We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Knowns and unknowns of influenza B viruses

    Marios Koutsakos

    Department of Microbiology & Immunology, University of Melbourne, at the Peter Doherty Institute for Infection & Immunity, Parkville VIC 3010, Australia

    ,
    Thi HO Nguyen

    Department of Microbiology & Immunology, University of Melbourne, at the Peter Doherty Institute for Infection & Immunity, Parkville VIC 3010, Australia

    ,
    Wendy S Barclay

    Section of Virology, Faculty of Medicine, Wright Fleming Institute, Imperial College London, Norfolk Place, London W2 1PG, UK

    &
    Katherine Kedzierska

    *Author for correspondence:

    E-mail Address: kkedz@unimelb.edu.au

    Department of Microbiology & Immunology, University of Melbourne, at the Peter Doherty Institute for Infection & Immunity, Parkville VIC 3010, Australia

    Published Online:https://doi.org/10.2217/fmb.15.120

    Influenza B viruses (IBVs) circulate annually along with influenza A (IAV) strains during seasonal epidemics. IBV can dominate influenza seasons and cause severe disease, particularly in children and adolescents. Research has revealed interesting aspects of IBV and highlighted the importance of these viruses in clinical settings. Yet, many important questions remain unanswered. In this review, the clinical relevance of IBV is emphasized, unique features in epidemiology, host range and virology are highlighted and gaps in knowledge pinpointed. Multiple aspects of IBV epidemiology, evolution, virology and immunology are discussed. Future research into IBV is needed to understand how we can prevent severe disease in high-risk groups, especially children and elderly.

    References

    • 1 Francis T Jr. A new type of virus from epidemic influenza. Science 92(2392), 405–408 (1940).
    • 2 Jackson D, Elderfield RA, Barclay WS. Molecular studies of influenza B virus in the reverse genetics era. J. Gen. Virol. 92(Pt 1), 1–17 (2011).
    • 3 Peter Palese MLS. Orthomyxoviridae: the viruses and their replication. In: Fields Virology. Knipe DM (Ed.). Lippincott Williams & Wilkins, PA, USA (2007).
    • 4 Krumbholz A, Philipps A, Oehring H et al. Current knowledge on PB1-F2 of influenza A viruses. Med. Microbiol. Immunol. 200(2), 69–75 (2011).
    • 5 Shi M, Jagger BW, Wise HM, Digard P, Holmes EC, Taubenberger JK. Evolutionary conservation of the PA-X open reading frame in segment 3 of influenza A virus. J. Virol. 86(22), 12411–12413 (2012).
    • 6 Rota PA, Wallis TR, Harmon MW, Rota JS, Kendal AP, Nerome K. Cocirculation of two distinct evolutionary lineages of influenza type B virus since 1983. Virology 175(1), 59–68 (1990).
    • 7 McCullers JA, Saito T, Iverson AR. Multiple genotypes of influenza B virus circulated between 1979 and 2003. J. Virol. 78(23), 12817–12828 (2004).
    • 8 Vijaykrishna D, Holmes EC, Joseph U et al. The contrasting phylodynamics of human influenza B viruses. eLife 4, e05055 (2015).
    • 9 Thompson WW, Shay DK, Weintraub E et al. Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 289(2), 179–186 (2003).
    • 10 Lin YP, Gregory V, Bennett M, Hay A. Recent changes among human influenza viruses. Virus Res. 103(1–2), 47–52 (2004).
    • 11 Paul Glezen W, Schmier JK, Kuehn CM, Ryan KJ, Oxford J. The burden of influenza B: a structured literature review. Am. J. Public Health 103(3), e43–e51 (2013).
    • 12 Gutierrez-Pizarraya A, Perez-Romero P, Alvarez R et al. Unexpected severity of cases of influenza B infection in patients that required hospitalization during the first postpandemic wave. J. Infect. 65(5), 423–430 (2012).
    • 13 Su S, Chaves SS, Perez A et al. Comparing clinical characteristics between hospitalized adults with laboratory-confirmed influenza A and B virus infection. Clin. Infect. Dis. 59(2), 252–255 (2014).
    • 14 Thompson WW, Moore MR, Weintraub E et al. Estimating influenza-associated deaths in the United States. Am. J. Public Health, 99(Suppl. 2), S225–S230 (2009).
    • 15 Matias G, Taylor R, Haguinet F, Schuck-Paim C, Lustig R, Shinde V. Estimates of mortality attributable to influenza and RSV in the United States during 1997–2009 by influenza type or subtype, age, cause of death, and risk status. Influenza Other Respir. Viruses 8(5), 507–515 (2014).
