We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/fmb-2022-0258

Publications addressing air pollution-induced human respiratory microbiome shifts are reviewed in this article. The healthy respiratory microbiota is characterized by a low density of bacteria, fungi and viruses with high diversity, and usually consists of Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria, Fusobacteria, viruses and fungi. The air's microbiome is highly dependent on air pollution levels and is directly reflected within the human respiratory microbiome. In addition, pollutants indirectly modify the local environment in human respiratory organs by reducing antioxidant capacity, misbalancing proteolysis and modulating inflammation, all of which regulate local microbiomes. Improving air quality leads to more diverse and healthy microbiomes of the local air and, subsequently, residents' airways.

Plain language summary

The community of bacteria, viruses and fungi in the human body, known as the microbiome, plays an important role in human health. These communities vary in different locations in the body, for example in the gut, airways and skin. The microbiome within our airways is affected by air pollution because pollutants cause changes in the microbiome that may result in illness. In this article we review the available information on the effect of air pollution on the airway microbiome. We conclude that improving air quality is important to promoting healthy microbiomes and general human health.

Papers of special note have been highlighted as: • of interest; •• of considerable interest

References

  • 1. Man WH, de Steenhuijsen Piters WAA, Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat. Rev. Microbiol. 15(5), 259–270 (2017).
  • 2. Qin J, Li R, Raes J et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285), 59–65 (2010).
  • 3. de Vos WM, Tilg H, Van Hul M, Cani PD. Gut microbiome and health: mechanistic insights. Gut 71(5), 1020 (2022).
  • 4. Santacroce L, Charitos IA, Ballini A et al. The human respiratory system and its microbiome at a glimpse. Biology (Basel) 9(10), 318 (2020).
  • 5. Whelan FJ, Verschoor CP, Stearns JC et al. The loss of topography in the microbial communities of the upper respiratory tract in the elderly. Ann. Am. Thorac. Soc. 11(4), 513–521 (2014).
  • 6. de Steenhuijsen Piters WAA, Huijskens EGW, Wyllie AL et al. Dysbiosis of upper respiratory tract microbiota in elderly pneumonia patients. ISME J. 10(1), 97–108 (2016).
  • 7. Thevaranjan N, Whelan FJ, Puchta A et al. Streptococcus pneumoniae colonization disrupts the microbial community within the upper respiratory tract of aging mice. Infect. Immun. 84(4), 906–916 (2016).
  • 8. Meyer KC. Lung infections and aging. Ageing Res. Rev. 3(1), 55–67 (2004).
  • 9. Pénard-Morand C, Annesi-Maesano I. Air pollution: from sources of emissions to health effects. Breathe 1(2), 108 (2004).
  • 10. Dockery DW, Pope CA, Xu X et al. An association between air pollution and mortality in six U.S. cities. N. Engl. J. Med. 329(24), 1753–1759 (1993).
  • 11. Dasom K, Zi C, Lin-Fu Z, Shou-Xiong H, Yang P, Zhen-Wei Z. Air pollutants and early origins of respiratory diseases. Chronic Dis. Transl. Med. 04(02), 75–94 (2018).
  • 12. Cassee FR, Héroux M-E, Gerlofs-Nijland ME, Kelly FJ. Particulate matter beyond mass: recent health evidence on the role of fractions, chemical constituents and sources of emission. Inhal. Toxicol. 25(14), 802–812 (2013).
  • 13. WHO. WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. WHO, Geneva, Switzerland (2021).
  • 14. Worthington MA, Petkova E, Freudenreich O et al. Air pollution and hippocampal atrophy in first episode schizophrenia. Schizophr. Res. 218, 63–69 (2020).
  • 15. Calderon-Garciduenas L, Maronpot RR, Torres-Jardon R et al. DNA damage in nasal and brain tissues of canines exposed to air pollutants is associated with evidence of chronic brain inflammation and neurodegeneration. Toxicol. Pathol. 31(5), 524–538 (2003).
  • 16. Kwon H-S, Ryu MH, Carlsten C. Ultrafine particles: unique physicochemical properties relevant to health and disease. Exp. Mol. Med. 52(3), 318–328 (2020).
  • 17. Li H, Xu D, Li H et al. Exposure to ultrafine particles and oral flora, respiratory function, and biomarkers of inflammation: a panel study in children. Environ. Pollut. 273, doi: 10.1016/j.envpol.2021.116489 (2021).
