We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

An update on Mycobacterium tuberculosis lipoproteins

    María M Bigi

    Instituto de Investigaciones Biomédicas, CONICET, Universidad de Buenos Aires, Paraguay 2155 (C1121ABG), Buenos Aires, Argentina

    ,
    Marina A Forrellad

    Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina

    Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina

    ,
    Julia S García

    Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina

    Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina

    ,
    Federico C Blanco

    Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina

    Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina

    ,
    Cristina L Vázquez

    *Author for correspondence: Tel.: +54 114 621 1447;

    E-mail Address: vazquez.cristina@inta.gob.ar

    Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina

    Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina

    &
    Fabiana Bigi

    Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina

    Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina

    Published Online:https://doi.org/10.2217/fmb-2023-0088

    Almost 3% of the proteins of Mycobacterium tuberculosis (M. tuberculosis), the main causative agent of human tuberculosis, are lipoproteins. These lipoproteins are characteristic of the mycobacterial cell envelope and participate in many mechanisms involved in the pathogenesis of M. tuberculosis. In this review, the authors provide an updated analysis of M. tuberculosis lipoproteins and categorize them according to their demonstrated or predicted functions, including transport of compounds to and from the cytoplasm, biosynthesis of the mycobacterial cell envelope, defense and resistance mechanisms, enzymatic activities and signaling pathways. In addition, this updated analysis revealed that at least 40% of M. tuberculosis lipoproteins are glycosylated.

