We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

‘Omics’: an emerging field in pain research and management

    Parisa Gazerani

    *Author for correspondence:

    E-mail Address: gazerani@hst.aau.dk

    Department of Health Science & Technology, Faculty of Medicine, Aalborg University, Frederik Bajers Vej 7A2-A2-208, 9220 Aalborg East, Denmark

    &
    Hye Sook Han Vinterhøj

    Department of Health Science & Technology, Faculty of Medicine, Aalborg University, Frederik Bajers Vej 7A2-A2-208, 9220 Aalborg East, Denmark

    Published Online:https://doi.org/10.2217/fnl-2016-0018

    Precision medicine is an emerging approach for prevention and treatment of diseases considering individuals’ uniqueness. Omics provide one step forward toward advanced precision medicine and include technologies such as genomics, proteomics and metabolomics generating valuable data through characterization of entire biological systems. With the aid of omics, a major shift has been started to occur in understanding of diseases followed by potential fundamental changes in medical care strategies. This short review aims at providing some examples of current omics that are applied in the field of pain in terms of new biomarkers for diagnosis of different pain types, stratification of patients and new therapeutic targets. Implementation of omics would most likely offer breakthrough in the future of pain management.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Sessle B. Unrelieved pain: a crisis. Pain Res. Manag. 16(6), 416–420 (2011).
    • 2 Sessle BJ. The pain crisis: what it is and what can be done. Pain Res. Treat 2012, 703947 (2012).
    • 3 Dansie EJ, Turk DC. Assessment of patients with chronic pain. Br. J. Anaesth. 111(1), 19–25 (2013).
    • 4 Chizh BA, Hobson AR. Using objective markers and imaging in the development of novel treatments of chronic pain. Expert Rev. Neurother. 7(5), 443–447 (2007).
    • 5 Borsook D, Becerra L, Hargreaves R. Biomarkers for chronic pain and analgesia. Part 1: the need, reality, challenges, and solutions. Discov. Med. 11(58), 197–207 (2011). • Valuable review for pain biomarkers.
    • 6 Borsook D, Becerra L, Hargreaves R. Biomarkers for chronic pain and analgesia. Part 2: how, where, and what to look for using functional imaging. Discov. Med. 11(58), 209–219 (2011). • Valuable review for pain biomarkers.
    • 7 Gatchel RJ, Peng YB, Peters ML, Fuchs PN, Turk DC. The biopsychosocial approach to chronic pain: scientific advances and future directions. Psychol. Bull. 133(4), 581–624 (2007).
    • 8 Aronoff GM. What do we know about the pathophysiology of chronic pain? Implications for treatment considerations. Med. Clin. North Am. 100(1), 31–42 (2016).
    • 9 Freidin MB, Lauc G, Allegri M, Primorac D, Williams FM. Using omics in chronic pain conditions to delineate mechanisms and provide new therapeutic strategies. Pain Manag. 6(3), 211–215 (2016).
    • 10 Sung J, Wang Y, Chandrasekaran S, Witten DM, Price ND. Molecular signatures from omics data: from chaos to consensus. Biotechnol. J. 7(8), 946–957 (2012).
    • 11 Heinzel A, Perco P, Mayer G, Oberbauer R, Lukas A, Mayer B. From molecular signatures to predictive biomarkers: modeling disease pathophysiology and drug mechanism of action. Front. Cell Dev. Biol. 2, 37 (2014).