  • 18. Zhou Z, Liu Y, Duan F et al. Transcriptomic analyses of the biological effects of airborne PM2.5 exposure on human bronchial epithelial cells. PLOS ONE 10(9), e0138267 (2015).
  • 19. Burstyn I, Kromhout H, Partanen T et al. Polycyclic aromatic hydrocarbons and fatal ischemic heart disease. Epidemiology 16(6), 744–750 (2005).
  • 20. Mumtaz MM, George JD, Gold KW, Cibulas W, Derosa CT. ATSDR Evaluation of health effects of chemicals. Iv. Polycyclic aromatic hydrocarbons (PAHs): understanding a complex problem. Toxicol. Ind. Health 12(6), 742–971 (1996).
  • 21. Ciarrocca M, Rosati MV, Tomei F et al. Is urinary 1-hydroxypyrene a valid biomarker for exposure to air pollution in outdoor workers? A meta-analysis. J. Expo. Sci. Environ. Epidemiol. 24(1), 17–26 (2014).
  • 22. Meador JP. Polycyclic aromatic hydrocarbons. In: Encyclopedia of Ecology. Jørgensen SEFath BD (Eds). Academic Press, Oxford, UK, 2881–2891 (2008).
  • 23. Patel AB, Shaikh S, Jain KR, Desai C, Madamwar D. Polycyclic aromatic hydrocarbons: sources, toxicity, and remediation approaches. Front. Microbiol. 11, doi: 10.3389/fmicb.2020.562813 (2020).
  • 24. Dijkhoff IM, Drasler B, Karakocak BB et al. Impact of airborne particulate matter on skin: a systematic review from epidemiology to in vitro studies. Part. Fibre Toxicol. 17(1), 35 (2020).
  • 25. Sowada J, Lemoine L, Schön K, Hutzler C, Luch A, Tralau T. Toxification of polycyclic aromatic hydrocarbons by commensal bacteria from human skin. Arch. Toxicol. 91(6), 2331–2341 (2017).
  • 26. Novack L, Shenkar Y, Shtein A, Kloog I, Sarov B, Novack V. Anthropogenic or non-anthropogenic particulate matter: Which one is more dangerous and how to differentiate between the effects? Chemosphere 240, doi: 10.1016/j.chemosphere.2019.124954 (2020).
  • 27. Klimont Z, Kupiainen K, Heyes C et al. Global anthropogenic emissions of particulate matter including black carbon. Atmos. Chem. Phys. 17(14), 8681–8723 (2017). • A large meta-study analyzing the sources of different kinds of particulate matter, both natural and anthropogenic as well as natural/man-made aerosols.
  • 28. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525(7569), 367–371 (2015).
  • 29. Krugly E, Martuzevicius D, Sidaraviciute R et al. Characterization of particulate and vapor phase polycyclic aromatic hydrocarbons in indoor and outdoor air of primary schools. Atmos. Environ. 82, 298–306 (2014).
  • 30. Hopke PK, Dai Q, Li L, Feng Y. Global review of recent source apportionments for airborne particulate matter. Sci. Total Environ. 740, doi: 10.1016/j.scitotenv.2020.140091 (2020).
  • 31. Tong H, Zavala J, McIntosh-Kastrinsky R, Sexton KG. Cardiovascular effects of diesel exhaust inhalation: photochemically altered versus freshly emitted in mice. J. Toxicol. Environ. Health A. 82(17), 944–955 (2019).
  • 32. Eriksson AC, Wittbom C, Roldin P et al. Diesel soot aging in urban plumes within hours under cold dark and humid conditions. Sci. Rep. 7(1), doi: 10.1038/s41598-017-12433-0 (2017).
  • 33. Gkatzelis GI, Coggon MM, McDonald BC et al. Observations confirm that volatile chemical products are a major source of petrochemical emissions in U.S. cities. Environ. Sci. Technol. 55(8), 4332–4343 (2021).
  • 34. Antonelli M, Donelli D, Barbieri G, Valussi M, Maggini V, Firenzuoli F. Forest volatile organic compounds and their effects on human health: a state-of-the-art review. Int. J. Environ. Res. Public Health 17(18), 6506 (2020).
