We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance

    Maria Lina Mezzatesta

    * Author for correspondence

    Department of Bio-Medical Sciences, Section of Microbiology, University of Catania, Via Androne 81, 95124 Catania, Italy.

    ,
    Floriana Gona

    Department of Bio-Medical Sciences, Section of Microbiology, University of Catania, Via Androne 81, 95124 Catania, Italy

    &
    Stefania Stefani

    Department of Bio-Medical Sciences, Section of Microbiology, University of Catania, Via Androne 81, 95124 Catania, Italy

    Published Online:https://doi.org/10.2217/fmb.12.61

    Species of the Enterobacter cloacae complex are widely encountered in nature, but they can act as pathogens. The biochemical and molecular studies on E. cloacae have shown genomic heterogeneity, comprising six species: Enterobacter cloacae, Enterobacter asburiae, Enterobacter hormaechei, Enterobacter kobei, Enterobacter ludwigii and Enterobacter nimipressuralis, E. cloacae and E. hormaechei are the most frequently isolated in human clinical specimens. Phenotypic identification of all species belonging to this taxon is usually difficult and not always reliable; therefore, molecular methods are often used. Although the E. cloacae complex strains are among the most common Enterobacter spp. causing nosocomial bloodstream infections in the last decade, little is known about their virulence-associated properties. By contrast, much has been published on the antibiotic-resistance features of these microorganisms. In fact, they are capable of overproducing AmpC β-lactamases by derepression of a chromosomal gene or by the acquisition of a transferable ampC gene on plasmids conferring the antibiotic resistance. Many other resistance determinants that are able to render ineffective almost all antibiotic families have been recently acquired. Most studies on antimicrobial susceptibility are focused on E. cloacae, E. hormaechei and E. asburiae; these studies reported small variations between the species, and the only significant differences had no discriminating features.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Sanders WE Jr, Sanders CC. Enterobacter spp.: pathogens poised to flourish at the turn of the century. Clin. Microbiol. Rev.10,220–241 (1997).▪ Exhaustive review on the Enterobacter genus that highlights microbiological, clinical and epidemiological features and antibiotic susceptibility.
    • Streit JM, Jones RN, Sader HS, Fritsche TR. Assessment of pathogen occurrences and resistance profiles among infected patients in the intensive care unit: report from the SENTRY Antimicrobial Surveillance Program (North America, 2001). Int. J. Antimicrob. Agents24,111–118 (2004).
    • Hidron AI, Edwards JR, Patel J et al.; for the National Healthcare Safety Network Team and Participating National Healthcare Safety Network Facilities. Antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect. Control Hosp. Epidemiol.29(11),996–1011 (2008).
    • Wisplinghoff H, Bischoff T, Tallent SM et al. Nosocomial bloodstream infections in us hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis.39,309–317 (2004).
    • Paauw A, Caspers MP, Schuren FH et al. Genomic diversity within the Enterobacter cloacae complex. PLoS One3,e3018(2008).▪▪ Utilization of four genetic approaches for discriminating within the Enterobacter cloacae complex.
    • Hoffmann H, Roggenkamp A. Population genetics of the nomenspecies Enterobacter cloacae. Appl. Environ. Microbiol.69,5306–5318 (2003).▪▪ Genetic clustering highlighting taxonomic and epidemiological characteristics of the E. cloacae complex.
    • Hormaeche E, Edwards PR. A proposed genus Enterobacter. Int. Bull. Bacteriol. Nomencl. Taxon.10,71–74 (1960).
    • Morand PC, Billoet A, Rottman M et al. Specific distribution within the Enterobacter cloacae complex of strains isolated from infected orthopedic implants. J. Clin. Microbiol.47(8),2489–2495 (2009).
    • Wang GF, Xie GL, Zhu B et al. Identification and characterization of the Enterobacter complex causing mulberry (Morus alba) wilt disease in China. Eur. J. Plant Pathol.126,465–478 (2010).
    • 10  O’Hara CM, Steigerwalt AG, Hill BC, Farmer JJ III, Fanning GG, Brenner DJ. Enterobacter hormaechei, a new species of the family Enterobacteriaceae formerly known as enteric group 75. J. Clin. Microbiol.27,2046–2049 (1989).
    • 11  Hoffmann H, Stindl S, Ludwig W et al.Enterobacter hormaechei subsp. oharae subsp. nov., E. hormaechei subsp. hormaechei comb. nov., and E. hormaechei subsp. steigerwaltii subsp. nov., three new subspecies of clinical importance J. Clin. Microbiol.43,3297–3303 (2005).