    Tweetable abstract

    Almost 3% of proteins of Mycobacterium tuberculosis, the main causative agent of human tuberculosis, are lipoproteins. This review provides an updated analysis of M. tuberculosis lipoproteins and categorizes them according to their demonstrated or predicted functions.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Hutchings MI, Palmer T, Harrington DJ, Sutcliffe IC. Lipoprotein biogenesis in Gram-positive bacteria: knowing when to hold ‘em, knowing when to fold 'em. Trends Microbiol. 17(1), 13–21 (2009).
    • 2. Bocchino M, Galati D, Sanduzzi A, Colizzi V, Brunetti E, Mancino G. Role of mycobacteria-induced monocyte/macrophage apoptosis in the pathogenesis of human tuberculosis. Int. J. Tuberc. Lung Dis. 9(4), 375–383 (2005).
    • 3. Sutcliffe IC, Harrington DJ. Lipoproteins of Mycobacterium tuberculosis: an abundant and functionally diverse class of cell envelope components. FEMS Microbiol. Rev. 28(5), 645–659 (2004). • A seminal revision regarding lipoproteins in M. tuberculosis.
    • 4. Kovacs-Simon A, Titball RW, Michell SL. Lipoproteins of bacterial pathogens. Infect. Immun. 79(2), 548–561 (2011).
    • 5. Rezwan M, Grau T, Tschumi A, Sander P. Lipoprotein synthesis in mycobacteria. Microbiology 153(3), 652–658 (2007). •• Described the synthesis, localization and functions of lipoproteins in mycobacteria.
    • 6. Becker K, Sander P. Mycobacterium tuberculosis lipoproteins in virulence and immunity–fighting with a double-edged sword. FEBS Lett. 590(21), 3800–3819 (2016).
    • 7. Tschumi A, Nai C, Auchli Y et al. Identification of apolipoprotein N-acyltransferase (Lnt) in mycobacteria. J. Biol. Chem. 284(40), 27146–27156 (2009).
    • 8. Brülle JK, Tschumi A, Sander P. Lipoproteins of slow-growing mycobacteria carry three fatty acids and are N-acylated by apolipoprotein N-acyltransferase BCG-2070c. BMC Microbiol. 13(1), 1–15 (2013).
    • 9. McDonough JA, McCann JR, Tekippe EME, Silverman JS, Rigel NW, Braunstein M. Identification of functional Tat signal sequences in Mycobacterium tuberculosis proteins. J. Bacteriol. 190(19), 6428–6438 (2008). •• Identified signal sequences capable of exporting mycobacterial proteins in a Tat-dependent manner.
    • 10. Kluger MJ, Ringler DH, Anver MR. Export-mediated assembly of mycobacterial glycoproteins parallels eukaryotic pathways. Science 309(5736), 166–168 (2005). •• Demonstrated that specific translocation processes are required for protein O-mannosylation in M. tuberculosis.
    • 11. Mehaffy C, Belisle JT, Dobos KM. Mycobacteria and their sweet proteins: an overview of protein glycosylation and lipoglycosylation in M. tuberculosis. Tuberculosis 115, 1–13 (2019). • Described protein glycosylation in M. tuberculosis and acylation of glycosylated proteins.
    • 12. Herrmann JL, Delahay R, Gallagher A, Robertson B, Young D. Analysis of post-translational modification of mycobacterial proteins using a cassette expression system. FEBS Lett. 473(3), 358–362 (2000).
    • 13. González-Zamorano M, Hernández GM, Xolalpa W et al. Mycobacterium tuberculosis glycoproteomics based on ConA-lectin affinity capture of mannosylated proteins. J. Proteome Res. 8(2), 721–733 (2009). •• Identified glycoproteins in M. tuberculosis for the first time.
    • 14. Smith GT, Sweredoski MJ, Hess S. O-linked glycosylation sites profiling in Mycobacterium tuberculosis culture filtrate proteins. J. Proteomics 97, 296–306 (2014). • The first glycoproteomics study identifying glycosylation sites on mycobacterial culture filtrate proteins on a global scale.
    • 15. Tucci P, Portela M, Chetto CR, González-Sapienza G, Marín M. Integrative proteomic and glycoproteomic profiling of Mycobacterium tuberculosis culture filtrate. PLoS One 15(3), 1–23 (2020). •• Amassive identification of glycoproteins in M. tuberculosis by shotgun analysis of culture filtrate proteins.
    • 16. Birhanu AG, Yimer SA, Kalayou S et al. Ample glycosylation in membrane and cell envelope proteins may explain the phenotypic diversity and virulence in the Mycobacterium tuberculosis complex. Sci. Rep. 9(1), 1–15 (2019).
    • 17. Liu CF, Tonini L, Malaga W et al. Bacterial protein-O-mannosylating enzyme is crucial for virulence of Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 110(16), 6560–6565 (2013).
