009).
    • 28 Kent OA, Fox-Talbot K, Halushka MK. RREB1 repressed miR-143/145 modulates KRAS signaling through downregulation of multiple targets. Oncogene 32(20), 2576–2585 (2013).
    • 29 Forbes SA, Bindal N, Bamford S et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39(Database issue), D945–D950 (2011).
    • 30 Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer 11(11), 761–774 (2011).
    • 31 Kanda M, Matthaei H, Wu J et al. Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology 142(4), 730–733 e739 (2012).
    • 32 Laghi L, Orbetegli O, Bianchi P et al. Common occurrence of multiple K-RAS mutations in pancreatic cancers with associated precursor lesions and in biliary cancers. Oncogene 21(27), 4301–4306 (2002).
    • 33 Hingorani SR, Petricoin EF, Maitra A et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4(6), 437–450 (2003).
    • 34 Golan T, Khvalevsky EZ, Hubert A et al. RNAi therapy targeting KRAS in combination with chemotherapy for locally advanced pancreatic cancer patients. Oncotarget 6(27), 24560–24570 (2015).
    • 35 Berndt N, Hamilton AD, Sebti SM. Targeting protein prenylation for cancer therapy. Nat. Rev. Cancer 11(11), 775–791 (2011).
    • 36 Zhao WG, Yu SN, Lu ZH, Ma YH, Gu YM, Chen J. The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS. Carcinogenesis 31(10), 1726–1733 (2010).
    • 37 Yu S, Lu Z, Liu C et al. miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res. 70(14), 6015–6025 (2010). • Demonstrating potent regulation of the KRAS signaling pathway by miR-96, which could potentially provide a novel therapeutic strategy for treatment of pancreatic cancer and other KRAS-driven cancers.
    • 38 Jiao LR, Frampton AE, Jacob J et al. MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors. PLoS ONE 7(2), e32068 (2012).
    • 39 Talotta F, Cimmino A, Matarazzo MR et al. An autoregulatory loop mediated by miR-21 and PDCD4 controls the AP-1 activity in RAS transformation. Oncogene 28(1), 73–84 (2009).
    • 40 Du Rieu MC, Torrisani J, Selves J et al. MicroRNA-21 is induced early in pancreatic ductal adenocarcinoma precursor lesions. Clin. Chem. 56(4), 603–612 (2010).
    • 41 Keklikoglou I, Hosaka K, Bender C et al. MicroRNA-206 functions as a pleiotropic modulator of cell proliferation, invasion and lymphangiogenesis in pancreatic adenocarcinoma by targeting ANXA2 and KRAS genes. Oncogene 34(37), 4867–4878 (2015).
    • 42 Ladha MH, Lee KY, Upton TM, Reed MF, Ewen ME. Regulation of exit from quiescence by p27 and cyclin D1-CDK4. Mol. Cell. Biol. 18(11), 6605–6615 (1998).
    • 43 Ohtsubo M, Chibazakura T. [G1 phase regulation]. Tanpakushitsu Kakusan Koso 41(12 Suppl.), 1712–1718 (1996).
    • 44 Knudsen ES, Knudsen KE. Tailoring to RB: tumour suppressor status and therapeutic response. Nat. Rev. Cancer 8(9), 714–724 (2008).
    • 45 Chen HZ, Tsai SY, Leone G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat. Rev. Cancer 9(11), 785–797 (2009).
    • 46 Chen J, Li D, Killary AM et al. Polymorphisms of p16, p27, p73, and MDM2 modulate response and survival of pancreatic cancer patients treated with preoperative chemoradiation. Ann. Surg. Oncol. 16(2), 431–439 (2009).
    • 47 Fry LC, Monkemuller K, Malfertheiner P. Molecular markers of pancreatic cancer: development and clinical relevance. Langenbecks Arch. Surg. 393(6), 883–890 (2008).
