We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Vaginal microbiome: considerations for reproductive health

    Chitrakshi Chopra

    School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, 182320, India

    ,
    Indu Bhushan

    *Author for correspondence:

    E-mail Address: indu.bhushan@smvdu.ac.in

    School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, 182320, India

    ,
    Malvika Mehta

    School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, 182320, India

    ,
    Tanvi Koushal

    School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, 182320, India

    ,
    Amita Gupta

    Department of Gynecology, Government Medical College, Jammu, (J&K), 180001, India

    ,
    Sarika Sharma

    Department of Sponsored Research, Division of Research & Development, Lovely Professional University, Phagwara, 144411, India

    , , &
    Sandeep Sharma

    Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India

    Published Online:https://doi.org/10.2217/fmb-2022-0112

    The microbial communities are an indispensable part of the human defense system and coexist with humans as symbionts, contributing to the metabolic functions and immune defense against pathogens. An ecologically stable vaginal microbiota is dominated by Lactobacillus species, which plays an important role in the prevention of genital infections by controlling the vaginal pH, reducing glycogen to lactic acid, and stimulating bacteriocins and hydrogen peroxide. In contrast, an abnormal vaginal microbial composition is associated with an increased risk of bacterial vaginosis, trichomoniasis, sexually transmitted diseases, preterm labor and other birth defects. This microbial diversity is affected by race, ethnicity, pregnancy, hormonal changes, sexual activities, hygiene practices and other conditions. In the present review, we discuss the changes in the microbial community of the vaginal region at different stages of a female's life cycle and its influence on her reproductive health and pathological conditions.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Kumar A, Chordia N. Role of microbes in human health. Appl. Microbiol. Open Access 13, 1–3 (2017).
    • 2. Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med. 8(1), 1–11 (2016).
    • 3. Kumar M, Murugesan S, Singh P et al. Vaginal microbiota and cytokine levels predict preterm delivery in Asian women. Front. Cell. Infect. Microbiol. 11, 639665 (2021).
    • 4. Kumar M, Singh P, Murugesan S et al. Microbiome as an immunological modifier. Methods Mol. Biol. 2055, 595–638 (2020).
    • 5. Ogunrinola GA, Oyewale JO, Oshamika OO, Olasehinde GI. The human microbiome and its impacts on health. Int. J. Microbiol. 2020, 8045646 (2020).
    • 6. Dunlop AL, Mulle JG, Ferranti EP, Edwards S, Dunn AB, Corwin EJ. Maternal microbiome and pregnancy outcomes that impact infant health: a review. Adv. Neonatal. Care 15(6), 377–385 (2015).
    • 7. Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr. Rev. 70(Suppl. 1), S38–S44 (2012).
    • 8. Ogunrinola GA, Oyewale JO, Oshamika OO, Olasehinde GI. The human microbiome and its impacts on health. Int. J. Microbiol. 2020, 8045646 (2020).
    • 9. Saraf VS, Sheikh SA, Ahmad A, Gillevet PM, Bokhari H, Javed S. Vaginal microbiome: normalcy vs dysbiosis. Arch. Microbiol. 203(7), 3793–3802 (2021).
    • 10. Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nat. Med. 24(4), 392–400 (2018).
    • 11. Witkin SS, Linhares IM, Giraldo P. Bacterial flora of the female genital tract: function and immune regulation. Best Pract. Res. Clin. Obstet. Gynaecol. 21(3), 347–354 (2007).
    • 12. Sharma M, Chopra C, Mehta M et al. An insight into vaginal microbiome techniques. Life 11(11), 1229 (2021).
    • 13. Gupta S, Kakkar V, Bhushan I. Crosstalk between vaginal microbiome and female health: a review. Microb. Pathog. 136, 103696 (2019). •• The vaginal microbiota in women with relation to several conditions is highlighted in great detail in this article.
    • 14. Ravel J, Gajer P, Abdo Z et al. Vaginal microbiome of reproductive-age women. Proc. Natl Acad. Sci. USA 108(Suppl. 1), 4680 (2011).
    • 15. Farage MA, Miller KW, Sobel JD. Dynamics of the vaginal ecosystem – hormonal influences. Infect. Dis. (Auckl.) 3, S3903 (2010).