    • 18. Carroll MV, Sim RB, Bigi F, Jäkel A, Antrobus R, Mitchell DA. Identification of four novel DC-SIGN ligands on Mycobacterium bovis BCG. Protein Cell 1(9), 859–870 (2010).
    • 19. Alonso H, Parra J, Malaga W et al. Protein O-mannosylation deficiency increases LprG-associated lipoarabinomannan release by Mycobacterium tuberculosis and enhances the TLR2-associated inflammatory response. Sci. Rep. 7(1), 1–14 (2017).
    • 20. Sieling PA, Hill PJ, Dobos KM et al. Conserved mycobacterial lipoglycoproteins activate TLR2 but also require glycosylation for MHC class II-restricted T cell activation. J. Immunol. 180(9), 5833–5842 (2008).
    • 21. Nguyen MT, Matsuo M, Niemann S, Herrmann M, Götz F. Lipoproteins in Gram-positive bacteria: abundance, function, fitness. Front. Microbiol. 11, 1–15 (2020).
    • 22. Dasgupta A, Sureka K, Mitra D et al. An oligopeptide transporter of Mycobacterium tuberculosis regulates cytokine release and apoptosis of infected macrophages. PLOS ONE 5(8), 1–10 (2010).
    • 23. Kalscheuer R, Weinrick B, Veeraraghavan U, Besra GS, Jacobs WR. Trehalose-recycling ABC transporter LpqY-SugA-SugB-SugC is essential for virulence of Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 107(50), 21761–21766 (2010).
    • 24. Fernando DM, Gee CT, Griffith EC et al. Biophysical analysis of the Mycobacteria tuberculosis peptide binding protein DppA reveals a stringent peptide binding pocket. Tuberculosis (Edinb.) 132, 1–26 (2022).
    • 25. Ferraris DM, Spallek R, Oehlmann W, Singh M, Rizzi M. Crystal structure of the Mycobacterium tuberculosis phosphate binding protein PstS3. Proteins 82(9), 2268–2274 (2014).
    • 26. Danilchanka O, Sun J, Pavlenok M et al. An outer membrane channel protein of Mycobacterium tuberculosis with exotoxin activity. Proc. Natl Acad. Sci. USA 111(18), 6750–6755 (2014).
    • 27. Peirs P, Lefèvre P, Boarbi S et al. Mycobacterium tuberculosis with disruption in genes encoding the phosphate binding proteins PstS1 and PstS2 is deficient in phosphate uptake and demonstrates reduced in vivo virulence. Infect. Immun. 73(3), 1898–1902 (2005).
    • 28. Mandal SK, Kanaujia SP. Role of an orphan substrate-binding protein MhuP in transient heme transfer in Mycobacterium tuberculosis. Int. J. Biol. Macromol. 211, 342–356 (2022).
    • 29. Furze CM, Delso I, Casal E et al. Structural basis of trehalose recognition by the mycobacterial LpqY-SugABC transporter. J. Biol. Chem. 296, 1–12 (2021).
    • 30. Klepp LI, Sabio y Garcia J, FabianaBigi. Mycobacterial MCE proteins as transporters that control lipid homeostasis of the cell wall. Tuberculosis (Edinb.) 132, 1–6 (2022).
    • 31. Fenn JS, Nepravishta R, Guy CS et al. Structural basis of glycerophosphodiester recognition by the Mycobacterium tuberculosis substrate-binding protein UgpB. ACS Chem. Biol. 14(9), 1879–1887 (2019).
    • 32. Marjanovic O, Iavarone AT, Riley LW. Sulfolipid accumulation in Mycobacterium tuberculosis disrupted in the mce2 operon. J. Microbiol. 49(3), 441–447 (2011).
    • 33. Forrellad MA, Bianco MV, Blanco FC et al. Study of the in vivo role of Mce2R, the transcriptional regulator of mce2 operon in Mycobacterium tuberculosis. BMC Microbiol. 13(1), 200–209 (2013).
    • 34. Forrellad MA, McNeil M, Santangelo MDLP et al. Role of the Mce1 transporter in the lipid homeostasis of Mycobacterium tuberculosis. Tuberculosis (Edinb.) 94(2), 170–177 (2014).
    • 35. Moynihan PJ, Cadby IT, Veerapen N et al. The hydrolase LpqI primes mycobacterial peptidoglycan recycling. Nat. Commun. 10(1), 1–11 (2019).
    • 36. Kovacevic S, Anderson D, Morita YS et al. Identification of a novel protein with a role in lipoarabinomannan biosynthesis in mycobacteria. J. Biol. Chem. 281(14), 9011–9017 (2006).
    • 37. Guerin ME, Korduláková J, Alzari PM, Brennan PJ, Jackson M. Molecular basis of phosphatidyl-myo-inositol mannoside biosynthesis and regulation in mycobacteria. J. Biol. Chem. 285(44), 33577–33583 (2010).
    • 38. Gaur RL, Ren K, Blumenthal A et al. LprG-mediated surface expression of lipoarabinomannan is essential for virulence of Mycobacterium tuberculosis. PLoS Pathog. 10(9), e1004376 (2014).
    • 39. Lun S, Bishai WR. Characterization of a novel cell wall-anchored protein with carboxylesterase activity required for virulence in Mycobacterium tuberculosis. J. Biol. Chem. 282(25), 18348–18356 (2007).