    • 48 Zhao C, Zhang J, Zhang S et al. Diagnostic and biological significance of microRNA-192 in pancreatic ductal adenocarcinoma. Oncol. Rep. 30(1), 276–284 (2013).
    • 49 Chen Z, Chen LY, Dai HY, Wang P, Gao S, Wang K. miR-301a promotes pancreatic cancer cell proliferation by directly inhibiting Bim expression. J. Cell. Biochem. 113(10), 3229–3235 (2012).
    • 50 Willis SN, Chen L, Dewson G et al. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev. 19(11), 1294–1305 (2005).
    • 51 Boucher MJ, Morisset J, Vachon PH, Reed JC, Laine J, Rivard N. MEK/ERK signaling pathway regulates the expression of Bcl-2, Bcl-X(L), and Mcl-1 and promotes survival of human pancreatic cancer cells. J. Cell. Biochem. 79(3), 355–369 (2000).
    • 52 Wu K, Hu G, He X et al. MicroRNA-424-5p suppresses the expression of SOCS6 in pancreatic cancer. Pathol. Oncol. Res. 19(4), 739–748 (2013).
    • 53 Jin X, Sun Y, Yang H et al. Deregulation of the miR-193b–KRAS axis contributes to impaired cell growth in pancreatic cancer. PLoS ONE 10(4), e0125515 (2015).
    • 54 De La OJ, Murtaugh LC. Notch and Kras in pancreatic cancer: at the crossroads of mutation, differentiation and signaling. Cell Cycle 8(12), 1860–1864 (2009).
    • 55 Wang Z, Zhang Y, Li Y, Banerjee S, Liao J, Sarkar FH. Down-regulation of Notch-1 contributes to cell growth inhibition and apoptosis in pancreatic cancer cells. Mol. Cancer. Ther. 5(3), 483–493 (2006).
    • 56 Nalls D, Tang SN, Rodova M, Srivastava RK, Shankar S. Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells. PLoS ONE 6(8), e24099 (2011).
    • 57 Brabletz S, Bajdak K, Meidhof S et al. The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO J. 30(4), 770–782 (2011). • Show the importance of the ZEB1/miR-200 feedback loop controlling Notch signaling in pancreatic cancer cells.
    • 58 Sureban SM, May R, Qu D et al. DCLK1 regulates pluripotency and angiogenic factors via microRNA-dependent mechanisms in pancreatic cancer. PLoS ONE 8(9), e73940 (2013).
    • 59 Nebert DW. Transcription factors and cancer: an overview. Toxicology 181–182, 131–141 (2002).
    • 60 Sun M, Estrov Z, Ji Y, Coombes KR, Harris DH, Kurzrock R. Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol. Cancer Ther. 7(3), 464–473 (2008).
    • 61 Fujioka S, Sclabas GM, Schmidt C et al. Function of nuclear factor kappaB in pancreatic cancer metastasis. Clin. Cancer Res. 9(1), 346–354 (2003).
    • 62 Li Y, Vandenboom TG 2nd, Wang Z et al. miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res. 70(4), 1486–1495 (2010).
    • 63 Lu Z, Li Y, Takwi A et al. miR-301a as an NF-kappaB activator in pancreatic cancer cells. EMBO J. 30(1), 57–67 (2011). • Reveals a novel feedback loop mechanism of NF-κB activation by a miRNA.
    • 64 Corcoran RB, Contino G, Deshpande V et al. STAT3 plays a critical role in KRAS-induced pancreatic tumorigenesis. Cancer Res. 71(14), 5020–5029 (2011).
    • 65 Yan H, Wu J, Liu W et al. MicroRNA-20a overexpression inhibited proliferation and metastasis of pancreatic carcinoma cells. Hum. Gene Ther. 21(12), 1723–1734 (2010).
    • 66 Zhao G, Zhang JG, Shi Y et al. MiR-130b is a prognostic marker and inhibits cell proliferation and invasion in pancreatic cancer through targeting STAT3. PLoS ONE 8(9), e73803 (2013).