  • 35. Ramli NA, Md Yusof NFF, Shith S, Suroto A. Chemical and biological compositions associated with ambient respirable particulate matter: a review. Water Air Soil Pollut. 231(3), 120 (2020).
  • 36. Alghamdi MA, Shamy M, Redal MA, Khoder M, Awad AH, Elserougy S. Microorganisms associated particulate matter: a preliminary study. Sci. Total Environ. 479–480, 109–116 (2014). • Analyzed a large amount of naturally occurring particulate matter and investigated whether microorganisms could be associated with different types of natural particulate matter.
  • 37. Qin N, Liang P, Wu C et al. Longitudinal survey of microbiome associated with particulate matter in a megacity. Genome Biol. 21(1), 55 (2020). • Research article showing airborne particulate matter as a vector for transfer of microbial communities.
  • 38. Pereira EL, Madacussengua O, Baptista P, Feliciano M. Assessment of indoor air quality in geriatric environments of southwestern Europe. Aerobiologia (Bologna) 37(1), 139–153 (2021).
  • 39. Dong SR, Han YJ, Wu J et al. Distribution of microbiota in fine particulate matter particles in Guangzhou, China. Biomed. Environment. Sci. 33(5), 306–314 (2020).
  • 40. Setti L, Passarini F, De Gennaro G et al. SARS-Cov-2RNA found on particulate matter of Bergamo in Northern Italy: first evidence. Environ. Res. 188, doi: 10.1016/j.envres.2020.109754 (2020).
  • 41. Bontempi E. First data analysis about possible COVID-19 virus airborne diffusion due to air particulate matter (PM): The case of Lombardy (Italy). Environ. Res. 186, doi: 10.1016/j.envres.2020.109639 (2020).
  • 42. Coccia M. Factors determining the diffusion of COVID-19 and suggested strategy to prevent future accelerated viral infectivity similar to COVID. Sci. Total Environ. 729, doi: 10.1016/j.scitotenv.2020.138474 (2020).
  • 43. Zoran MA, Savastru RS, Savastru DM, Tautan MN. Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy. Sci. Total Environ. 738, doi: 10.1016/j.scitotenv.2020.139825 (2020).
  • 44. Islam N, Bukhari Q, Jameel Y et al. COVID-19 and climatic factors: a global analysis. Environ. Res. 193, doi: 10.1016/j.envres.2020.110355 (2021).
  • 45. Yuan J, Wu Y, Jing W et al. Non-linear correlation between daily new cases of COVID-19 and meteorological factors in 127 countries. Environ. Res. 193, doi: 10.1016/j.envres.2020.110521 (2021).
  • 46. Mendy A, Wu X, Keller JL et al. Air pollution and the pandemic: long-term PM2.5 exposure and disease severity in COVID-19 patients. Respirology 26(12), 1181–1187 (2021). •• Analyzed a large sample size and collected data on pollution for a significant amount of time prior to COVID-19 to compare with concurrent pollution data.
  • 47. Aloisi V, Gatto A, Accarino G, Donato F, Aloisio G. The effect of known and unknown confounders on the relationship between air pollution and Covid-19 mortality in Italy: a sensitivity analysis of an ecological study based on the E-value. Environ. Res. 207, doi: 10.1016/j.envres.2021.112131 (2022).
  • 48. Gou H, Lu J, Li S, Tong Y, Xie C, Zheng X. Assessment of microbial communities in PM1 and PM10 of Urumqi during winter. Environ. Pollut. 214, 202–210 (2016).
  • 49. Green BJ. Emerging insights into the occupational mycobiome. Curr. Allergy Asthma Rep. 18(11), 62 (2018).
  • 50. Franzetti A, Gandolfi I, Gaspari E, Ambrosini R, Bestetti G. Seasonal variability of bacteria in fine and coarse urban air particulate matter. Appl. Microbiol. Biotechnol. 90(2), 745–753 (2011).
  • 51. Brodie EL, DeSantis TZ, Parker JPM, Zubietta IX, Piceno YM, Andersen GL. Urban aerosols harbor diverse and dynamic bacterial populations. Proc. Natl Acad. Sci. USA 104(1), 299–304 (2007).
  • 52. McCauley K, Flynn K, DiMassa V et al. Upper airway microbiota relates to season and asthma exacerbations. J. Allergy Clin. Immunol. 147(2), AB52 (2021).