    • 16 Kaczmarek M, Owen R, Barr IG. Annual report of the National Influenza Surveillance Scheme, 2008. Commun. Dis. Intell. Q. Rep. 34(1), 8–22 (2010).
    • 17 Public Health England. Surveillance of Influenza and Other Respiratory Viruses, including Novel Respiratory Viruses, in the United Kingdom: Winter 2012/13. Public Health England, London, UK (2013).
    • 18 Tewawong N, Suwannakarn K, Prachayangprecha S et al. Molecular epidemiology and phylogenetic analyses of influenza B virus in Thailand during 2010 to 2014. PLoS ONE 10(1), e0116302 (2015).
    • 19 Wright PF, Neumann G, Kawaoka Y. Orthomixoviruses. In: Fields Virology. Knipe DM (Ed.). Lippincott Williams & Wilkins, PA, USA (2007).
    • 20 Irving SA, Patel DC, Kieke BA et al. Comparison of clinical features and outcomes of medically attended influenza A and influenza B in a defined population over four seasons: 2004–2005 through 2007–2008. Influenza Other Respir. Viruses 6(1), 37–43 (2012).
    • 21 Moon JH, Na JY, Kim JH et al. Neurological and muscular manifestations associated with influenza B infection in children. Pediatr. Neurol. 49(2), 97–101 (2013).
    • 22 Thabet FI, Khalil S, Naz F, Dyme IZ. Cerebellar mutism and reversible cytotoxic edema in influenza B-associated encephalopathy. Pediatr. Neurol. 49(6), 489–492 (2013).
    • 23 Frank H, Wittekind C, Liebert UG et al. Lethal influenza B myocarditis in a child and review of the literature for pediatric age groups. Infection 38(3), 231–235 (2010).
    • 24 Paddock CD, Liu L, Denison AM et al. Myocardial injury and bacterial pneumonia contribute to the pathogenesis of fatal influenza B virus infection. J. Infect. Dis. 205(6), 895–905 (2012).
    • 25 Taremi M, Amoroso A, Nace HL, Gilliam BL. Influenza B-induced refractory cardiogenic shock: a case report. BMC Infect. Dis. 13, 452 (2013).
    • 26 Aebi T, Weisser M, Bucher E, Hirsch HH, Marsch S, Siegemund M. Co-infection of influenza B and streptococci causing severe pneumonia and septic shock in healthy women. BMC Infect. Dis. 10, 308 (2010).
    • 27 Scaber J, Saeed S, Ihekweazu C, Efstratiou A, McCarthy N, O’Moore E. Group A streptococcal infections during the seasonal influenza outbreak 2010/11 in south east England. Euro Surveill. 16(5), pii:19780 (2011).
    • 28 van der Vries E, Ip DK, Cowling BJ et al. Outcomes and susceptibility to neuraminidase inhibitors in individuals infected with different influenza B lineages: the Influenza Resistance Information Study. J. Infect. Dis. pii: jiv375 (2015) (Epub ahead of print).
    • 29 Belshe RB. The need for quadrivalent vaccine against seasonal influenza. Vaccine 28(Suppl. 4), D45–D53 (2010).
    • 30 Hite LK, Glezen WP, Demmler GJ, Munoz FM. Medically attended pediatric influenza during the resurgence of the Victoria lineage of influenza B virus. Int. J. Infect. Dis. 11(1), 40–47 (2007).
    • 31 Olson DR, Heffernan RT, Paladini M, Konty K, Weiss D, Mostashari F. Monitoring the impact of influenza by age: emergency department fever and respiratory complaint surveillance in New York City. PLoS Med. 4(8), e247 (2007).
    • 32 Socan M, Prosenc K, Ucakar V, Berginc N. A comparison of the demographic and clinical characteristics of laboratory-confirmed influenza B Yamagata and Victoria lineage infection. J. Clin. Virol. 61(1), 156–160 (2014).
    • 33 Tan Y, Guan W, Lam TT et al. Differing epidemiological dynamics of influenza B virus lineages in Guangzhou, southern China, 2009–2010. J. Virol. 87(22), 12447–12456 (2013).
    • 34 Wang YF, Chang CF, Chi CY, Wang HC, Wang JR, Su IJ. Characterization of glycan binding specificities of influenza B viruses with correlation with hemagglutinin genotypes and clinical features. J. Med. Virol. 84(4), 679–685 (2012).
    • 35 Skowronski DM, Janjua NZ, Sabaiduc S et al. Influenza A/subtype and B/lineage effectiveness estimates for the 2011–2012 trivalent vaccine: cross-season and cross-lineage protection with unchanged vaccine. J. Infect. Dis. 210(1), 126–137 (2014).