    • 12 Nardini C, Dent J, Tieri P. Editorial: multi-omic data integration. Front. Cell Dev. Biol. 3, 46 (2015).
    • 13 Zorina-Lichtenwalter K, Meloto CB, Khoury S, Diatchenko L. Genetic predictors of human chronic pain conditions. Neuroscience doi:10.1016/j.neuroscience.2016.04.041 (2016) (Epub ahead of print). • Valuable and comprehensive recent review for genetics of pain.
    • 14 Holliday KL, McBeth J. Recent advances in the understanding of genetic susceptibility to chronic pain and somatic symptoms. Curr. Rheumatol. Rep. 13(6), 521–527 (2011).
    • 15 Mogil JS. Pain genetics: past, present and future. Trends Genet. 28(6), 258–266 (2012).
    • 16 Fillingim RB, Wallace MR, Herbstman DM, Ribeiro-Dasilva M, Staud R. Genetic contributions to pain: a review of findings in humans. Oral Dis. 14(8), 673–682 (2008).
    • 17 Young EE, Lariviere WR, Belfer I. Genetic basis of pain variability: recent advances. J. Med. Genet. 49(1), 1–9 (2012).
    • 18 Belfer I. Nature and nurture of human pain. Scientifica (Cairo) 2013, 415279 (2013).
    • 19 Peters MJ, Broer L, Willemen HL et al. Genome-wide association study meta-analysis of chronic widespread pain: evidence for involvement of the 5p15.2 region. Ann. Rheum. Dis. 72(3), 427–436 (2013).
    • 20 Docampo E, Escaramis G, Gratacos M et al. Genome-wide analysis of single nucleotide polymorphisms and copy number variants in fibromyalgia suggest a role for the central nervous system. Pain 155(6), 1102–1109 (2014).
    • 21 Lionetto L, Gentile G, Bellei E et al. The omics in migraine. J. Headache Pain 14, 55 (2013).
    • 22 Anttila V, Winsvold BS, Gormley P et al. Genome-wide meta-analysis identifies new susceptibility loci for migraine. Nat. Genet. 45(8), 912–917 (2013).
    • 23 Smith SB, Maixner DW, Greenspan JD et al. Potential genetic risk factors for chronic TMD: genetic associations from the OPPERA case control study. J. Pain 12(Suppl. 11), T92–T101 (2011).
    • 24 Nicholl BI, Holliday KL, Macfarlane GJ et al. Association of HTR2A polymorphisms with chronic widespread pain and the extent of musculoskeletal pain: results from two population-based cohorts. Arthritis Rheum. 63(3), 810–818 (2011).
    • 25 Descalzi G, Ikegami D, Ushijima T, Nestler EJ, Zachariou V, Narita M. Epigenetic mechanisms of chronic pain. Trends Neurosci. 38(4), 237–246 (2015).
    • 26 Ligon CO, Moloney RD, Greenwood-Van Meerveld B. Targeting epigenetic mechanisms for chronic pain: a valid approach for the development of novel therapeutics. J. Pharmacol. Exp. Ther. 357(1), 84–93 (2016). • Valuable review for epigenetics of pain.
    • 27 Eising E, Datson NA, van den Maagdenberg AMJM, Ferrari MD. Epigenetic mechanisms in migraine: a promising avenue? BMC Med. 11 (2013).
    • 28 Liang L, Lutz BM, Bekker A, Tao YX. Epigenetic regulation of chronic pain. Epigenomics 7(2), 235–245 (2015).
    • 29 Chiechio S, Copani A, Zammataro M, Battaglia G, Gereau RWt, Nicoletti F. Transcriptional regulation of type-2 metabotropic glutamate receptors: an epigenetic path to novel treatments for chronic pain. Trends Pharmacol. Sci. 31(4), 153–160 (2010).
    • 30 Chiechio S, Zammataro M, Morales ME et al. Epigenetic modulation of mGlu2 receptors by histone deacetylase inhibitors in the treatment of inflammatory pain. Mol. Pharmacol. 75(5), 1014–1020 (2009).