    • 12  Hoffmann H, Stindl S, Stumpf A et al. Description of Enterobacter ludwigii sp. nov., a novel Enterobacter species of clinical relevance. Syst. Appl. Microbiol.28(3),206–212 (2005).
    • 13  Hoffmann H, Stindl S, Ludwig W et al. Reassignment of Enterobacter dissolvens to Enterobacter cloacae as E. cloacae subspecies dissolvens comb. nov. and emended description of Enterobacter asburiae and Enterobacter kobei. Syst. Appl. Microbiol.28(3),196–205 (2005).
    • 14  Mshana SE, Gerwing L, Minde M et al. Outbreak of a novel Enterobacter sp. carrying blaCTX-M-15 in a neonatal unit of a tertiary care hospital in Tanzania. Int. J. Antimicrob. Agents.38(3),265–269 (2011).
    • 15  Pavlovic M, Konrad R, Iwobi AN, Sing A, Busch U, Huber I. A dual approach employing MALDI-TOF MS and real-time PCR for fast species identification within the Enterobacter cloacae complex. FEMS Microbiol. Lett.328,46–53 (2012).
    • 16  Hoffmann H, Schmoldt S, Trqlzsch K et al. Nosocomial urosepsis caused by Enterobacter kobei with aberrant phenotype. Diagn. Microbiol. Infect. Dis.53,143–147 (2005).
    • 17  Townsend SM, Hurrell E, Caubilla-Barron J, Loc-Carrillo C, Forsythe SJ. Characterization of an extended-spectrum betalactamase Enterobacter hormaechei nosocomial outbreak, and other Enterobacter hormaechei misidentified as Cronobacter (Enterobacter) sakazakii. Microbiology154,3659–3667 (2008).
    • 18  Garaizar J, Kaufmann ME, Pitt TL. Comparison of ribotyping with conventional methods for the type identification of Enterobacter cloacae. J. Clin. Microbiol.29,1303–1307 (1991).
    • 19  Haertl R, Bandlow G. Epidemiological fingerprinting of Enterobacter cloacae by small-fragment restriction endonuclease analysis and pulsed-field gel electrophoresis of genomic restriction fragments. J. Clin. Microbiol.31,128–133 (1993).
    • 20  Williams JGK, Kubelick AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful genetic markers. Nucleic Acids Res.18,6531–6535 (1990).
    • 21  Stumpf AN, Roggenkamp A, Hoffmann H. Specificity of enterobacterial repetitive intergenic consensus and repetitive extragenic palindromic polymerase chain reaction for the detection of clonality within the Enterobacter cloacae complex. Diagn. Microbiol. Infect. Dis.53(1),9–16 (2005).
    • 22  Barnes AI, Ortiz C, Paraje MG, Balanzino LE, Albesa I. Purification and characterization of a cytotoxin from Enterobacter cloacae. Can. J. Microbiol.43(8),729–733 (1997).
    • 23  Stuber K, Frey J, Burnens AP, Kuhnert P. Detection of type III secretion genes as a general indicator of bacterial virulence. Mol. Cell. Probe17,25–32 (2003).
    • 24  Krzyminska S, Mokracka J, Koczura R, Kaznowski A. Cytotoxic activity of Enterobacter cloacae human isolates. FEMS Immunol. Med. Microbiol.56,248–252 (2009).
    • 25  Krzyminska S, Koczura R, Mokracka J, Puton T, Kaznowski A. Isolates of the Enterobacter cloacae complex induce apoptosis of human intestinal epithelial cells. Microb. Pathog.49,83–89 (2010).
    • 26  Olsén A, Arnqvist A, Hammar M, Normark S. Environmental regulation of curli production in Escherichia coli. Infect. Agents Dis.2(4),272–274 (1993).
    • 27  Zogaj X, Bokranz W, Nimtz M, Romling U. Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect. Immun.71(7),4151–4158 (2003).
    • 28  Kim SM, Lee HW, Choi YW et al. Involvement of curli fimbriae in the biofilm formation of Enterobacter cloacae. J. Microbiol.50(1),175–178 (2012).
    • 29  Lee SO, Kim YS, Kim BN, Kim MN, Woo JH, Ryu J. Impact of previous use of antibiotics on development of resistance to extended-spectrum cephalosporins in patients with enterobacter bacteremia. Eur. J. Clin. Microbiol. Infect. Dis.8,577–581 (2002).