    • 36 Chen R, Holmes EC. The evolutionary dynamics of human influenza B virus. J. Mol. Evol. 66(6), 655–663 (2008).
    • 37 Bedford T, Riley S, Barr IG et al. Global circulation patterns of seasonal influenza viruses vary with antigenic drift. Nature 523(7559), 217–220 (2015).
    • 38 Patterson Ross Z, Komadina N, Deng YM et al. Inter-seasonal influenza is characterized by extended virus transmission and persistence. PLoS Pathog. 11(6), e1004991 (2015).
    • 39 Nelson MI, Simonsen L, Viboud C et al. Stochastic processes are key determinants of short-term evolution in influenza a virus. PLoS Pathog. 2(12), e125 (2006).
    • 40 Dudas G, Bedford T, Lycett S, Rambaut A. Reassortment between influenza B lineages and the emergence of a coadapted PB1–PB2–HA gene complex. Mol. Biol. Evol. 32(1), 162–172 (2015).
    • 41 Laurie KL, Guarnaccia TA, Carolan LA et al. Interval between infections and viral hierarchy are determinants of viral interference following influenza virus infection in a ferret model. J. Infect. Dis 212(11), 1701–1710 (2015).
    • 42 Osterhaus AD, Rimmelzwaan GF, Martina BE, Bestebroer TM, Fouchier RA. Influenza B virus in seals. Science 288(5468), 1051–1053 (2000).
    • 43 Blanc A, Ruchansky D, Clara M, Achaval F, Le Bas A, Arbiza J. Serologic evidence of influenza A and B viruses in South American fur seals (Arctocephalus australis). J. Wildlife Dis. 45(2), 519–521 (2009).
    • 44 Bodewes R, van de Bildt MW, van Elk CE et al. No serological evidence that harbour porpoises are additional hosts of influenza B viruses. PloS ONE 9(2), e89058 (2014).
    • 45 Ran Z, Shen H, Lang Y et al. Domestic pigs are susceptible to infection with influenza B viruses. J. Virol. 89(9), 4818–4826 (2015).
    • 46 Leyva-Grado VH, Mubareka S, Krammer F, Cardenas WB, Palese P. Influenza virus infection in guinea pigs raised as livestock, Ecuador. Emerg. Infect. Dis. 18(7), 1135–1138 (2012).
    • 47 Pica N, Chou YY, Bouvier NM, Palese P. Transmission of influenza B viruses in the guinea pig. J. Virol. 86(8), 4279–4287 (2012).
    • 48 Elderfield RA, Parker L, Stilwell P, Roberts KL, Schepelmann S, Barclay WS. Ferret airway epithelial cell cultures support efficient replication of influenza B virus but not mumps virus. J. Gen. Virol. 96(8), 2092–2098 (2015).
    • 49 Guan R, Ma LC, Leonard PG et al. Structural basis for the sequence-specific recognition of human ISG15 by the NS1 protein of influenza B virus. Proc. Natl Acad. Sci. USA 108(33), 13468–13473 (2011).
    • 50 McCullers JA, Hoffmann E, Huber VC, Nickerson AD. A single amino acid change in the C-terminal domain of the matrix protein M1 of influenza B virus confers mouse adaptation and virulence. Virology 336(2), 318–326 (2005).
    • 51 Wang Q, Tian X, Chen X, Ma J. Structural basis for receptor specificity of influenza B virus hemagglutinin. Proc. Natl Acad. Sci. USA 104(43), 16874–16879 (2007).
    • 52 Matrosovich MN, Gambaryan AS, Tuzikov AB et al. Probing of the receptor-binding sites of the H1 and H3 influenza A and influenza B virus hemagglutinins by synthetic and natural sialosides. Virology 196(1), 111–121 (1993).
    • 53 Wang Q, Cheng F, Lu M, Tian X, Ma J. Crystal structure of unliganded influenza B virus hemagglutinin. J. Virol. 82(6), 3011–3020 (2008).
    • 54 Ni F, Mbawuike IN, Kondrashkina E, Wang Q. The roles of hemagglutinin Phe-95 in receptor binding and pathogenicity of influenza B virus. Virology 450–451, 71–83 (2014).
    • 55 Medina RA, Garcia-Sastre A. Influenza A viruses: new research developments. Nat. Rev. Microbiol. 9(8), 590–603 (2011).