    • 40. Kieser KJ, Baranowski C, Chao MC et al. Peptidoglycan synthesis in Mycobacterium tuberculosis is organized into networks with varying drug susceptibility. Proc. Natl Acad. Sci. USA 112(42), 13087–13092 (2015).
    • 41. Sanders AN, Wright LF, Pavelka MS. Genetic characterization of mycobacterial L,D-transpeptidases. Microbiology 160(Pt 8), 1795–1806 (2014).
    • 42. Dubey VS, Sirakova TD, Kolattukudy PE. Disruption of msl3 abolishes the synthesis of mycolipanoic and mycolipenic acids required for polyacyltrehalose synthesis in Mycobacterium tuberculosis H37Rv and causes cell aggregation. Mol. Microbiol. 45(5), 1451–1459 (2002).
    • 43. Sulzenbacher G, Canaan S, Bordat Y et al. LppX is a lipoprotein required for the translocation of phthiocerol dimycocerosates to the surface of Mycobacterium tuberculosis. EMBO J. 25(7), 1436–1444 (2006).
    • 44. Kana BD, Mizrahi V. Resuscitation-promoting factors as lytic enzymes for bacterial growth and signaling. FEMS Immunol. Med. Microbiol. 58(1), 39–50 (2010).
    • 45. Martinot AJ, Farrow M, Bai L et al. Mycobacterial metabolic syndrome: LprG and Rv1410 regulate triacylglyceride levels, growth rate and virulence in Mycobacterium tuberculosis. PLOS Pathog. 12(1), 1- 26 (2016).
    • 46. Silva PEA, Bigi F, De la Paz Santangelo M et al. Characterization of P55, a multidrug efflux pump in Mycobacterium bovis and Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 45(3), 800–804 (2001).
    • 47. Bianco MV, Blanco FC, Imperiale B et al. Role of P27–P55 operon from Mycobacterium tuberculosis in the resistance to toxic compounds. BMC Infect. Dis. 11, 195 1 -9 (2011).
    • 48. Hohl M, Remm S, Eskandarian HA et al. Increased drug permeability of a stiffened mycobacterial outer membrane in cells lacking MFS transporter Rv1410 and lipoprotein LprG. Mol. Microbiol. 111(5), 1263–1282 (2019).
    • 49. Melly GC, Stokas H, Dunaj JL et al. Structural and functional evidence that lipoprotein LpqN supports cell envelope biogenesis in Mycobacterium tuberculosis. J. Biol. Chem. 294(43), 15711–15723 (2019).
    • 50. Abe T, Ozaki S, Ueda D, Sato T. Insight into isoprenoid biosynthesis by functional analysis of isoprenyl diphosphate synthases from Mycobacterium vanbaalenii and Mycobacterium tuberculosis. ChemBioChem 21(20), 2931–2938 (2020).
    • 51. Nguyen HT, Wolff KA, Cartabuke RH, Ogwang S, Nguyen L. A lipoprotein modulates activity of the MtrAB two-component system to provide intrinsic multidrug resistance, cytokinetic control and cell wall homeostasis in Mycobacterium. Mol. Microbiol. 76(2), 348–364 (2010).
    • 52. Purwantini E, Mukhopadhyay B. Rv0132c of Mycobacterium tuberculosis encodes a coenzyme F420-dependent hydroxymycolic acid dehydrogenase. PLoS One 8(12), 1–9 (2013).
    • 53. Kim JS, Jiao L, Oh JI, Ha NC, Kim YH. Crystal structure and functional implications of LprF from Mycobacterium tuberculosis and M. bovis. Acta Crystallogr. D Biol. Crystallogr. 70(Pt 10), 2619–2630 (2014).
    • 54. Matsuba T, Suzuki Y, Tanaka Y. Association of the Rv0679c protein with lipids and carbohydrates in Mycobacterium tuberculosis/Mycobacterium bovis BCG. Arch. Microbiol. 187(4), 297–311 (2007).
    • 55. Touchette MH, Van Vlack ER, Bai L et al. A screen for protein-protein interactions in live mycobacteria reveals a functional link between the virulence-associated lipid transporter LprG and the mycolyltransferase antigen 85A. ACS Infect. Dis. 3(5), 336–348 (2017).
    • 56. Wang F, Cassidy C, Sacchettini JC. Crystal structure and activity studies of the Mycobacterium tuberculosis β-lactamase reveal its critical role in resistance to β-lactam antibiotics. Antimicrob. Agents Chemother. 50(8), 2762–2771 (2006).
    • 57. Kumar G, Galanis C, Batchelder HR, Townsend CA, Lamichhane G. Penicillin binding proteins and β-lactamases of Mycobacterium tuberculosis: reexamination of the historical paradigm. mSphere 7(1), 1–10 (2022).
    • 58. Sethi D, Mahajan S, Singh C et al. Lipoprotein LprI of Mycobacterium tuberculosis acts as a lysozyme inhibitor. J. Biol. Chem. 291(6), 2938–2953 (2016).
    • 59. Walter F, Grenz S, Ortseifen V, Persicke M, Kalinowski J. Corynebacterium glutamicum ggtB encodes a functional γ-glutamyl transpeptidase with γ-glutamyl dipeptide synthetic and hydrolytic activity. J. Biotechnol. 232, 99–109 (2016).