    • 30  Musil I, Jensen V, Schilling J, Ashdown B, Kent T. Enterobacter cloacae infection of an expanded polytetrafluoroethylene femoral–popliteal bypass graft: a case report. J. Med. Case Rep.9(4),131(2010).
    • 31  Dalben M, Varkulja G, Basso M et al. Investigation of an outbreak of Enterobacter cloacae in a neonatal unit and review of the literature. J. Hosp. Infect.70,7–14 (2008).
    • 32  van Nierop WH, Duse AG, Stewart RG, Bilgeri YR, Koornhof HJ. Molecular epidemiology of an outbreak of Enterobacter cloacae in the neonatal intensive care unit of a provincial hospital in Gauteng, South Africa. J. Clin. Microbiol.36,3085–3087 (1998).
    • 33  Kuboyama RH, de Oliveira HB, Moretti-Branchini ML. Molecular epidemiology of systemic infection caused by Enterobacter cloacae in a high-risk neonatal intensive care unit. Infect. Control Hosp. Epidemiol.24,490–494 (2003).
    • 34  Ren Y, Ren Y, Zhou Z et al. Complete genome sequence of Enterobacter cloacae subsp. cloacae type strain ATCC 13047. J. Bacteriol.192(9),2463–2464 (2010).
    • 35  Edwards PR, Fife MA. Capsular types of Klebsiella. J. Infect. Dis.91,92–104 (1952).
    • 36  Edwards PR, Fife MS. Eleven undescribed Arizona serotypes isolated from man. Antonie Van Leeuwenhoek28,402–404 (1962).
    • 37  Fife MA, McWhorter AC, Edwards PR. Ten new Arizona serotypes isolated from animals and animal food products. Antonie Van Leeuwenhoek28,369–372 (1962).
    • 38  Manzano D, Rojo P, Zubero Z, Alvarez M, Santamaria JM, Cisterna R. [Polymicrobial bacteremia caused by Enterobacter gergoviae and Candida albicans.] Enferm. Infecc. Microbiol. Clin.9,186–187 (1991).
    • 39  Farmer JJ 3rd, Fanning GR, Davis BR et al.Escherichia fergusonii and Enterobacter taylorae, two new species of Enterobacteriaceae isolated from clinical specimens. J. Clin. Microbiol.21(1),77–81 (1985).
    • 40  Ewing WH, Fife MA. Enterobacter agglomerans (Beijerinck) comb. nov. (the Herbicola–Lathyri bacteria). Int. J. Syst. Bacteriol.22,4–11 (1972).
    • 41  Farmer JJ III, Asbury MA, Hickman FW, Brenner DJ; Enterobacteriaceae Study Group. Enterobacter sakazakii: a new species of “Enterobacteriaceae” isolated from clinical specimens. Int. J. Syst. Bacteriol.30,569–584 (1980).
    • 42  Grimont PAD, Grimont F, Farmer JJ III, Asbury MA. Cedecea davisae gen. nov., sp. nov. and Cedecea lapagei sp. nov., new Enterobacteriaceae from clinical specimens. Int. J. Syst. Bacteriol.31,317–326 (1981).
    • 43  Brenner DJ, McWhorter AC, Kai A, Steigerwalt AG, Farmer JJ III. Enterobacter asburiae sp. nov., a new species found in clinical specimens, and reassignment of Erwinia dissolvens and Erwinia nimipressuralis to the genus Enterobacter as Enterobacter dissolvens comb. nov. and Enterobacter nimipressuralis comb. nov. J. Clin. Microbiol.23,1114–1120 (1986).
    • 44  Farmer JJ III, Davis BR, Hickman-Brenner FW et al. Biochemical identification of new species and biogroups of Enterobacteriaceae isolated from clinical specimens. J. Clin. Microbiol.21,46–76 (1985).
    • 45  Davin-Regli A, Bosi C, Charrel R et al. A nosocomial outbreak due to Enterobacter cloacae strains with the E. hormaechei genotype in patients treated with fluoroquinolones. J. Clin. Microbiol.35,1008–1010 (1997).
    • 46  Paauw A, Caspers MPM, Leverstein-van Hall MA et al. Identification of resistance and virulence factors in an epidemic Enterobacter hormaechei outbreak strain. Microbiology155,1478–1488 (2009).
    • 47  Wenger PN, Tokars JI, Brennan P et al. An outbreak of Enterobacter hormaechei infection and colonization in an intensive care nursery. Clin. Infect. Dis.24(6),1243–1244 (1997).