    • 67 Xia JT, Wang H, Liang LJ et al. Overexpression of FOXM1 is associated with poor prognosis and clinicopathologic stage of pancreatic ductal adenocarcinoma. Pancreas 41(4), 629–635 (2012).
    • 68 Bao B, Wang Z, Ali S et al. Over-expression of FoxM1 leads to epithelial–mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells. J. Cell. Biochem. 112(9), 2296–2306 (2011).
    • 69 Yu C, Wang M, Li Z et al. MicroRNA-138-5p regulates pancreatic cancer cell growth through targeting FOXC1. Cell. Oncol. (Dordr.) 38(3), 173–181 (2015).
    • 70 Zhang Y, Yang J, Cui X et al. A novel epigenetic CREB–miR-373 axis mediates ZIP4-induced pancreatic cancer growth. EMBO Mol. Med. 5(9), 1322–1334 (2013).
    • 71 Gironella M, Seux M, Xie MJ et al. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc. Natl Acad. Sci. USA 104(41), 16170–16175 (2007).
    • 72 Greither T, Grochola LF, Udelnow A, Lautenschlager C, Wurl P, Taubert H. Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival. Int. J. Cancer 126(1), 73–80 (2010).
    • 73 Lee EJ, Gusev Y, Jiang J et al. Expression profiling identifies microRNA signature in pancreatic cancer. Int. J. Cancer 120(5), 1046–1054 (2007).
    • 74 Park JK, Henry JC, Jiang J et al. miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor. Biochem. Biophys. Res. Commun. 406(4), 518–523 (2011).
    • 75 Zhang S, Hao J, Xie F et al. Downregulation of miR-132 by promoter methylation contributes to pancreatic cancer development. Carcinogenesis 32(8), 1183–1189 (2011).
    • 76 Dillhoff M, Liu J, Frankel W, Croce C, Bloomston M. MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J. Gastrointest. Surg. 12(12), 2171–2176 (2008).
    • 77 Bloomston M, Frankel WL, Petrocca F et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297(17), 1901–1908 (2007).
    • 78 Szafranska AE, Davison TS, John J et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 26(30), 4442–4452 (2007).
    • 79 Schultz NA, Werner J, Willenbrock H et al. MicroRNA expression profiles associated with pancreatic adenocarcinoma and ampullary adenocarcinoma. Mod. Pathol. 25(12), 1609–1622 (2012).
    • 80 Collins AL, Wojcik S, Liu J et al. A differential microRNA profile distinguishes cholangiocarcinoma from pancreatic adenocarcinoma. Ann. Surg. Oncol. 21(1), 133–138 (2014).
    • 81 Mitchell PS, Parkin RK, Kroh EM et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA 105(30), 10513–10518 (2008).
    • 82 Arroyo JD, Chevillet JR, Kroh EM et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl Acad. Sci. USA 108(12), 5003–5008 (2011).
    • 83 Wang J, Chen J, Chang P et al. MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev. Res. (Phila.) 2(9), 807–813 (2009).
    • 84 Bauer AS, Keller A, Costello E et al. Diagnosis of pancreatic ductal adenocarcinoma and chronic pancreatitis by measurement of microRNA abundance in blood and tissue. PLoS ONE 7(4), e34151 (2012).
    • 85 Kawaguchi T, Komatsu S, Ichikawa D et al. Clinical impact of circulating miR-221 in plasma of patients with pancreatic cancer. Br. J. Cancer 108(2), 361–369 (2013).
    • 86 Le Large TY, Meijer LL, Mato Prado M, Kazemier G, Frampton AE, Giovannetti E. Circulating microRNAs as diagnostic biomarkers for pancreatic cancer. Expert Rev. Mol. Diagn. 15(12), 1525–1529 (2015).