    • 60. Forrellad MA, Vázquez CL, Blanco FC et al. Rv2617c and P36 are virulence factors of pathogenic mycobacteria involved in resistance to oxidative stress. Virulence 10(1), 1026–1033 (2019).
    • 61. Sakthi S, Narayanan S. The lpqS knockout mutant of Mycobacterium tuberculosis is attenuated in macrophages. Microbiol. Res. 168(7), 407–414 (2013).
    • 62. Wu CH, Tsai-Wu JJ, Huang YT, Lin CY, Lioua GG, Lee FJS. Identification and subcellular localization of a novel Cu, Zn superoxide dismutase of Mycobacterium tuberculosis. FEBS Lett. 439(1–2), 192–196 (1998).
    • 63. Spagnolo L, Töro I, D'Orazio M et al. Unique features of the sodC-encoded superoxide dismutase from Mycobacterium tuberculosis, a fully functional copper-containing enzyme lacking zinc in the active site. J. Biol. Chem. 279(32), 33447–33455 (2004).
    • 64. Tschumi A, Grau T, Albrecht D, Rezwan M, Antelmann H, Sandera P. Functional analyses of mycobacterial lipoprotein diacylglyceryl transferase and comparative secretome analysis of a mycobacterial lgt mutant. J. Bacteriol. 194(15), 3938–3949 (2012).
    • 65. Sander P, Rezwan M, Walker B et al. Lipoprotein processing is required for virulence of Mycobacterium tuberculosis. Mol. Microbiol. 52(6), 1543–1552 (2004).
    • 66. Singh KH, Jha B, Dwivedy A et al. Characterization of a secretory hydrolase from Mycobacterium tuberculosis sheds critical insight into host lipid utilization by M. tuberculosis. J. Biol. Chem. 292(27), 11326–11335 (2017).
    • 67. Nguyen KT, Piastro K, Derbyshire KM. LpqM, a mycobacterial lipoprotein-metalloproteinase, is required for conjugal DNA transfer in Mycobacterium smegmatis. J. Bacteriol. 191(8), 2721–2727 (2009).
    • 68. Datta P, Ravi J, Guerrini V et al. The Psp system of Mycobacterium tuberculosis integrates envelope stress-sensing and envelope-preserving functions. Mol. Microbiol. 97(3), 408–422 (2015).
    • 69. Steyn AJC, Joseph J, Bloom BR. Interaction of the sensor module of Mycobacterium tuberculosis H37Rv KdpD with members of the Lpr family. Mol. Microbiol. 47(4), 1075–1089 (2003).
    • 70. Bhattacharyya N, Nkumama IN, Newland-Smith Z et al. An aspartate-specific solute-binding protein regulates protein kinase G activity to control glutamate metabolism in mycobacteria. MBio 9(4), 1–13 (2018).
    • 71. Serre L, Pereira de Jesus K, Zelwer C, Bureaud N, Schoentgen F, Bénédetti H. Crystal structures of YBHB and YBCL from Escherichia coli, two bacterial homologues to a Raf kinase inhibitor protein. J. Mol. Biol. 310(3), 617–634 (2001).
    • 72. Blanco FC, Bigi F. Deciphering the polycistronic nature of Mycobacterium tuberculosis lipoproteins of unknown functions. BioRxiv doi:2023.07.16.549196 1–10 (2023).
    • 73. Johnston JB, Kells PM, Podust LM, Ortiz De Montellano PR. Biochemical and structural characterization of CYP124: a methyl-branched lipid omega-hydroxylase from Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 106(49), 20687–20692 (2009).
    • 74. Alderwick LJ, Lloyd GS, Lloyd AJ, Lovering AL, Eggeling L, Besra GS. Biochemical characterization of the Mycobacterium tuberculosis phosphoribosyl-1-pyrophosphate synthetase. Glycobiology 21(4), 410–425 (2011).
    • 75. Sassetti CM, Rubin EJ. Genetic requirements for mycobacterial survival during infection. Proc. Natl Acad. Sci. USA 100(22), 12989–12994 (2003).
    • 76. Wiker HG. MPB70 and MPB83–major antigens of Mycobacterium bovis. Scand. J. Immunol. 69(6), 492–499 (2009).
    • 77. Rao V, Dhar N, Tyagi AK. Modulation of host immune responses by overexpression of immunodominant antigens of Mycobacterium tuberculosis in Bacille Calmette-Guérin. Scand. J. Immunol. 58(4), 449–461 (2003).
    • 78. Dejesus MA, Gerrick ER, Xu W et al. Comprehensive essentiality analysis of the Mycobacterium tuberculosis genome via saturating transposon mutagenesis. MBio 8(1), 1–17 (2017).
    • 79. Minato Y, Gohl DM, Thiede JM et al. Genomewide assessment of Mycobacterium tuberculosis conditionally essential metabolic pathways. mSystems 4(4), 1–13 (2019).
    • 80. Rengarajan J, Bloom BR, Rubin EJ. Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc. Natl Acad. Sci. USA 102(23), 8327–8332 (2005).