    • 48  Campos LC, Lobianco LF, Seki LM, Santos RM, Asensi MD. Outbreak of Enterobacter hormaechei septicaemia in newborns caused by contaminated parenteral nutrition in Brazil. J. Hosp. Infect.66(1),95–97 (2007).
    • 49  Kosako Y, Tamura K, Sakazaki R, Miki K. Enterobacter kobei sp. nov., a new species of the family Enterobacteriaceae resembling Enterobacter cloacae. Curr. Microbiol.33,261–265 (1996).
    • 50  Farmer JJ. Enterobacteriaceae. In: Manual of Clinical Microbiology (6th Edition). Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH (Eds). American Society for Microbiology, Washington, DC, USA, 438–449 (1994).
    • 51  Ludwig W, Klenk HP. Overview: a phylogenetic backbone and taxonomic framework for procaryotic systematics, In: Bergey’s Manual of Systematic Bacteriology (2nd Edition). Garrity G (Ed.). Springer, NY, USA, 49–65 (2001).
    • 52  Ludwig W, Strunk O, Westram R et al. ARB: a software environment for sequence data. Nucleic Acids Res.32,1363–1371 (2004).
    • 53  Stock I, Grüger T, Wiedemann B. Natural antibiotic susceptibility of strains of the Enterobacter cloacae complex. Int. J. Antimicrob. Agents.18(6),537–545 (2001).▪▪ Evaluation of a wide range of antibiotics tested against E. cloacae, Enterobacter hormaechei and Enterobacter asburiae strains, providing a database for their natural susceptibility.
    • 54  Kim DM, Jang SJ, Neupane GP et al.Enterobacter nimipressuralis as a cause of pseudobacteremia. BMC Infect. Dis.10,315(2010).
    • 55  Scotta C, Juan C, Cabot G et al. Environmental microbiota represents a natural reservoir for dissemination of clinically relevant metallo-beta-lactamases. Antimicrob. Agents Chemother.55,5376–5379 (2011).
    • 56  George AJ. AmpC β-lactamases. Clin. Microbiol. Rev.22(1),161–182 (2009).
    • 57  Roh KH, Song W, Chung HS et al. Chromosomal cephalosporinase in Enterobacter hormaechei as an ancestor of ACT-1 plasmid-mediated AmpC beta-lactamase. J. Med. Microbiol.61(1),94–100 (2012).
    • 58  Choi SH, Lee JE, Park SJ et al. Prevalence, microbiology, and clinical characteristics of extended-spectrum beta-lactamase-producing Enterobacter spp., Serratia marcescens, Citrobacter freundii, and Morganella morganii in Korea. Eur. J. Clin. Microbiol. Infect. Dis.26,557–561 (2007).
    • 59  Smith Moland E, Sanders CC, Thomson KC. Can results obtained with commercially available MicroScan microdilution panels serve as an indicator of beta-lactamase production among Escherichia coli and Klebsiella isolates with hidden resistance to expanded-spectrum cephalosporins and aztreonam? J. Clin. Microbiol.36,2575–2579 (1998).
    • 60  Tzelepi E, Giakkoupi P, Sofianou D, Loukova V, Kemeroglou A, Tsakris A. Detection of extended-spectrum beta-lactamases in clinical isolates of Enterobacter cloacae and Enterobacter aerogenes. J. Clin. Microbiol.38(2),542–546 (2000).
    • 61  Tzouvelekis LS, Vatopoulos AC, Katsanis G, Tzelepi E. Rare case of failure by an automated system to detect extended-spectrum beta-lactamase in a cephalosporin-resistant Klebsiella pneumoniae isolate. J. Clin. Microbiol.37(7),2388(1999).
    • 62  Girlich D, Poirel L, Leelaporn A et al. Molecular epidemiology of the integronlocated VEB-1 extended-spectrum beta-lactamase in nosocomial enterobacterial isolates in Bangkok, Thailand. J. Clin. Microbiol.39,175–182 (2001).
    • 63  Paterson DL. Resistance in Gram-negative bacteria: Enterobacteriaceae. Am. J. Med.119(6 Suppl. 1),S20–S28 (2006).
    • 64  Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin. Microbiol. Rev.18,657–686 (2005).
    • 65  Jiang X, Ni Y, Jiang Y et al. Outbreak of infection caused by Enterobacter cloacae producing the novel VEB-3 beta-lactamase in China. J. Clin. Microbiol.43(2),826–831 (2005).