    • 87 Li A, Yu J, Kim H et al. MicroRNA array analysis finds elevated serum miR-1290 accurately distinguishes patients with low-stage pancreatic cancer from healthy and disease controls. Clin. Cancer Res. 19(13), 3600–3610 (2013).
    • 88 Humeau M, Vignolle-Vidoni A, Sicard F et al. Salivary microRNA in pancreatic cancer patients. PLoS ONE 10(6), e0130996 (2015).
    • 89 Giovannetti E, Funel N, Peters GJ et al. MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Res. 70(11), 4528–4538 (2010).
    • 90 Wang Z, Li Y, Ahmad A et al. Pancreatic cancer: understanding and overcoming chemoresistance. Nat. Rev. Gastroenterol. Hepatol. 8(1), 27–33 (2011).
    • 91 Thota R, Pauff JM, Berlin JD. Treatment of metastatic pancreatic adenocarcinoma: a review. Oncology (Williston Park) 28(1), 70–74 (2014).
    • 92 Park JK, Lee EJ, Esau C, Schmittgen TD. Antisense inhibition of microRNA-21 or -221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. Pancreas 38(7), e190–e199 (2009).
    • 93 Wang P, Zhuang L, Zhang J et al. The serum miR-21 level serves as a predictor for the chemosensitivity of advanced pancreatic cancer, and miR-21 expression confers chemoresistance by targeting FasL. Mol. Oncol. 7(3), 334–345 (2013).
    • 94 Cai B, An Y, Lv N et al. miRNA-181b increases the sensitivity of pancreatic ductal adenocarcinoma cells to gemcitabine in vitro and in nude mice by targeting BCL-2. Oncol. Rep. 29(5), 1769–1776 (2013).
    • 95 Nagano H, Tomimaru Y, Eguchi H et al. MicroRNA-29a induces resistance to gemcitabine through the Wnt/beta-catenin signaling pathway in pancreatic cancer cells. Int. J. Oncol. 43(4), 1066–1072 (2013).
    • 96 Yan HJ, Liu WS, Sun WH et al. miR-17-5p inhibitor enhances chemosensitivity to gemcitabine via upregulating Bim expression in pancreatic cancer cells. Dig. Dis. Sci. 57(12), 3160–3167 (2012).
    • 97 Singh S, Chitkara D, Kumar V, Behrman SW, Mahato RI. miRNA profiling in pancreatic cancer and restoration of chemosensitivity. Cancer Lett. 334(2), 211–220 (2013).
    • 98 Wang P, Zhang J, Zhang L et al. MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells. Gastroenterology 145(5), 1133–1143 e1112 (2013).
    • 99 Mittal A, Chitkara D, Behrman SW, Mahato RI. Efficacy of gemcitabine conjugated and miRNA-205 complexed micelles for treatment of advanced pancreatic cancer. Biomaterials 35(25), 7077–7087 (2014). • Emphasizes on the increased therapeutic efficiency of combinatorial treatments comprising anticancer agents and miRNA modulators.
    • 100 Huang FT, Zhuan-Sun YX, Zhuang YY et al. Inhibition of hedgehog signaling depresses self-renewal of pancreatic cancer stem cells and reverses chemoresistance. Int. J. Oncol. 41(5), 1707–1714 (2012).
    • 101 Kumar V, Mondal G, Slavik P, Rachagani S, Batra SK, Mahato RI. Codelivery of small molecule hedgehog inhibitor and miRNA for treating pancreatic cancer. Mol. Pharm. 12(4), 1289–1298 (2015).
    • 102 Bader AG, Brown D, Stoudemire J, Lammers P. Developing therapeutic microRNAs for cancer. Gene Ther. 18(12), 1121–1126 (2011).
    • 103 Hao J, Zhang S, Zhou Y, Hu X, Shao C. MicroRNA 483-3p suppresses the expression of DPC4/Smad4 in pancreatic cancer. FEBS Lett. 585(1), 207–213 (2011).