    • 81. Camacho LR, Ensergueix D, Perez E, Gicquel B, Guilhot C. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol. Microbiol. 34(2), 257–267 (1999).
    • 82. Blanco FC, Bianco MV, Garbaccio S et al. Mycobacterium bovis Δmce2 double deletion mutant protects cattle against challenge with virulent M. bovis. Tuberculosis (Edinb.) 93(3), 363–372 (2013).
    • 83. Stewart GR, Wilkinson KA, Newton SM et al. Effect of deletion or overexpression of the 19-kilodalton lipoprotein Rv3763 on the innate response to Mycobacterium tuberculosis. Infect. Immun. 73(10), 6831–6837 (2005).
    • 84. Padhi A, Pattnaik K, Biswas M, Jagadeb M, Behera A, Sonawane A. Mycobacterium tuberculosis LprE suppresses TLR2-dependent cathelicidin and autophagy expression to enhance bacterial survival in macrophages. J. Immunol. 203(10), 2665–2678 (2019).
    • 85. Gehring AJ, Dobos KM, Belisle JT, Harding CV, Boom WH. Mycobacterium tuberculosis LprG (Rv1411c): a novel TLR-2 ligand that inhibits human macrophage class II MHC antigen processing. J. Immunol. 173(4), 2660–2668 (2004).
    • 86. Bianco MV, Blanco FC, Forrellad MA et al. Knockout mutation of p27–p55 operon severely reduces replication of Mycobacterium bovis in a macrophagic cell line and survival in a mouse model of infection. Virulence 2(3), 233–237 (2011).
    • 87. Nikitushkin V, Shleeva M, Loginov D, Dycka F, Sterba J, Kaprelyants A. Shotgun proteomic profiling of dormant, ‘non-culturable’ Mycobacterium tuberculosis. PLOS ONE 17(8), 1–26 (2022).
    • 88. Albrethsen J, Agner J, Piersma SR et al. Proteomic profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin-antitoxin systems. Mol. Cell. Proteomics 12(5), 1180–1191 (2013).
    • 89. Espinosa-Cueto P, Magallanes-Puebla A, Mancilla R. Phosphate starvation enhances phagocytosis of Mycobacterium bovis/BCG by macrophages. BMC Immunol. 21(1), 1–8 (2020).
    • 90. Lin W, De Sessions PF, Teoh GHK et al. Transcriptional profiling of Mycobacterium tuberculosis exposed to in vitro lysosomal stress. Infect. Immun. 84(9), 2505–2523 (2016).
    • 91. Prados-Rosales R, Baena A, Martinez LR et al. Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. J. Clin. Invest. 121(4), 1471–1483 (2011).
    • 92. Diaz-Silvestre H, Espinosa-Cueto P, Sanchez-Gonzalez A et al. The 19-kDa antigen of Mycobacterium tuberculosis is a major adhesin that binds the mannose receptor of THP-1 monocytic cells and promotes phagocytosis of mycobacteria. Microb. Pathog. 39(3), 97–107 (2005).
    • 93. Pecora ND, Gehring AJ, Canaday DH, Boom WH, Harding CV. Mycobacterium tuberculosis LprA is a lipoprotein agonist of TLR2 that regulates innate immunity and APC function. J. Immunol. 177(1), 422–429 (2006).
    • 94. Lefèvre P, Denis O, De Wit L et al. Cloning of the gene encoding a 22-kilodalton cell surface antigen of Mycobacterium bovis BCG and analysis of its potential for DNA vaccination against tuberculosis. Infect. Immun. 68(3), 1040–1047 (2000).
    • 95. Noss EH, Pai RK, Sellati TJ et al. Toll-like receptor 2-dependent inhibition of macrophage class II MHC expression and antigen processing by 19-kDa lipoprotein of Mycobacterium tuberculosis. J. Immunol. 167(2), 910–918 (2001).
    • 96. Esparza M, Palomares B, García T, Espinosa P, Zenteno E, Mancilla R. PstS-1, the 38-kDa Mycobacterium tuberculosis glycoprotein, is an adhesin, which binds the macrophage mannose receptor and promotes phagocytosis. Scand. J. Immunol. 81(1), 46–55 (2015).
    • 97. Su H, Zhu S, Zhu L et al. Recombinant lipoprotein Rv1016c derived from Mycobacterium tuberculosis is a TLR-2 ligand that induces macrophages apoptosis and inhibits MHC II antigen processing. Front. Cell. Infect. Microbiol. 6(NOV), 1–13 (2016).
    • 98. Shin DM, Yuk JM, Lee HM et al. Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling. Cell. Microbiol. 12(11), 1648–1665 (2010).
    • 99. Deboosère N, Iantomasi R, Queval CJ et al. LppM impact on the colonization of macrophages by Mycobacterium tuberculosis. Cell. Microbiol. 19(1), 1–11 (2017).
    • 100. Vázquez CL, Bianco MVMV, Blanco FC et al. Mycobacterium bovis requires P27 (LprG) to arrest phagosome maturation and replicate within bovine macrophages. Infect. Immun. 85(3), 1–11 (2017).
    • 101. Sánchez A, Espinosa P, García T, Mancilla R. The 19 kDa Mycobacterium tuberculosis lipoprotein (LpqH) induces macrophage apoptosis through extrinsic and intrinsic pathways: a role for the mitochondrial apoptosis-inducing factor. Clin. Dev. Immunol. 2012, 1–11 (2012).