    • 66  Ho PL, Shek RH, Chow KH et al. Detection and characterization of extended-spectrum beta-lactamases among bloodstream isolates of Enterobacter spp. in Hong Kong, 2000–2002. J. Antimicrob. Chemother.55(3),326–332 (2005).
    • 67  Pitout JD, Laupland KB. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect. Dis.8,159–166 (2008).
    • 68  Poirel L, Pitout JD, Nordmann P. Carbapenemases: molecular diversity and clinical consequences. Future Microbiol.2(5),501–512 (2007).
    • 69  Panagea T, Galani I, Souli M, Adamou P, Antoniadou A, Giamarellou H. Evaluation of CHROMagar™ KPC for the detection of carbapenemase-producing Enterobacteriaceae in rectal surveillance cultures. Int. J. Antimicrob. Agents37(2),124–128 (2011).
    • 70  Cohen Stuart J, Leverstein-Van Hall MA; Dutch Working Party on the Detection of Highly Resistant Microorganisms. Guideline for phenotypic screening and confirmation of carbapenemases in Enterobacteriaceae. Int. J. Antimicrob. Agents.36(3),205–210 (2010).
    • 71  Lo A, Verrall R, Williams J, Stratton C, Della-Latta P, Tang YW. Carbapenem resistance via the blaKPC-2 gene in Enterobacter cloacae blood culture isolate. South. Med. J.103(5),453–454 (2010).
    • 72  Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob. Agents Chemother.54,969–976 (2010).
    • 73  Nordmann P, Naas T, Poirel L. Global spread of carbapenemase producing Enterobacteriaceae. Emerg. Infect. Dis.17,1791–1798 (2011).
    • 74  Naas T, Nordmann P. Analysis of a carbapenem-hydrolyzing class A beta-lactamase from Enterobacter cloacae and of its LysR-type regulatory protein. Proc. Natl Acad. Sci. USA91,7693–7697 (1994).
    • 75  Radice M, Power P, Gutkind G et al. First class A carbapenemase isolated from Enterobacteriaceae in Argentina. Antimicrob. Agents Chemother.48,1068–1069 (2004).
    • 76  Pottumarthy S, Moland ES, Jeretschko S, Swanzy SR, Thomson KS, Fritsche TR. NmcA carbapenem-hydrolyzing enzyme in Enterobacter cloacae in North America. Emerg. Infect. Dis.9,999–1002 (2003).
    • 77  Naas T, Cattoen C, Bernusset S, Cuzon G, Nordmann P. First Identification of blaIMI-1 in an Enterobactercloacae clinical isolate from France. Antimicrob. Agents Chemother.56(3),1664–1665 (2012).
    • 78  Rasmussen BA, Bush K, Keeney D et al. Characterization of IMI-1 beta-lactamase, a class A carbapenem-hydrolyzing enzyme from Enterobacter cloacae. Antimicrob. Agents Chemother.40,2080–2086 (1996).
    • 79  Yun-Song Y, Xiao-Xing D, Zhi-Hui Z, Ya-Gang C, Lan-Juan L. First isolation of blaIMI-2 in an Enterobacter cloacae clinical isolate from China. Antimicrob. Agents Chemother.50,1610–1611 (2006).
    • 80  Nordmann P, Mariotte S, Naas T, Labia R, Nicolas MH. Biochemical properties of a carbapenem-hydrolyzing beta-lactamase from Enterobacter cloacae and cloning of the gene into Escherichia coli. Antimicrob. Agents Chemother.37(5),939–946 (1993).
    • 81  Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin. Microbiol. Rev.20,440–458 (2007).▪ Focuses on updated information on the epidemiological and biochemical characteristics of carbapenemases of E. cloacae.
    • 82  Aubron C, Poirel L, Ash RJ, Nordmann P. Carbapenemase-producing Enterobacteriaceae, U.S. rivers. Emerg. Infect. Dis.11,260–264 (2005).
    • 83  Giakkoupi P, Tzouvelekis LS, Tsakris A, Loukova V, Sofianou D, Tzelepi E. IBC-1, a novel integron-associated class A beta-lactamase with extended-spectrum properties produced by an clinical strain. Antimicrob. Agents Chemother.44,2247–2253 (2000).
    • 84  Bratu S, Landman D, Alam M, Tolentino E, Quale J. Detection of KPC carbapenem-hydrolyzing enzymes in Enterobacter spp. from Brooklyn, New York. Antimicrob. Agents Chemother.49,776–778 (2005).