    • 104 Sicard F, Gayral M, Lulka H, Buscail L, Cordelier P. Targeting miR-21 for the therapy of pancreatic cancer. Mol. Ther. 21(5), 986–994 (2013).
    • 105 Ma Y, Yu S, Zhao W, Lu Z, Chen J. miR-27a regulates the growth, colony formation and migration of pancreatic cancer cells by targeting Sprouty2. Cancer Lett. 298(2), 150–158 (2010).
    • 106 He D, Miao H, Xu Y et al. MiR-371-5p facilitates pancreatic cancer cell proliferation and decreases patient survival. PLoS ONE 9(11), e112930 (2014).
    • 107 Frampton AE, Castellano L, Colombo T et al. MicroRNAs cooperatively inhibit a network of tumor suppressor genes to promote pancreatic tumor growth and progression. Gastroenterology 146(1), 268–277.e18 (2014).
    • 108 Torrisani J, Bournet B, Du Rieu MC et al. let-7 microRNA transfer in pancreatic cancer-derived cells inhibits in vitro cell proliferation but fails to alter tumor progression. Hum. Gene Ther. 20(8), 831–844 (2009).
    • 109 Gailhouste L, Gomez-Santos L, Hagiwara K et al. miR-148a plays a pivotal role in the liver by promoting the hepatospecific phenotype and suppressing the invasiveness of transformed cells. Hepatology 58(3), 1153–1165 (2013).
    • 110 Zhang JP, Zeng C, Xu L, Gong J, Fang JH, Zhuang SM. MicroRNA-148a suppresses the epithelial-mesenchymal transition and metastasis of hepatoma cells by targeting Met/Snail signaling. Oncogene 33(31), 4069–4076 (2014).
    • 111 Liffers ST, Munding JB, Vogt M et al. MicroRNA-148a is down-regulated in human pancreatic ductal adenocarcinomas and regulates cell survival by targeting CDC25B. Lab. Invest. 91(10), 1472–1479 (2011).
    • 112 Hamada S, Satoh K, Fujibuchi W et al. MiR-126 acts as a tumor suppressor in pancreatic cancer cells via the regulation of ADAM9. Mol. Cancer Res. 10(1), 3–10 (2012).
    • 113 Zhao G, Zhang JG, Liu Y et al. miR-148b functions as a tumor suppressor in pancreatic cancer by targeting AMPKalpha1. Mol. Cancer Ther. 12(1), 83–93 (2013).
    • 114 Chen Z, Sangwan V, Banerjee S et al. miR-204 mediated loss of Myeloid cell leukemia-1 results in pancreatic cancer cell death. Mol. Cancer 12(1), 105 (2013).
    • 115 Xiao J, Peng F, Yu C et al. microRNA-137 modulates pancreatic cancer cells tumor growth, invasion and sensitivity to chemotherapy. Int. J. Clin. Exp. Pathol. 7(11), 7442–7450 (2014).
    • 116 Wang S, Chen X, Tang M. MicroRNA-216a inhibits pancreatic cancer by directly targeting Janus kinase 2. Oncol. Rep. 32(6), 2824–2830 (2014).
    • 117 Dang Z, Xu WH, Lu P et al. MicroRNA-135a inhibits cell proliferation by targeting Bmi1 in pancreatic ductal adenocarcinoma. Int. J. Biol. Sci. 10(7), 733–745 (2014).
    • 118 He H, Hao SJ, Yao L et al. MicroRNA-218 inhibits cell invasion and migration of pancreatic cancer via regulating ROBO1. Cancer Biol. Ther. 15(10), 1333–1339 (2014).
    • 119 Zang W, Wang Y, Wang T et al. miR-663 attenuates tumor growth and invasiveness by targeting eEF1A2 in pancreatic cancer. Mol. Cancer 14, 37 (2015).