    • 56 Burmeister WP, Ruigrok RW, Cusack S. The 2.2 A resolution crystal structure of influenza B neuraminidase and its complex with sialic acid. EMBO J. 11(1), 49–56 (1992).
    • 57 Burnham AJ, Baranovich T, Govorkova EA. Neuraminidase inhibitors for influenza B virus infection: efficacy and resistance. Antiviral Res. 100(2), 520–534 (2013).
    • 58 Williams MA, Lamb RA. Effect of mutations and deletions in a bicistronic mRNA on the synthesis of influenza B virus NB and NA glycoproteins. J. Virol. 63(1), 28–35 (1989).
    • 59 Betakova T, Nermut MV, Hay AJ. The NB protein is an integral component of the membrane of influenza B virus. J. Gen. Virol. 77(Pt 11), 2689–2694 (1996).
    • 60 Williams MA, Lamb RA. Polylactosaminoglycan modification of a small integral membrane glycoprotein, influenza B virus NB. Mol. Cell. Biol. 8(3), 1186–1196 (1988).
    • 61 Demers A, Ran Z, Deng Q et al. Palmitoylation is required for intracellular trafficking of influenza B virus NB protein and efficient influenza B virus growth in vitro. J. Gen. Virol. 95(Pt 6), 1211–1220 (2014).
    • 62 Hatta M, Kawaoka Y. The NB protein of influenza B virus is not necessary for virus replication in vitro. J. Virol. 77(10), 6050–6054 (2003).
    • 63 Shimbo K, Brassard DL, Lamb RA, Pinto LH. Viral and cellular small integral membrane proteins can modify ion channels endogenous to xenopus oocytes. Biophys. J. 69(5), 1819–1829 (1995).
    • 64 Ewart GD, Sutherland T, Gage PW, Cox GB. The Vpu protein of human immunodeficiency virus type 1 forms cation-selective ion channels. J. Virol. 70(10), 7108–7115 (1996).
    • 65 Sunstrom NA, Premkumar LS, Premkumar A, Ewart G, Cox GB, Gage PW. Ion channels formed by NB, an influenza B virus protein. J. Membr. Biol. 150(2), 127–132 (1996).
    • 66 Fischer WB, Pitkeathly M, Wallace BA, Forrest LR, Smith GR, Sansom MS. Transmembrane peptide NB of influenza B: a simulation, structure, and conductance study. Biochemistry 39(41), 12708–12716 (2000).
    • 67 Lamb RA, Pinto LH. Do Vpu and Vpr of human immunodeficiency virus type 1 and NB of influenza B virus have ion channel activities in the viral life cycles? Virology 229(1), 1–11 (1997).
    • 68 Betakova T, Hay AJ. Evidence that the CM2 protein of influenza C virus can modify the pH of the exocytic pathway of transfected cells. J. Gen. Virol. 88(Pt 8), 2291–2296 (2007).
    • 69 Cao S, Jiang J, Li J et al. Characterization of the nucleocytoplasmic shuttle of the matrix protein of influenza B virus. J. Virol. 88(13), 7464–7473 (2014).
    • 70 Briedis DJ, Lamb RA, Choppin PW. Sequence of RNA segment 7 of the influenza B virus genome: partial amino acid homology between the membrane proteins (M1) of influenza A and B viruses and conservation of a second open reading frame. Virology 116(2), 581–588 (1982).
    • 71 Paterson RG, Takeda M, Ohigashi Y, Pinto LH, Lamb RA. Influenza B virus BM2 protein is an oligomeric integral membrane protein expressed at the cell surface. Virology 306(1), 7–17 (2003).
    • 72 Odagiri T, Hong J, Ohara Y. The BM2 protein of influenza B virus is synthesized in the late phase of infection and incorporated into virions as a subviral component. J. Gen. Virol. 80(Pt 10), 2573–2581 (1999).
    • 73 Watanabe S, Imai M, Ohara Y, Odagiri T. Influenza B virus BM2 protein is transported through the trans-Golgi Network as an integral membrane protein. J. Virol. 77(19), 10630–10637 (2003).
    • 74 Wang J, Pielak RM, McClintock MA, Chou JJ. Solution structure and functional analysis of the influenza B proton channel. Nat. Struct. Mol. Biol. 16(12), 1267–1271 (2009).
    • 75 Imai M, Watanabe S, Ninomiya A, Obuchi M, Odagiri T. Influenza B virus BM2 protein is a crucial component for incorporation of viral ribonucleoprotein complex into virions during virus assembly. J. Virol. 78(20), 11007–11015 (2004).
    • 76 Jackson D, Zurcher T, Barclay W. Reduced incorporation of the influenza B virus BM2 protein in virus particles decreases infectivity. Virology 322(2), 276–285 (2004).