    • 85  Cornaglia G, Giamarellou H, Rossolini GM. Metallo-beta-lactamases: a last frontier for beta-lactams? Lancet Infect. Dis.11(5),381–393 (2011).
    • 86  Deshpande LM, Jones RN, Fritsche TR, Sader HS. Occurrence and characterization of carbapenemase-producing Enterobacteriaceae: report from the SENTRY Antimicrobial Surveillance Program (2000–2004). Microb. Drug Resist.12(4),223–230 (2006).
    • 87  Yan JJ, Ko WC, Chuang CL, Wu JJ. Metallo-beta-lactamase-producing Enterobacteriaceae isolates in a university hospital in Taiwan: prevalence of IMP-8 in Enterobacter cloacae and first identification of VIM-2 in Citrobacter freundii. J. Antimicrob. Chemother.50,503–511 (2002).
    • 88  Lee MF, Peng CF, Hsu HJ, Chen YH. Molecular characterisation of the metallo-beta-lactamase genes in imipenem-resistant Gram-negative bacteria from a university hospital in southern Taiwan. Int. J. Antimicrob. Agents.32,475–480 (2008).
    • 89  Luzzaro F, Docquier JD, Colinon C et al. Emergence in Klebsiella pneumoniae and Enterobacter cloacae clinical isolates of the VIM-4 metallo-beta-lactamase encoded by a conjugative plasmid. Antimicrob. Agents Chemother.48,648–650 (2004).
    • 90  Perilli MG, Mezzatesta ML, Marco F et al. Class I integron-borne blaVIM-1 carbapenemase in a strain of Enterobacter cloacae responsible for a case of fatal pneumonia. Microb. Drug Resist.14(1),45–47 (2008).
    • 91  Falcone M, Mezzatesta ML, Perilli MG et al. Infections with VIM-1 metallo-beta-lactamase-producing Enterobacter cloacae and their correlation with clinical outcome. J. Clin. Microbiol.47(11),3514–3519 (2009).
    • 92  Panopoulou M, Alepopoulou E, Ikonomidis A, Grapsa A, Paspalidou E, Kartali-Ktenidou S. Emergence of VIM-12 in Enterobacter cloacae. J. Clin. Microbiol.48(9),3414–3415 (2010).
    • 93  Souli M, Kontopidou FV, Papadomichelakis E, Galani I, Armaganidis A, Giamarellou H. Clinical experience of serious infections caused by Enterobacteriaceae producing VIM-1 metallo-beta-lactamase in a Greek university hospital. Clin. Infect. Dis.46,847–854 (2008).
    • 94  Tato M, Coque TM, Ruiz-Garbajosa P et al. Complex clonal and plasmid epidemiology in the first outbreak of Enterobacteriaceae infection involving VIM-1 metallo-beta-lactamase in Spain: toward endemicity? Clin. Infect. Dis.45,1171–1178 (2007).
    • 95  Yong D, Toleman MA, Giske CG et al. Characterization of a new metallo-beta-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother.53,5046–5054 (2009).
    • 96  Brink AJ, Coetzee J, Clay CG et al. Emergence of New Delhi metallo-beta-lactamase (NDM-1) and Klebsiella pneumoniae carbapenemase (KPC-2) in South Africa. J. Clin. Microbiol.50(2),525–527 (2012).
    • 97  Bogaerts P, Bouchahrouf W, Rezende de Castro R et al. Emergence of NDM-1-producing Enterobacteriaceae in Belgium. Antimicrob. Agents Chemother.55,3036–3038 (2011).
    • 98  Carrer A, Poirel L, Yilmaz M et al. Spread of OXA-48-encoding plasmid in Turkey and beyond. Antimicrob. Agents Chemother.54(3),1369–1373 (2010).
    • 99  Poirel L, Castanheira M, Carrër A et al. OXA-163, an OXA-48-related class D beta-lactamase with extended activity toward expanded-spectrum cephalosporins. Antimicrob. Agents Chemother.55(6),2546–2551 (2011).
    • 100  Glupczynskia Y, Huanga TD, Bouchahroufa W et al. Rapid emergence and spread of OXA-48-producing carbapenem-resistant Enterobacteriaceae isolates in Belgian hospitals. Int. J. Antimicrob. Agents39,168–172 (2012).
    • 101  Poirel L, Ros A, Carrër A et al. Cross-border transmission of OXA-48-producing Enterobacter cloacae from Morocco to France. J. Antimicrob. Chemother.66,1181–1182 (2011).