  • 53. Murray CJL, Aravkin AY, Zheng P et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2013; 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396(10258), 1223–1249 (2020).
  • 54. Afzaal M, Saeed F, Shah YA et al. Human gut microbiota in health and disease: unveiling the relationship. Front. Microbiol. 13, doi: 10.3389/fmicb.2022.999001 (2022).
  • 55. Mutlu EA, Comba IY, Cho T et al. Inhalational exposure to particulate matter air pollution alters the composition of the gut microbiome. Environment. Pollut. 240, 817–830 (2018).
  • 56. Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19(1), 55–71 (2021).
  • 57. Liu T, Chen X, Xu Y et al. Gut microbiota partially mediates the effects of fine particulate matter on type 2 diabetes: evidence from a population-based epidemiological study. Environ. Int. 130, doi: 10.1016/j.envint.2019.05.076 (2019).
  • 58. Rinninella E, Raoul P, Cintoni M et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7(1), 14 (2019).
  • 59. Selway CA, Mills JG, Weinstein P et al. Transfer of environmental microbes to the skin and respiratory tract of humans after urban green space exposure. Environ. Int. 145, doi: 10.1016/j.envint.2020.106084 (2020). •• Provides proof on environmental microbiome transfer to the human skin and airways after exposure to microbe-rich plant environments.
  • 60. Dominguez-Bello MG, De Jesus-Laboy KM, Shen N et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat. Med. 22(3), 250–253 (2016).
  • 61. Fujimura KE, Demoor T, Rauch M et al. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc. Natl Acad. Sci. USA 111(2), 805–810 (2014).
  • 62. Lehtimäki J, Karkman A, Laatikainen T et al. Patterns in the skin microbiota differ in children and teenagers between rural and urban environments. Sci. Rep. 7(1), doi: 10.1038/srep45651 (2017).
  • 63. Danielsen PH, Møller P, Jensen KA et al. Oxidative stress, DNA damage, and inflammation induced by ambient air and wood smoke particulate matter in human A549 and THP-1 cell lines. Chem. Res. Toxicol. 24(2), 168–84 (2011).
  • 64. Fasnacht M, Polacek N. Oxidative stress in bacteria and the central dogma of molecular biology. Front. Mol. Biosci. 8, 392 (2021).
  • 65. Peixoto MS, de Oliveira Galvão MF, de Medeiros SRB. Cell death pathways of particulate matter toxicity. Chemosphere 188, 32–48 (2017).
  • 66. Liu CW, Lee TL, Chen YC et al. PM2.5-induced oxidative stress increases intercellular adhesion molecule-1 expression in lung epithelial cells through the IL-6/AKT/STAT3/NF-κB-dependent pathway. Particle Fibre Toxicol. 15(1), 4 (2018).
  • 67. Seixas AF, Quendera AP, Sousa JP, Silva AFQ, Arraiano CM, Andrade JM. Bacterial response to oxidative stress and RNA oxidation. Front. Genet. 12, doi: 10.3389/fgene.2021.821535 (2022).
  • 68. Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat. Rev. Microbiol. 11(7), 443–454 (2013).
  • 69. Luo L, Qi MS, Yao SY, Cheng HP, Zhu JB, Yu GQ. Role of oxyR from Sinorhizobium meliloti in regulating the expression of catalases. Acta Biochim. Biophys. Sin. (Shanghai) 37(6), 421–428 (2005).
  • 70. Wan F, Shi M, Gao H. Loss of OxyR reduces efficacy of oxygen respiration in Shewanella oneidensis. Sci. Rep. 7(1), doi: 10.1038/srep42609 (2017).
  • 71. Zhang T, Shi XC, Xia Y, Mai L, Tremblay PL. Escherichia coli adaptation and response to exposure to heavy atmospheric pollution. Sci. Rep. 9(1), doi: 10.1038/s41598-019-47427-7 (2019).
  • 72. Ceretti E, Feretti D, Viola GCV et al. DNA damage in buccal mucosa cells of pre-school children exposed to high levels of urban air pollutants. PLOS ONE 9(5), e96524 (2014).
  • 73. Chen H, Kwong JC, Copes R et al. Exposure to ambient air pollution and the incidence of dementia: a population-based cohort study. Environ. Int. 108, 271–277 (2017).