    • 120 Hu QL, Jiang QY, Jin X et al. Cationic microRNA-delivering nanovectors with bifunctional peptides for efficient treatment of PANC-1 xenograft model. Biomaterials 34(9), 2265–2276 (2013).
    • 121 Pramanik D, Campbell NR, Karikari C et al. Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Mol. Cancer. Ther. 10(8), 1470–1480 (2011).
    • 122 Gyorgy B, Szabo TG, Pasztoi M et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell. Mol. Life Sci. 68(16), 2667–2688 (2011).
    • 123 Simons M, Raposo G. Exosomes–vesicular carriers for intercellular communication. Curr. Opin. Cell Biol. 21(4), 575–581 (2009).
    • 124 Kharaziha P, Ceder S, Li Q, Panaretakis T. Tumor cell-derived exosomes: a message in a bottle. Biochim. Biophys. Acta 1826(1), 103–111 (2012).
    • 125 Lee TH, D'asti E, Magnus N, Al-Nedawi K, Meehan B, Rak J. Microvesicles as mediators of intercellular communication in cancer – the emerging science of cellular ‘debris’. Semin. Immunopathol. 33(5), 455–467 (2011).
    • 126 Simpson RJ, Jensen SS, Lim JW. Proteomic profiling of exosomes: current perspectives. Proteomics 8(19), 4083–4099 (2008).
    • 127 Simpson RJ, Lim JW, Moritz RL, Mathivanan S. Exosomes: proteomic insights and diagnostic potential. Expert Rev. Proteomics 6(3), 267–283 (2009).
    • 128 Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell. Biol. 9(6), 654–659 (2007).
    • 129 Wang H, Rana S, Giese N, Buchler MW, Zoller M. Tspan8, CD44v6 and alpha6beta4 are biomarkers of migrating pancreatic cancer-initiating cells. Int. J. Cancer 133(2), 416–426 (2013).
    • 130 Melo SA, Luecke LB, Kahlert C et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523(7559), 177–182 (2015).
    • 131 Ngora H, Galli UM, Miyazaki K, Zoller M. Membrane-bound and exosomal metastasis-associated C4.4A promotes migration by associating with the alpha(6)beta(4) integrin and MT1-MMP. Neoplasia 14(2), 95–107 (2012).
    • 132 Mu W, Rana S, Zoller M. Host matrix modulation by tumor exosomes promotes motility and invasiveness. Neoplasia 15(8), 875–887 (2013).
    • 133 Costa-Silva B, Aiello NM, Ocean AJ et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 17(6), 816–826 (2015).
    • 134 Rana S, Malinowska K, Zoller M. Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia 15(3), 281–295 (2013).
    • 135 Esau CC. Inhibition of microRNA with antisense oligonucleotides. Methods 44(1), 55–60 (2008).
    • 136 Mahadevan D, Chalasani P, Rensvold D et al. Phase I trial of AEG35156 an antisense oligonucleotide to XIAP plus gemcitabine in patients with metastatic pancreatic ductal adenocarcinoma. Am. J. Clin. Oncol. 36(3), 239–243 (2013).
    • 137 Weiler J, Hunziker J, Hall J. Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Ther. 13(6), 496–502 (2006).
    • 138 Hutvagner G, Simard MJ, Mello CC, Zamore PD. Sequence-specific inhibition of small RNA function. PLoS Biol. 2(4), E98 (2004).
    • 139 Vester B, Wengel J. LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochemistry 43(42), 13233–13241 (2004).
    • 140 Khan S, Ansarullah, Kumar D, Jaggi M, Chauhan SC. Targeting microRNAs in pancreatic cancer: microplayers in the big game. Cancer Res. 73(22), 6541–6547 (2013).
    • 141 Zhang S, Chen L, Jung EJ, Calin GA. Targeting microRNAs with small molecules: from dream to reality. Clin. Pharmacol. Ther. 87(6), 754–758 (2010).
    • 142 Krutzfeldt J, Rajewsky N, Braich R et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438(7068), 685–689 (2005).