    • 102  Szabó D, Silveira F, Hujer AM et al. Outer membrane protein changes and efflux pump expression together may confer resistance to ertapenem in Enterobacter cloacae. Antimicrob. Agents Chemother.50(8),2833–2835 (2006).
    • 103  Chow JW, Fine MJ, Shlaes DM et al.Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy. Ann. Intern. Med.115,585–590 (1991).
    • 104  Choi SH, Lee JE, Park SJ et al. Emergence of antibiotic resistance during therapy for infections caused by Enterobacteriaceae producing AmpC beta-lactamase implications for antibiotic use. Antimicrob. Agents Chemother.52,995–1000 (2008).
    • 105  Baucheron S, Imberechts H, Chaslus-Dancla E, Cloeckaert A. The AcrB multidrug transporter plays a major role in high-level fluoroquinolone resistance in Salmonella enterica serovar Typhimurium phage type DT204. Microb. Drug Resist.8,281–289 (2002).
    • 106  Ruiz J. Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. J. Antimicrob. Chemother.51,1109–1117 (2003).
    • 107  Perichon B, Courvalin P, Galimand M. Transferable resistance to aminoglycosides by methylation of G1405 in 16S rRNA and to hydrophilic fluoroquinolones by QepA-mediated efflux in Escherichia coli. Antimicrob. Agents Chemother.51,2464–2469 (2007).
    • 108  Cano ME, Rodríguez-Martínez JM, Aguero J et al. Detection of plasmid-mediated quinolone resistance genes in clinical isolates of Enterobacter spp. in Spain. J. Clin. Microbiol.47(7),2033–2039 (2009).
    • 109  Robicsek A, Jacoby GA, Hooper DC. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect. Dis.6,629–640 (2006).
    • 110  Martínez-Martínez L, Cano ME, Rodríguez-Martínez JM, Calvo J, Pascual A. Plasmid-mediated quinolone resistance. Expert. Rev. Anti-Infect. Ther.6,685–711 (2008).
    • 111  Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC. Prevalence in the United States of aac(6´)-Ib-cr encoding a ciprofloxacin modifying enzyme. Antimicrob. Agents Chemother.50,3953–3955 (2006).
    • 112  Jacoby GA, Chow N, Waites KB. Prevalence of plasmid mediated quinolone resistance. Antimicrob. Agents Chemother.47,559–562 (2003).
    • 113  Park YJ, Yu JK, Lee S, Oh EJ, Woo GJ. Prevalence and diversity of qnr alleles in AmpC-producing Enterobacter cloacae, Enterobacter aerogenes, Citrobacter freundii and Serratia marcescens: a multicentre study from Korea. J. Antimicrob. Chemother.60,868–871 (2007).
    • 114  Nordmann P, Poirel L. Emergence of plasmid-mediated resistance to quinolones in Enterobacteriaceae. J. Antimicrob. Chemother.56,463–469 (2005).
    • 115  Wu JJ, Ko WC, Tsai SH, Yan JJ. Prevalence of plasmid mediated quinolone resistance determinants QnrA, QnrB, and QnrS among clinical isolates of Enterobacter cloacae in a Taiwanese hospital. Antimicrob. Agents Chemother.51,1223–1227 (2007).
    • 116  Chmelnitsky I, Navon-Venezia S, Strahilevitz J, Carmeli Y. Plasmid-mediated qnrB2 and carbapenemase gene blaKPC-2 carried on the same plasmid in carbapenem-resistant ciprofloxacin-susceptible Enterobacter cloacae isolates. Antimicrob. Agents Chemother.52(8),2962–2965 (2008).
    • 117  Jacoby G, Cattoir V, Hooper D et al.qnr gene nomenclature. Antimicrob. Agents Chemother.52,2297–2299 (2008).
    • 118  Neonakis I, Gikas A, Scoulica E, Manios A, Georgiladakis A, Tselentis Y. Evolution of aminoglycoside resistance phenotypes of four Gram-negative bacteria: an 8-year survey in a university hospital in Greece. Int. J. Antimicrob. Agents22,526–531 (2003).
    • 119  Kim SY, Park YJ, Yu JK, Kim YS, Han K. Prevalence and characteristics of aac(6´)-Ib-cr in AmpC-producing Enterobacter cloacae, Citrobacter freundii, and Serratia marcescens: a multicenter study from Korea. Diagn. Microbiol. Infect. Dis.63,314–318 (2009).