    • 77 Hatta M, Goto H, Kawaoka Y. Influenza B virus requires BM2 protein for replication. J. Virol. 78(11), 5576–5583 (2004).
    • 78 Mould JA, Paterson RG, Takeda M et al. Influenza B virus BM2 protein has ion channel activity that conducts protons across membranes. Dev. Cell 5(1), 175–184 (2003).
    • 79 Ma C, Soto CS, Ohigashi Y et al. Identification of the pore-lining residues of the BM2 ion channel protein of influenza B virus. J. Biol. Chem. 283(23), 15921–15931 (2008).
    • 80 Zhang H, Yu H, Wang J et al. The BM2 protein of influenza B virus interacts with p53 and inhibits its transcriptional and apoptotic activities. Mol. Cell. Biochem. 403(1–2), 187–197 (2015).
    • 81 Horvath CM, Williams MA, Lamb RA. Eukaryotic coupled translation of tandem cistrons: identification of the influenza B virus BM2 polypeptide. EMBO J. 9(8), 2639–2647 (1990).
    • 82 Hatta M, Kohlmeier CK, Hatta Y, Ozawa M, Kawaoka Y. Region required for protein expression from the stop-start pentanucleotide in the M gene of influenza B virus. J. Virol. 83(11), 5939–5942 (2009).
    • 83 Powell ML, Napthine S, Jackson RJ, Brierley I, Brown TD. Characterization of the termination–reinitiation strategy employed in the expression of influenza B virus BM2 protein. RNA 14(11), 2394–2406 (2008).
    • 84 Powell ML, Leigh KE, Poyry TA, Jackson RJ, Brown TD, Brierley I. Further characterisation of the translational termination–reinitiation signal of the influenza B virus segment 7 RNA. PloS ONE 6(2), e16822 (2011).
    • 85 Stevens MP, Barclay WS. The N-terminal extension of the influenza B virus nucleoprotein is not required for nuclear accumulation or the expression and replication of a model RNA. J. Virol. 72(6), 5307–5312 (1998).
    • 86 Ng AK, Lam MK, Zhang H et al. Structural basis for RNA binding and homo-oligomer formation by influenza B virus nucleoprotein. J. Virol. 86(12), 6758–6767 (2012).
    • 87 Shen YF, Chen YH, Chu SY et al. E339. R416 salt bridge of nucleoprotein as a feasible target for influenza virus inhibitors. Proc. Natl Acad. Sci. USA 108(40), 16515–16520 (2011).
    • 88 Wanitchang A, Narkpuk J, Jongkaewwattana A. Nuclear import of influenza B virus nucleoprotein: involvement of an N-terminal nuclear localization signal and a cleavage-protection motif. Virology 443(1), 59–68 (2013).
    • 89 Sherry L, Smith M, Davidson S, Jackson D. The N terminus of the influenza B virus nucleoprotein is essential for virus viability, nuclear localization, and optimal transcription and replication of the viral genome. J. Virol. 88(21), 12326–12338 (2014).
    • 90 Reich S, Guilligay D, Pflug A et al. Structural insight into cap-snatching and RNA synthesis by influenza polymerase. Nature 516(7531), 361–366 (2014).
    • 91 Deng Q, Wang D, Xiang X et al. Nuclear localization of influenza B polymerase proteins and their binary complexes. Virus Res. 156(1–2), 49–53 (2011).
    • 92 Wakai C, Iwama M, Mizumoto K, Nagata K. Recognition of cap structure by influenza B virus RNA polymerase is less dependent on the methyl residue than recognition by influenza A virus polymerase. J. Virol. 85(15), 7504–7512 (2011).
    • 93 Liu Y, Yang Y, Fan J, He R, Luo M, Zheng X. The crystal structure of the PB2 cap-binding domain of influenza B virus reveals a novel cap recognition mechanism. J. Biol. Chem. 290(14), 9141–9149 (2015).
    • 94 Cauldwell AV, Long JS, Moncorge O, Barclay WS. Viral determinants of influenza A virus host range. J. Gen. Virol. 95(Pt 6), 1193–1210 (2014).
    • 95 Dauber B, Heins G, Wolff T. The influenza B virus nonstructural NS1 protein is essential for efficient viral growth and antagonizes beta interferon induction. J. Virol. 78(4), 1865–1872 (2004).
    • 96 Hai R, Martinez-Sobrido L, Fraser KA, Ayllon J, Garcia-Sastre A, Palese P. Influenza B virus NS1-truncated mutants: live-attenuated vaccine approach. J. Virol. 82(21), 10580–10590 (2008).