    • 102. Sanchez A, Espinosa P, Esparza MA, Colon M, Bernal G, Mancilla R. Mycobacterium tuberculosis 38-kDa lipoprotein is apoptogenic for human monocyte-derived macrophages. Scand. J. Immunol. 69(1), 20–28 (2009).
    • 103. Zhang W, Lu Q, Dong Y, Yue Y, Xiong S. Rv3033, as an emerging anti-apoptosis factor, facilitates mycobacteria survival via inhibiting macrophage intrinsic apoptosis. Front. Immunol. 9(SEP), 1–11 (2018).
    • 104. Rengarajan J, Murphy E, Park A et al. Mycobacterium tuberculosis Rv2224c modulates innate immune responses. Proc. Natl Acad. Sci. USA 105(1), 264–269 (2008).
    • 105. Palma C, Schiavoni G, Abalsamo L et al. Mycobacterium tuberculosis PstS1 amplifies IFN-γ and induces IL-17/IL-22 responses by unrelated memory CD4+ T cells via dendritic cell activation. Eur. J. Immunol. 43(9), 2386–2397 (2013).
    • 106. Chen Y, Xiao JN, Li Y et al. Mycobacterial lipoprotein Z triggers efficient innate and adaptive immunity for protection against Mycobacterium tuberculosis infection. Front. Immunol. 9(JAN), 1–13 (2019).
    • 107. Peng Y, Zhu X, Gao L et al. Mycobacterium tuberculosis Rv0309 dampens the inflammatory response and enhances mycobacterial survival. Front. Immunol. 13(FEB), 1–19 (2022).
    • 108. Hovav AH, Mullerad J, Maly A, Davidovitch L, Fishman Y, Bercovier H. Aggravated infection in mice co-administered with Mycobacterium tuberculosis and the 27-kDa lipoprotein. Microbes Infect. 8(7), 1750–1757 (2006).
    • 109. Abekura F, Park J, Lim H et al. Mycobacterium tuberculosis glycolipoprotein LprG inhibits inflammation through NF-κB signaling of ERK1/2 and JNK in LPS-induced murine macrophage cells. J. Cell. Biochem. 123(4), 772–781 (2022).
    • 110. Sänger C, Busche A, Bentien G et al. Immunodominant PstS1 antigen of Mycobacterium tuberculosis is a potent biological response modifier for the treatment of bladder cancer. BMC Cancer 4, 1–14 (2004).
    • 111. Xu W, DeJesus MA, Rücker N et al. Chemical genetic interaction profiling reveals determinants of intrinsic antibiotic resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 61(12), 1–15 (2017).
    • 112. Mitra A, Speer A, Lin K, Ehrt S, Niederweis M. PPE surface proteins are required for heme utilization by Mycobacterium tuberculosis. MBio 8(1),1–14 (2017).
    • 113. de La Paz M, Klepp L, Nuñez-García J et al. Mce3R, a TetR-type transcriptional repressor, controls the expression of a regulon involved in lipid metabolism in Mycobacterium tuberculosis. Microbiology 155(7), 2245–2255 (2009).
    • 114. Price CTD, Bukka A, Cynamon M, Graham JE. Glycine betaine uptake by the proXVWZ ABC transporter contributes to the ability of Mycobacterium tuberculosis to initiate growth in human macrophages. J. Bacteriol. 190(11), 3955–3961 (2008).
    • 115. Zhao JH, Chen JH, Wang Y, Wang ZP, He YX. The putative compatible solute-binding protein ProX from Mycobacterium tuberculosis H37Rv: biochemical characterization and crystallographic data. Acta Crystallogr. Sect. F Struct. Biol. Commun. 74(4), 231–235 (2018).
    • 116. Lefèvre P, Braibant M, De Wit L et al. Three different putative phosphate transport receptors are encoded by the Mycobacterium tuberculosis genome and are present at the surface of Mycobacterium bovis BCG. J. Bacteriol. 179(9), 2900–2906 (1997).
    • 117. Barthe P, Veyron-Churlet R, de Visch A et al. Mycobacterium tuberculosis LppM displays an original structure and domain composition linked to a dual localization. Structure 24(10), 1788–1794 ( 2016).
    • 118. Lee W, VanderVen BC, Walker S, Russell DG. Novel protein acetyltransferase, Rv2170, modulates carbon and energy metabolism in Mycobacterium tuberculosis. Sci. Rep. 7(1), 1–11 (2017).
    • 119. Målen H, Pathak S, Søfteland T, de Souza GA, Wiker HG. Definition of novel cell envelope associated proteins in Triton X-114 extracts of Mycobacterium tuberculosis H37Rv. BMC Microbiol. 10, 1–11 (2010).
    • 120. Schwenk S, Moores A, Nobeli I, McHugh TD, Arnvig KB. Cell-wall synthesis and ribosome maturation are co-regulated by an RNA switch in Mycobacterium tuberculosis. Nucleic Acids Res. 46(11), 5837–5849 (2018).