  • 74. Calderón-Garcidueñas L, Solt AC, Henríquez-Roldán C et al. Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults. Toxicol. Pathol. 36(2), 289–310 (2008).
  • 75. Logsdon AF, Erickson MA, Rhea EM, Salameh TS, Banks WA. Gut reactions: how the blood–brain barrier connects the microbiome and the brain. Exp. Biol. Med. (Maywood) 243(2), 159–165 (2018).
  • 76. Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat. Rev. Gastroenterol. Hepatol. 6(5), 306–314 (2009).
  • 77. Yang JW, Shen YC, Lin KC et al. Organ-on-a-chip: opportunities for assessing the toxicity of particulate matter. Front. Bioeng. Biotechnol. 8, 519 (2020 May 29).
  • 78. Zheng P, Zhang B, Zhang K, Lv X, Wang Q, Bai X. The impact of air pollution on intestinal microbiome of asthmatic children: a panel study. Biomed. Res. Int. 2020, doi: 10.1155/2020/5753427 (2020).
  • 79. Gilmour MI, Park P, Selgrade MK. Ozone-enhanced pulmonary infection with Streptococcus zooepidemicus in mice: the role of alveolar macrophage function and capsular virulence factors. Am. Rev. Respir. Dis. 147(3), 753–760 (1993).
  • 80. Tithof PK, Elgayyar M, Cho Y, Guan W, Fisher AB, Peters-Golden M. Polycyclic aromatic hydrocarbons present in cigarette smoke cause endothelial cell apoptosis by a phospholipase A2-dependent mechanism. FASEB J. 16(11), 1463–1464 (2002).
  • 81. Xu X, Yavar Z, Verdin M et al. Effect of early particulate air pollution exposure on obesity in mice: role of p47phox. Arterioscler. Thromb. Vasc. Biol. 30(12), 2518–2527 (2010).
  • 82. Mariani J, Favero C, Spinazzè A et al. Short-term particulate matter exposure influences nasal microbiota in a population of healthy subjects. Environ. Res. 162, 119–126 (2018).
  • 83. Schenck LP, Surette MG, Bowdish DME. Composition and immunological significance of the upper respiratory tract microbiota. FEBS Lett. 590(21), 3705–3720 (2016).
  • 84. Li N, He F, Liao B, Zhou Y, Li B, Ran P. Exposure to ambient particulate matter alters the microbial composition and induces immune changes in rat lung. Respir. Res. 18, 143 (2017).
  • 85. Niemeier-Walsh C, Ryan PH, Meller J, Ollberding NJ, Adhikari A, Reponen T. Exposure to traffic-related air pollution and bacterial diversity in the lower respiratory tract of children. PLOS ONE 16(6), e0244341 (2021).
  • 86. Xiao C, Li S, Zhou W et al. The effect of air pollutants on the microecology of the respiratory tract of rats. Environ. Toxicol. Pharmacol. 36(2), 588–594 (2013).
  • 87. Rylance J, Kankwatira A, Nelson DE et al. Household air pollution and the lung microbiome of healthy adults in Malawi: a cross-sectional study. BMC Microbiol. 16, 182 (2016).
  • 88. Carrión D, Kaali S, Kinney PL et al. Examining the relationship between household air pollution and infant microbial nasal carriage in a Ghanaian cohort. Environ. Int. 133, doi: 10.1016/j.envint.2019.105150 (2019).
  • 89. Tao C, Pei Y, Zhang L, Zhang Y. Microbial communities respond to microenvironments in lungs of mice under simulated exposure to cadmium aerosols. Sci. Total Environ. 710, doi: 10.1016/j.scitotenv.2019.136300 (2020).
  • 90. Chen C, Xun P, Nishijo M, He K. Cadmium exposure and risk of lung cancer: a meta-analysis of cohort and case-control studies among general and occupational populations. J. Expo. Sci. Environ. Epidemiol. 26(5), 437–444 (2016).
  • 91. Daniel S, Phillippi D, Schneider LJ, Nguyen KN, Mirpuri J, Lund AK. Exposure to diesel exhaust particles results in altered lung microbial profiles, associated with increased reactive oxygen species/reactive nitrogen species and inflammation, in C57Bl/6 wildtype mice on a high-fat diet. Particle Fibre Toxicol. 18(1), 3 (2021).