    • 97 Schneider J, Dauber B, Melen K, Julkunen I, Wolff T. Analysis of influenza B Virus NS1 protein trafficking reveals a novel interaction with nuclear speckle domains. J. Virol. 83(2), 701–711 (2009).
    • 98 Noah DL, Twu KY, Krug RM. Cellular antiviral responses against influenza A virus are countered at the posttranscriptional level by the viral NS1A protein via its binding to a cellular protein required for the 3′ end processing of cellular pre-mRNAS. Virology 307(2), 386–395 (2003).
    • 99 Donelan NR, Dauber B, Wang X, Basler CF, Wolff T, Garcia-Sastre A. The N- and C-terminal domains of the NS1 protein of influenza B virus can independently inhibit IRF-3 and beta interferon promoter activation. J. Virol. 78(21), 11574–11582 (2004).
    • 100 Dauber B, Schneider J, Wolff T. Double-stranded RNA binding of influenza B virus nonstructural NS1 protein inhibits protein kinase R but is not essential to antagonize production of alpha/beta interferon. J. Virol. 80(23), 11667–11677 (2006).
    • 101 Iwasaki A, Pillai PS. Innate immunity to influenza virus infection. Nat. Rev. Immunol. 14(5), 315–328 (2014).
    • 102 Yuan W, Krug RM. Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J. 20(3), 362–371 (2001).
    • 103 Sridharan H, Zhao C, Krug RM. Species specificity of the NS1 protein of influenza B virus: NS1 binds only human and non-human primate ubiquitin-like ISG15 proteins. J. Biol. Chem. 285(11), 7852–7856 (2010).
    • 104 Paragas J, Talon J, O’Neill RE, Anderson DK, Garcia-Sastre A, Palese P. Influenza B and C virus NEP (NS2) proteins possess nuclear export activities. J. Virol. 75(16), 7375–7383 (2001).
    • 105 Imai M, Watanabe S, Odagiri T. Influenza B virus NS2, a nuclear export protein, directly associates with the viral ribonucleoprotein complex. Arch. Virol. 148(10), 1873–1884 (2003).
    • 106 Barclay WS, Palese P. Influenza B viruses with site-specific mutations introduced into the HA gene. J. Virol. 69(2), 1275–1279 (1995).
    • 107 Zhou B, Lin X, Wang W et al. Universal influenza B virus genomic amplification facilitates sequencing, diagnostics, and reverse genetics. J. Clin. Microb. 52(5), 1330–1337 (2014).
    • 108 Hoffmann E, Mahmood K, Yang CF, Webster RG, Greenberg HB, Kemble G. Rescue of influenza B virus from eight plasmids. Proc. Natl Acad. Sci. USA 99(17), 11411–11416 (2002).
    • 109 Jackson D, Cadman A, Zurcher T, Barclay WS. A reverse genetics approach for recovery of recombinant influenza B viruses entirely from cDNA. J. Virol. 76(22), 11744–11747 (2002).
    • 110 Baker SF, Nogales A, Finch C et al. Influenza A and B virus intertypic reassortment through compatible viral packaging signals. J. Virol. 88(18), 10778–10791 (2014).
    • 111 Loo YM, Fornek J, Crochet N et al. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J. Virol. 82(1), 335–345 (2008).
    • 112 Dauber B, Martinez-Sobrido L, Schneider J et al. Influenza B virus ribonucleoprotein is a potent activator of the antiviral kinase PKR. PLoS Pathog. 5(6), e1000473 (2009).
    • 113 Kim MJ, Latham AG, Krug RM. Human influenza viruses activate an interferon-independent transcription of cellular antiviral genes: outcome with influenza A virus is unique. Proc. Natl Acad. Sci. USA 99(15), 10096–10101 (2002).
    • 114 Osterlund P, Strengell M, Sarin LP et al. Incoming influenza A virus evades early host recognition, while influenza B virus induces interferon expression directly upon entry. J. Virol. 86(20), 11183–11193 (2012).
    • 115 Veckman V, Osterlund P, Fagerlund R, Melen K, Matikainen S, Julkunen I. TNF-alpha and IFN-alpha enhance influenza-A-virus-induced chemokine gene expression in human A549 lung epithelial cells. Virology 345(1), 96–104 (2006).
    • 116 Ichinohe T, Pang IK, Iwasaki A. Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat. Immunol. 11(5), 404–410 (2010).
    • 117 Ponniah S, Doherty PC, Eichelberger M. Selective response of gamma delta T-cell hybridomas to orthomyxovirus-infected cells. J. Virol. 70(1), 17–22 (1996).