    • 121. Owens RM, Hsu FF, VanderVen BC et al. M. tuberculosis Rv2252 encodes a diacylglycerol kinase involved in the biosynthesis of phosphatidylinositol mannosides (PIMs). Mol. Microbiol. 60(5), 1152–1163 (2006).
    • 122. Kumar G, Shankar H, Sharma D et al. Proteomics of culture filtrate of prevalent Mycobacterium tuberculosis strains: 2D-PAGE Map and MALDI-TOF/MS analysis. SLAS Discov. 22(9), 1142–1149 (2017).
    • 123. Mikolčević P, Hloušek-Kasun A, Ahel I, Mikoč A. ADP-ribosylation systems in bacteria and viruses. Comput. Struct. Biotechnol. J. 19, 2366–2383 (2021).
    • 124. Han W, Li X, Fu X. The macro domain protein family: structure, functions, and their potential therapeutic implications. Mutat. Res. 727(3), 86–103 (2011).
    • 125. Cohen MS, Chang P. Insights into the biogenesis, function, and regulation of ADP-ribosylation. Nat. Chem. Biol. 14(3), 236–243 (2018).
    • 126. Kumari B, Kaur J, Maan P, Kumar A, Kaur J. The lipolytic activity of LipJ, a stress-induced enzyme, is regulated by its C-terminal adenylate cyclase domain. Future Microbiol. 16(7), 2020–0223 (2021).
    • 127. Rowland JL, Niederweis M. A multicopper oxidase is required for copper resistance in Mycobacterium tuberculosis. J. Bacteriol. 195(16), 3724–3733 (2013).
    • 128. Wu Z, Wright GD, Walsh CT. Overexpression, purification, and characterization of VanX, a D-, D-dipeptidase which is essential for vancomycin resistance in Enterococcus faecium BM4147. Biochemistry 34(8), 2455–63 (1995).
    • 129. Ma Z, Strickland KT, Cherne MD et al. The Rv2633c protein of Mycobacterium tuberculosis is a non-heme di-iron catalase with a possible role in defenses against oxidative stress. J. Biol. Chem. 293(5), 1590 (2018).
    • 130. Wivagg CN, Wellington S, Gomez JE, Hung DT. Loss of a class A penicillin-binding protein alters β-lactam susceptibilities in Mycobacterium tuberculosis. ACS Infect. Dis. 2(2), 104–110 (2016).
    • 131. Chim N, Riley R, The J et al. An extracellular disulfide bond forming protein (DsbF) from Mycobacterium tuberculosis: structural, biochemical, and gene expression analysis. J. Mol. Biol. 396(5), 1211–1226 (2010).
    • 132. Etienne G, Malaga W, Laval F, Lemassu A, Guilhot C, Daffé M. Identification of the polyketide synthase involved in the biosynthesis of the surface-exposed lipooligosaccharides in mycobacteria. J. Bacteriol. 191(8), 2613–2621 (2009).
    • 133. Boritsch EC, Frigui W, Cascioferro A et al. Pks5-recombination-mediated surface remodelling in Mycobacterium tuberculosis emergence. Nat. Microbiol. 1(2), 1–11 (2016).
    • 134. Anderson BW, Schumacher MA, Yang J et al. The nucleotide messenger (p)ppGpp is an anti-inducer of the purine synthesis transcription regulator PurR in Bacillus. Nucleic Acids Res. 50(2), 847–866 (2022).
    • 135. Zhang L, He ZG. Radiation-sensitive gene A (RadA) targets DisA, DNA integrity scanning protein A, to negatively affect cyclic Di-AMP synthesis activity in Mycobacterium smegmatis. J. Biol. Chem. 288(31), 22426– 22436 (2013).
    • 136. Bai Y, Yang J, Zhou X, Ding X, Eisele LE, Bai G. Mycobacterium tuberculosis Rv3586 (DacA) is a diadenylate cyclase that converts ATP or ADP into c-di-AMP. PLoS One 7(4), 1–10 (2012).
    • 137. Chim N, Iniguez A, Nguyen TQ, Goulding CW. Unusual diheme conformation of the heme-degrading protein from Mycobacterium tuberculosis. J. Mol. Biol. 395(3), 595–608 (2010).
    • 138. Rittershaus ESC, Baek SH, Krieger IV et al. A lysine acetyltransferase contributes to the metabolic adaptation to hypoxia in Mycobacterium tuberculosis. Cell Chem. Biol. 25(12), 1495–1505.e3 (2018).
    • 139. Li F, Feng L, Jin C et al. LpqT improves mycobacteria survival in macrophages by inhibiting TLR2-mediated inflammatory cytokine expression and cell apoptosis. Tuberculosis 111, 57–66 (2018).
    • 140. Bigi F, Gioffré A, Klepp L et al. The knockout of the lprG-Rv1410 operon produces strong attenuation of Mycobacterium tuberculosis. Microbes Infect. 6(2), 182–187 (2004).
    • 141. Rampini SK, Selchow P, Keller C, Ehlers S, Böttger EC, Sander P. LspA inactivation in Mycobacterium tuberculosis results in attenuation without affecting phagosome maturation arrest. Microbiology 154(10), 2991–3001 (2008).
    • 142. Daffé M, Marrakchi H. Unraveling the structure of the mycobacterial envelope. Microbiol. Spectr. 7(4), 1–11 (2019).