    • 31 Uchida H, Ma L, Ueda H. Epigenetic gene silencing underlies C-fiber dysfunctions in neuropathic pain. J. Neurosci. 30(13), 4806–4814 (2010).
    • 32 von Hehn CA, Baron R, Woolf CJ. Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron 73(4), 638–652 (2012).
    • 33 Ji RR, Suter MR. p38 MAPK, microglial signaling, and neuropathic pain. Mol. Pain 3, 33 (2007).
    • 34 Saetrom P, Snove O Jr, Rossi JJ. Epigenetics and microRNAs. Pediatr. Res. 61(5 Pt 2), 17R–23R (2007).
    • 35 Kress M, Huttenhofer A, Landry M et al. microRNAs in nociceptive circuits as predictors of future clinical applications. Front. Mol. Neurosci. 6, 33 (2013).
    • 36 McDonald MK, Ajit SK. MicroRNA biology and pain. Prog. Mol. Biol. Transl. Sci. 131, 215–249 (2015).
    • 37 Sakai A, Suzuki H. microRNA and pain. Adv. Exp. Med. Biol. 888, 17–39 (2015).
    • 38 Andersen HH, Duroux M, Gazerani P. MicroRNAs as modulators and biomarkers of inflammatory and neuropathic pain conditions. Neurobiol. Dis. 71, 159–168 (2014). • Valuable review for miRNA biomarkers of pain.
    • 39 Qureshi RA, Tian Y, McDonald MK et al. Circulating microRNA signatures in rodent models of pain. Mol. Neurobiol. 53(5), 3416–3427 (2016).
    • 40 Ciszek BP, Khan AA, Dang H et al. MicroRNA expression profiles differentiate chronic pain condition subtypes. Transl. Res. 166(6), 706–720 e711 (2015).
    • 41 Bali KK, Selvaraj D, Satagopam VP, Lu J, Schneider R, Kuner R. Genome-wide identification and functional analyses of microRNA signatures associated with cancer pain. EMBO Mol. Med. 5(11), 1740–1758 (2013).
    • 42 Bali KK, Hackenberg M, Lubin A, Kuner R, Devor M. Sources of individual variability: miRNAs that predispose to neuropathic pain identified using genome-wide sequencing. Mol. Pain 10, 22 (2014).
    • 43 Akhtar N, Haqqi TM. MicroRNA-199a* regulates the expression of cyclooxygenase-2 in human chondrocytes. Ann. Rheum. Dis. 71(6), 1073–1080 (2012).
    • 44 Andersen HH, Duroux M, Gazerani P. Serum microRNA signatures in migraineurs during attacks and in pain-free periods. Mol. Neurobiol. 53(3), 1494–1500 (2016).
    • 45 Tana C, Giamberardino MA, Cipollone F. MicroRNA profiling in atherosclerosis, diabetes and migraine. Ann. Med. 1–31 (2016).
    • 46 Tafuri E, Santovito D, de Nardis V et al. MicroRNA profiling in migraine without aura: pilot study. Ann. Med. 47(6), 468–473 (2015).
    • 47 Monte AA, Brocker C, Nebert DW, Gonzalez FJ, Thompson DC, Vasiliou V. Improved drug therapy: triangulating phenomics with genomics and metabolomics. Hum. Genomics 8, 16 (2014). • Valuable presentation on the concept of phenomics in pain.
    • 48 Diatchenko L, Fillingim RB, Smith SB, Maixner W. The phenotypic and genetic signatures of common musculoskeletal pain conditions. Nat. Rev. Rheumatol. 9(6), 340–350 (2013).
    • 49 Williams FM, Scollen S, Cao D et al. Genes contributing to pain sensitivity in the normal population: an exome sequencing study. PLoS Genet. 8(12), e1003095 (2012).
    • 50 Graves PR, Haystead TA. Molecular biologist's guide to proteomics. Microbiol. Mol. Biol. Rev. 66(1), 39–63; table of contents (2002).