  • 92. Li J, Hu Y, Liu L, Wang Q, Zeng J, Chen C. PM2.5 exposure perturbs lung microbiome and its metabolic profile in mice. Sci. Total Environ. 721, doi: 10.1016/j.scitotenv.2020.137432 (2020).
  • 93. Smit LAM, Boender GJ, de Steenhuijsen Piters WAA et al. Increased risk of pneumonia in residents living near poultry farms: does the upper respiratory tract microbiota play a role? Pneumonia 9(1), doi: 10.1186/s41479-017-0027-0 (2017).
  • 94. Smit LA, van der Sman-de Beer F, Opstal-van Winden AW et al. Q fever and pneumonia in an area with a high livestock density: a large population-based study. PLOS ONE 7(6), e38843 (2012).
  • 95. Li X, Sun Y, An Y et al. Air pollution during the winter period and respiratory tract microbial imbalance in a healthy young population in Northeastern China. Environ. Pollut. 246, 972–979 (2019).
  • 96. Wu Y, Li H, Xu D et al. Associations of fine particulate matter and its constituents with airway inflammation, lung function, and buccal mucosa microbiota in children. Sci. Total Environ. 773, doi: 10.1016/j.scitotenv.2021.145619 (2021).
  • 97. Gisler A, Korten I, de Hoogh K et al. Associations of air pollution and greenness with the nasal microbiota of healthy infants: a longitudinal study. Environ. Res. 202, doi: 10.1016/j.envres.2021.111633 (2021).
  • 98. Popovic I, Soares Magalhaes RJ, Ge E et al. A systematic literature review and critical appraisal of epidemiological studies on outdoor air pollution and tuberculosis outcomes. Environ. Res. 170, 33–45 (2019).
  • 99. Feng Y, Wei J, Hu M et al. Lagged effects of exposure to air pollutants on the risk of pulmonary tuberculosis in a highly polluted region. Int. J. Environ. Res. Public Health 19(9), 5752 (2022).
  • 100. Noda J, Tomizawa S, Takahashi K et al. Air pollution and airborne infection with mycobacterial bioaerosols: a potential attribution of soot. Int. J. Environ. Sci. Technol. 19, 717–726 (2022).
  • 101. Patterson B, Morrow C, Singh V et al. Detection of Mycobacterium tuberculosis bacilli in bio-aerosols from untreated TB patients. Gates Open Res. 1, 11 (2018).
  • 102. Sarkar S, Rivas-Santiago CE, Ibironke OA et al. Season and size of urban particulate matter differentially affect cytotoxicity and human immune responses to Mycobacterium tuberculosis. PLOS ONE 14(7), e0219122 (2019).
  • 103. Hosgood HD, Mongodin EF, Wan Y et al. The respiratory tract microbiome and its relationship to lung cancer and environmental exposures found in rural China. Environ. Mol. Mutagen. 60(7), 617–623 (2019).
  • 104. Lan Q, He X. Molecular epidemiological studies on the relationship between indoor coal burning and lung cancer in Xuan Wei, China. Toxicology 198(1), 301–305 (2004).
  • 105. Hosgood HD, Sapkota AR, Rothman N et al. The potential role of lung microbiota in lung cancer attributed to household coal burning exposures. Environ. Mol. Mutagen. 55(8), 643–651 (2014).
  • 106. Vanker A, Nduru PM, Barnett W et al. Indoor air pollution and tobacco smoke exposure: impact on nasopharyngeal bacterial carriage in mothers and infants in an African birth cohort study. ERJ Open Res. 5(1), 00052–02018 (2019).
  • 107. Dy R, Sethi S. The lung microbiome and exacerbations of COPD. Curr. Opin. Pulm. Med. 22(3), 196–202 (2016).
  • 108. Sapkota AR, Berger S, Vogel TM. Human pathogens abundant in the bacterial metagenome of cigarettes. Environ. Health Perspect. 118(3), 351–356 (2010).
  • 109. Mason MR, Preshaw PM, Nagaraja HN, Dabdoub SM, Rahman A, Kumar PS. The subgingival microbiome of clinically healthy current and never smokers. ISME J. 9(1), 268–272 (2015).
  • 110. Biswas K, Hoggard M, Jain R, Taylor MW, Douglas RG. The nasal microbiota in health and disease: variation within and between subjects. Front. Microbiol. 9, 134 (2015).