    • 118 Nunes B, Pechirra P, Coelho A, Ribeiro C, Arraiolos A, Rebelo-de-Andrade H. Heterogeneous selective pressure acting on influenza B Victoria- and Yamagata-like hemagglutinins. J. Mol. Evol. 67(4), 427–435 (2008).
    • 119 Wohlbold TJ, Nachbagauer R, Xu H et al. Vaccination with adjuvanted recombinant neuraminidase induces broad heterologous, but not heterosubtypic, cross-protection against influenza virus infection in mice. mBio 6(2), e02556 (2015).
    • 120 Levandowski RA, Gross PA, Weksler M, Staton E, Williams MS, Bonelli J. Cross-reactive antibodies induced by a monovalent influenza B virus vaccine. J. Clin. Microb. 29(7), 1530–1532 (1991).
    • 121 Janjua NZ, Skowronski DM, De Serres G et al. Estimates of influenza vaccine effectiveness for 2007–2008 from Canada’s sentinel surveillance system: cross-protection against major and minor variants. J. Infect. Dis. 205(12), 1858–1868 (2012).
    • 122 Englund JA, Walter EB, Gbadebo A, Monto AS, Zhu Y, Neuzil KM. Immunization with trivalent inactivated influenza vaccine in partially immunized toddlers. Pediatrics 118(3), e579–e585 (2006).
    • 123 Walter EB, Neuzil KM, Zhu Y et al. Influenza vaccine immunogenicity in 6- to 23-month-old children: are identical antigens necessary for priming? Pediatrics 118(3), e570–e578 (2006).
    • 124 Ohmit SE, Thompson MG, Petrie JG et al. Influenza vaccine effectiveness in the 2011–2012 season: protection against each circulating virus and the effect of prior vaccination on estimates. Clin. Infect. Dis. 58(3), 319–327 (2014).
    • 125 Skowronski DM, Hottes TS, De Serres G et al. Influenza Beta/Victoria antigen induces strong recall of Beta/Yamagata but lower Beta/Victoria response in children primed with two doses of Beta/Yamagata. Pediatr. Infect. Dis. J. 30(10), 833–839 (2011).
    • 126 Dreyfus C, Laursen NS, Kwaks T et al. Highly conserved protective epitopes on influenza B viruses. Science 337(6100), 1343–1348 (2012).
    • 127 Yasugi M, Kubota-Koketsu R, Yamashita A et al. Human monoclonal antibodies broadly neutralizing against influenza B virus. PLoS Pathog. 9(2), e1003150 (2013).
    • 128 Gravel C, Li C, Wang J et al. Qualitative and quantitative analyses of virtually all subtypes of influenza A and B viral neuraminidases using antibodies targeting the universally conserved sequences. Vaccine 28(36), 5774–5784 (2010).
    • 129 Doyle TM, Li C, Bucher DJ et al. A monoclonal antibody targeting a highly conserved epitope in influenza B neuraminidase provides protection against drug resistant strains. Biochem. Biophys. Res. Commun. 441(1), 226–229 (2013).
    • 130 McMichael AJ, Gotch FM, Noble GR, Beare PA. Cytotoxic T-cell immunity to influenza. N. Engl. J. Med. 309(1), 13–17 (1983).
    • 131 Gras S, Kedzierski L, Valkenburg SA et al. Cross-reactive CD8+ T-cell immunity between the pandemic H1N1–2009 and H1N1–1918 influenza A viruses. Proc. Natl Acad. Sci. USA 107(28), 12599–12604 (2010).
    • 132 Sridhar S, Begom S, Bermingham A et al. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat. Med. 19(10), 1305–1312 (2013).
    • 133 Quinones-Parra S, Grant E, Loh L et al. Preexisting CD8+ T-cell immunity to the H7N9 influenza A virus varies across ethnicities. Proc. Natl Acad. Sci. USA 111(3), 1049–1054 (2014).
    • 134 Wang Z, Wan Y, Qiu C et al. Recovery from severe H7N9 disease is associated with diverse response mechanisms dominated by CD8(+) T cells. Nat. Commun. 6, 6833 (2015).
    • 135 Hillaire ML, van Trierum SE, Kreijtz JH et al. Cross-protective immunity against influenza pH1N1 2009 viruses induced by seasonal influenza A (H3N2) virus is mediated by virus-specific T-cells. J. Gen. Virol. 92(Pt 10), 2339–2349 (2011).
    • 136 Epstein SL, Lo CY, Misplon JA, Bennink JR. Mechanism of protective immunity against influenza virus infection in mice without antibodies. J. Immunol. 160(1), 322–327 (1998).