    • 51 Zhang J, Keene CD, Pan C, Montine KS, Montine TJ. Proteomics of human neurodegenerative diseases. J. Neuropathol. Exp. Neurol. 67(10), 923–932 (2008).
    • 52 Zhou JY, Hanfelt J, Peng J. Clinical proteomics in neurodegenerative diseases. Proteomics Clin. Appl. 1(11), 1342–1350 (2007).
    • 53 Sui P, Watanabe H, Ossipov MH, Bakalkin G, Artemenko K, Bergquist J. Proteomics of neuropathic pain: proteins and signaling pathways affected in a rat model. J. Proteome Res. 13(9), 3957–3965 (2014).
    • 54 Niederberger E, Geisslinger G. Proteomics in neuropathic pain research. Anesthesiology 108(2), 314–323 (2008).
    • 55 Mesri M. Advances in proteomic technologies and its contribution to the field of cancer. Adv. Med. 2014, 238045 (2014).
    • 56 Lin D, Hollander Z, Meredith A, McManus BM. Searching for ‘omic’ biomarkers. Can. J. Cardiol. 25(Suppl. A), 9A–14A (2009).
    • 57 Gillet LC, Leitner A, Aebersold R. Mass spectrometry applied to bottom-up proteomics: entering the high-throughput era for hypothesis testing. Annu. Rev. Anal. Chem. (Palo Alto Calif) 9(1), 449–472 (2016).
    • 58 Chandramouli K, Qian PY. Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Hum. Genomics Proteomics (2009).
    • 59 Zheng X, Wu SL, Hincapie M, Hancock WS. Study of the human plasma proteome of rheumatoid arthritis. J. Chromatogr. A 1216(16), 3538–3545 (2009).
    • 60 Cho WC. Proteomics technologies and challenges. Genomics Proteomics Bioinformatics 5(2), 77–85 (2007).
    • 61 Bandow JE. Comparison of protein enrichment strategies for proteome analysis of plasma. Proteomics 10(7), 1416–1425 (2010).
    • 62 Backryd E, Ghafouri B, Carlsson AK, Olausson P, Gerdle B. Multivariate proteomic analysis of the cerebrospinal fluid of patients with peripheral neuropathic pain and healthy controls – a hypothesis-generating pilot study. J. Pain Res. 8, 321–333 (2015).
    • 63 Olausson P, Gerdle B, Ghafouri N, Larsson B, Ghafouri B. Identification of proteins from interstitium of trapezius muscle in women with chronic myalgia using microdialysis in combination with proteomics. PLoS ONE 7(12), e52560 (2012).
    • 64 Goo YA, Tsai YS, Liu AY, Goodlett DR, Yang CC. Urinary proteomics evaluation in interstitial cystitis/painful bladder syndrome: a pilot study. Int. Braz J. Urol. 36(4), 464–478; discussion 478–469, 479 (2010).
    • 65 Guyuron B, Yohannes E, Miller R, Chim H, Reed D, Chance MR. Electron microscopic and proteomic comparison of terminal branches of the trigeminal nerve in patients with and without migraine headaches. Plast. Reconstr. Surg. 134(5), 796e–805e (2014).
    • 66 Bellei E, Cuoghi A, Monari E et al. Proteomic analysis of urine in medication-overuse headache patients: possible relation with renal damages. J. Headache Pain 13(1), 45–52 (2012).
    • 67 Tzoulaki I, Ebbels TM, Valdes A, Elliott P, Ioannidis JP. Design and analysis of metabolomics studies in epidemiologic research: a primer on -omic technologies. Am. J. Epidemiol. 180(2), 129–139 (2014).
    • 68 Gowda GA, Zhang S, Gu H, Asiago V, Shanaiah N, Raftery D. Metabolomics-based methods for early disease diagnostics. Expert Rev. Mol. Diagn. 8(5), 617–633 (2008).
    • 69 Mathe EA, Patterson AD, Haznadar M et al. Noninvasive urinary metabolomic profiling identifies diagnostic and prognostic markers in lung cancer. Cancer Res. 74(12), 3259–3270 (2014).