    • 120  Galani I, Souli M, Chryssouli Z, Orlandou K, Giamarellou H. Characterization of a new integron containing blaVIM-1 and aac(6´)-IIc in an Enterobacter cloacae clinical isolate from Greece. J. Antimicrob. Chemother.55,634–638 (2005).
    • 121  Xavier B, Dowzicky MJ. Antimicrobial susceptibility among Gram-negative isolates collected from intensive care units in North America, Europe, the Asia–Pacific rim, Latin America, the Middle East, and Africa between 2004 and 2009 as part of the Tigecycline Evaluation and Surveillance Trial. Clin. Ther.34(1),124–137 (2012).
    • 122  Anthony KB, Fishman NO, Linkin DR, Gasink LB, Edelstein PH, Lautenbach E. Clinical and microbiological outcomes of serious infections with multidrugresistant Gram-negative organisms treated with tigecycline. Clin. Infect. Dis.46,567–570 (2008).
    • 123  Keeney D, Ruzin A, Bradford PA, RamA, a transcriptional regulator, and AcrAB, an RND-type efflux pump, are associated with decreased susceptibility to tigecycline in Enterobacter cloacae. Microb. Drug Resist.13(1),1–6 (2007).
    • 124  Daurel C, Fiant AL, Brémont S, Courvalin P, Leclercq R. Emergence of an Enterobacter hormaechei strain with reduced susceptibility to tigecycline under tigecycline therapy. Antimicrob. Agents Chemother.53,4953–4954 (2009).
    • 125  Falagas ME, Kasiakou SK. Colistin: the revival of polymyxins for the management of multidrug-resistant Gram-negative bacterial infections. Clin. Infect. Dis.40(9),1333–1341 (2006). Erratum in: Clin. Infect. Dis.42(12),1819 (2006).
    • 126  Price DJE, Graham DI. Effect of large doses of colistin sulphomethate on renal function. BMJ4,525–527 (1970).
    • 127  Koch-Weser J, Sidel VW, Federman EB, Kanarek P, Finer DC, Eaton AE. Adverse effects of sodium colistin methate: manifestations and specific reaction rates during 317 courses of therapy. Ann. Intern. Med.72,857–868 (1970).
    • 128  Li J, Nation RL, Milne RW, Turnidge JD, Coulthard K. Evaluation of colistin as an agent against multi-resistant Gram negative bacteria. Int. J. Antimicrob. Agents25,11–25 (2005).
    • 129  Plachouras D, Karvanen M, Friberg LE et al. Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by Gram-negative bacteria. Antimicrob. Agents Chemother.53(8),3430–3436 (2009).
    • 130  Groisman EA, Kayser J, Soncini FC. Regulation of polymyxin resistance and adaptation to low-Mg2+ environments. J. Bacteriol.179(22),7040–7045 (1997).
    • 131  Lo-Ten-Foe JR, de Smet AM, Diederen BM, Kluytmans JA, van Keulen PH. Comparative evaluation of the Vitek 2, disk diffusion, etest, broth microdilution, and agar dilution susceptibility testing methods for colistin in clinical isolates, including heteroresistant Enterobacter cloacae and Acinetobacter baumannii strains. Antimicrob. Agents Chemother.51(10),3726–3730 (2007).
    • 132  Tascini C, Urbani L, Biancofiore G et al. Colistin in combination with rifampin and imipenem for treating a blaVIM-1 metallo-beta-lactamase-producing Enterobacter cloacae disseminated infection in a liver transplant patient. Minerva Anestesiol.74(1–2),47–49 (2007).
    • 133  Centers for Disease Control and Prevention. Guidance for control of infections with carbapenem-resistant or carbapenemase producing Enterobacteriaceae in acute care facilities. Morb. Mortal. Wkly Rep.58,256–260 (2009).
    • 134  Lucet JC, Decre D, Fichelle A et al. Control of a prolonged outbreak of extended-spectrum beta-lactamase-producing Enterobacteriaceae in a university hospital. Clin. Infect. Dis.29,1411–1418 (1999).
    • 135  Samra Z, Bahar J, Madar-Shapiro L, Aziz N, Israel S, Bishara J. Evaluation of CHROMagar KPC for rapid detection of carbapenem-resistant Enterobacteriaceae. J. Clin. Microbiol.46,3110–3111 (2008).
    • 201  Euzéby JP. List of prokaryotic names with standing in nomenclature – genus Enterobacter. www.bacterio.cict.fr/e/enterobacter.html
    • 202  The European Committee on Antimicrobial Susceptibility Testing. www.eucast.org