    • 137 Robbins PA, Lettice LA, Rota P et al. Comparison between two peptide epitopes presented to cytotoxic T lymphocytes by HLA-A2. Evidence for discrete locations within HLA-A2. J. Immunol. 143(4089), 103 (1989).
    • 138 Robbins PA, Rota PA, Shapiro SZ. A broad cytotoxic T lymphocyte response to influenza type B virus presented by multiple HLA molecules. Int. Immunol. 9(6), 815–823 (1997).
    • 139 van de Sandt CE, Dou Y, Vogelzang-van Trierum SE et al. Influenza B virus-specific CD8+ T lymphocytes strongly cross-react with viruses of the opposing influenza B lineage. J. Gen. Virol. 96(8), 2061–2073 (2015).
    • 140 Boon AC, De Mutsert G, Fouchier RA, Sintnicolaas K, Osterhaus AD, Rimmelzwaan GF. Preferential HLA usage in the influenza virus-specific CTL response. J. Immunol. 172(7), 4435–4443 (2004).
    • 141 Terajima M, Babon JA, Co MD, Ennis FA. Cross-reactive human B cell and T cell epitopes between influenza A and B viruses. Virol. J. 10, 244 (2013).
    • 142 Epstein SL, Lo CY, Misplon JA et al. Mechanisms of heterosubtypic immunity to lethal influenza A virus infection in fully immunocompetent, T cell-depleted, beta2-microglobulin-deficient, and J chain-deficient mice. J. Immunol. 158(3), 1222–1230 (1997).
    • 143 Benton KA, Misplon JA, Lo CY, Brutkiewicz RR, Prasad SA, Epstein SL. Heterosubtypic immunity to influenza A virus in mice lacking IgA, all Ig, NKT cells, or T cells. J. Immunol. 166(12), 7437–7445 (2001).
    • 144 Beran J, Peeters M, Dewe W, Raupachova J, Hobzova L, Devaster JM. Immunogenicity and safety of quadrivalent versus trivalent inactivated influenza vaccine: a randomized, controlled trial in adults. BMC Infect. Dis. 13, 224 (2013).
    • 145 Graaf H, Faust SN. Fluarix quadrivalent vaccine for influenza. Exp. Rev. Vaccines 14(8), 1055–1063 (2015).
    • 146 Tinoco JC, Pavia-Ruz N, Cruz-Valdez A et al. Immunogenicity, reactogenicity, and safety of inactivated quadrivalent influenza vaccine candidate versus inactivated trivalent influenza vaccine in healthy adults aged >/=18 years: a Phase III, randomized trial. Vaccine 32(13), 1480–1487 (2014).
    • 147 Bernstein DI, Yan L, Treanor J, Mendelman PM, Belshe R, Cold-adapted TIVSG. Effect of yearly vaccinations with live, attenuated, cold-adapted, trivalent, intranasal influenza vaccines on antibody responses in children. Pediatr. Infect. Dis. J. 22(1), 28–34 (2003).
    • 148 Huber VC, Kleimeyer LH, McCullers JA. Live, attenuated influenza virus (LAIV) vehicles are strong inducers of immunity toward influenza B virus. Vaccine 26(42), 5381–5388 (2008).
    • 149 Lee MS, Mahmood K, Adhikary L et al. Measuring antibody responses to a live attenuated influenza vaccine in children. Pediatr. Infect. Dis. J. 23(9), 852–856 (2004).
    • 150 Le J, Orff EJ, Fulvini AA et al. Development of high yield reassortants for influenza type B viruses and analysis of their gene compositions. Vaccine 33(7), 879–884 (2015).
    • 151 Burnham AJ, Armstrong J, Lowen AC, Webster RG, Govorkova EA. Competitive fitness of influenza B viruses with neuraminidase inhibitor-resistant substitutions in a coinfection model of the human airway epithelium. J. Virol. 89(8), 4575–4587 (2015).
    • 152 Burnham AJ, Baranovich T, Marathe BM, Armstrong J, Webster RG, Govorkova EA. Fitness costs for Influenza B viruses carrying neuraminidase inhibitor-resistant substitutions: underscoring the importance of E119A and H274Y. Antimicrob. Agents Chemother. 58(5), 2718–2730 (2014).
    • 153 Farrukee R, Leang SK, Butler J et al. Influenza viruses with B/Yamagata- and B/Victoria-like neuraminidases are differentially affected by mutations that alter antiviral susceptibility. J. Antimicrob. Chemother. 70(7), 2004–2012 (2015).