    • 70 Veenstra TD. Metabolomics: the final frontier? Genome Med. 4(4), 40 (2012).
    • 71 Alonso A, Marsal S, Julia A. Analytical methods in untargeted metabolomics: state of the art in 2015. Front. Bioeng. Biotechnol. 3, 23 (2015).
    • 72 Guma M, Tiziani S, Firestein GS. Metabolomics in rheumatic diseases: desperately seeking biomarkers. Nat. Rev. Rheumatol. 12(5), 269–281 (2016).
    • 73 Patti GJ, Yanes O, Siuzdak G. Innovation: metabolomics: the apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 13(4), 263–269 (2012). • Valuable review highlighting metabolomic role.
    • 74 Zhang A, Sun H, Wang P, Han Y, Wang X. Modern analytical techniques in metabolomics analysis. Analyst 137(2), 293–300 (2012).
    • 75 Courant F, Antignac JP, Dervilly-Pinel G, Le Bizec B. Basics of mass spectrometry based metabolomics. Proteomics 14(21–22), 2369–2388 (2014).
    • 76 Patti GJ, Yanes O, Shriver LP et al. Metabolomics implicates altered sphingolipids in chronic pain of neuropathic origin. Nat. Chem. Biol. 8(3), 232–234 (2012).
    • 77 Finco G, Locci E, Mura P et al. Can urine metabolomics be helpful in differentiating neuropathic and nociceptive pain? A proof-of-concept study. PLoS ONE 11(3), e0150476 (2016).
    • 78 Fitzpatrick M, Young SP. Metabolomics – a novel window into inflammatory disease. Swiss Med. Wkly 143, w13743 (2013).
    • 79 Livshits G, Macgregor AJ, Gieger C et al. An omics investigation into chronic widespread musculoskeletal pain reveals epiandrosterone sulfate as a potential biomarker. Pain 156(10), 1845–1851 (2015).
    • 80 Wenk MR. The emerging field of lipidomics. Nat. Rev. Drug Discov. 4(7), 594–610 (2005).
    • 81 Malan TP Jr, Porreca F. Lipid mediators regulating pain sensitivity. Prostaglandins Other Lipid Mediat. 77(1–4), 123–130 (2005).
    • 82 Walker JM, Krey JF, Chen JS et al. Targeted lipidomics: fatty acid amides and pain modulation. Prostaglandins Other Lipid Mediat. 77(1–4), 35–45 (2005).
    • 83 Han X, Jiang X. A review of lipidomic technologies applicable to sphingolipidomics and their relevant applications. Eur. J. Lipid Sci. Technol. 111(1), 39–52 (2009).
    • 84 Kapur BM, Lala PK, Shaw JL. Pharmacogenetics of chronic pain management. Clin. Biochem. 47(13–14), 1169–1187 (2014).
    • 85 Jannetto PJ, Bratanow NC. Pain management in the 21st century: utilization of pharmacogenomics and therapeutic drug monitoring. Expert Opin. Drug Metab. Toxicol. 7(6), 745–752 (2011).
    • 86 Ting S, Schug S. The pharmacogenomics of pain management: prospects for personalized medicine. J. Pain Res. 9, 49–56 (2016).
    • 87 Meyer UA, Zanger UM, Schwab M. Omics and drug response. Annu. Rev. Pharmacol. Toxicol. 53, 475–502 (2013).
    • 88 Holbech JV, Bach FW, Finnerup NB, Jensen TS, Sindrup SH. Pain phenotype as a predictor for drug response in painful polyneuropathy – a retrospective analysis of data from controlled clinical trials. Pain 157(6), 1305–1313 (2016).
    • 89 Altman RB, Rubin DL, Klein TE. An “omics” view of drug development. Drug Dev. Res. 62(2), 81–85 (2004).
    • 90 Gracie S, Pennell C, Ekman-Ordeberg G et al. An integrated systems biology approach to the study of preterm birth using “-omic” technology – a guideline for research. BMC Pregnancy Childbirth 11, 71 (2011).