    • 16. Lamont R, Sobel J, Akins R et al. The vaginal microbiome: new information about genital tract flora using molecular based techniques. BJOG 118(5), 533–549 (2011). • The article describes the role of the Lactobacillus in preventing various infections in females.
    • 17. Ravel J, Brotman RM. Translating the vaginal microbiome: gaps and challenges. Genome Med. 8(1), 1–3 (2016).
    • 18. Kaur H, Merchant M, Haque MM, Mande SS. Crosstalk between female gonadal hormones and vaginal microbiota across various phases of women's gynecological lifecycle. Front. Microbiol. 11, 551 (2020).
    • 19. Bayar E, Bennett PR, Chan D, Sykes L, Macintyre DA. The pregnancy microbiome and preterm birth. Semin. Immunopathol. 42(4), 487–499 (2020).
    • 20. Mancabelli L, Tarracchini C, Milani C et al. Vaginotypes of the human vaginal microbiome. Environ. Microbiol. 23(3), 1780–1792 (2021).
    • 21. Lewis FM, Bernstein KT, Aral SO. Vaginal microbiome and its relationship to behavior, sexual health, and sexually transmitted diseases. Obstet. Gynecol. 129(4), 643 (2017).
    • 22. Selle K, Klaenhammer TR. Genomic and phenotypic evidence for probiotic influences of Lactobacillus gasseri on human health. FEMS Microbiol. Rev. 37(6), 915–935 (2013).
    • 23. Auriemma RS, Scairati R, Del Vecchio G et al. The vaginal microbiome: a long urogenital colonization throughout woman life. Front. Cell. Infect. Microbiol. 11, 686167 (2021).
    • 24. Reid G. Has knowledge of the vaginal microbiome altered approaches to health and disease? F1000Research 7, 460 (2018).
    • 25. Mesa MD, Loureiro B, Iglesia I et al. The evolving microbiome from pregnancy to early infancy: a comprehensive review. Nutrients 12(1), 133 (2020). •• The microbiota in pregnancy and newborns is highlighted in this research.
    • 26. Ma B, Forney LJ, Ravel J. Vaginal microbiome: rethinking health and disease. Annu. Rev. Microbiol. 66, 371–389 (2012).
    • 27. Marconi C, El-Zein M, Ravel J et al. Characterization of the vaginal microbiome in women of reproductive age from 5 regions in Brazil. Sex. Transm. Dis. 47(8), 562–569 (2020).
    • 28. Chaban B, Links MG, Jayaprakash TP et al. Characterization of the vaginal microbiota of healthy Canadian women through the menstrual cycle. Microbiome 2(1), 1–12 (2014).
    • 29. Xiao B, Liao Q. [Analysis of diversity of vaginal microbiota in healthy Chinese women by using DNA-fingerprinting.] Beijing Da Xue Xue Bao Yi Xue Ban 44(2), 281–287 (2012).
    • 30. Jespers V, Menten J, Smet H et al. Quantification of bacterial species of the vaginal microbiome in different groups of women, using nucleic acid amplification tests. BMC Microbiol. 12(1), 1–10 (2012).
    • 31. Anukam KC, Osazuwa EO, Ahonkhai I, Reid G. Lactobacillus vaginal microbiota of women attending a reproductive health care service in Benin city, Nigeria. Sex. Transm. Dis. 33(1), 59–62 (2006).
    • 32. Fettweis JM, Brooks JP, Serrano MG et al. Differences in vaginal microbiome in African American women versus women of European ancestry. Microbiology 160(Pt 10), 2272 (2014).
    • 33. Zhou X, Brown CJ, Abdo Z et al. Differences in the composition of vaginal microbial communities found in healthy Caucasian and Black women. ISME J. 1(2), 121–133 (2007).
    • 34. Mändar R, Mikelsaar M. Transmission of mother's microflora to the newborn at birth. Neonatology 69(1), 30–35 (1996).
    • 35. Dunn AB, Jordan S, Baker BJ, Carlson NS. The maternal infant microbiome: considerations for labor and birth. MCN Am. J. Matern. Child Nurs. 42(6), 318 (2017).
    • 36. Prince AL, Chu DM, Seferovic MD, Antony KM, Ma J, Aagaard KM. The perinatal microbiome and pregnancy: moving beyond the vaginal microbiome. Cold Spring Harb. Perspect. Med. 5(6), a023051 (2015).
    • 37. Montoya-Williams D, Lemas DJ, Spiryda L, Patel K, Neu J, Carson TL. The neonatal microbiome and its partial role in mediating the association between birth by cesarean section and adverse pediatric outcomes. Neonatology 114(2), 103–111 (2018).
    • 38. Huang B, Fettweis JM, Brooks JP, Jefferson KK, Buck GA. The changing landscape of the vaginal microbiome. Clin. Lab. Med. 34(4), 747–761 (2014).
    • 39. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci. Transl. Med. 6(237), 237ra265 (2014).
    • 40. Chu DM, Ma J, Prince AL, Antony KM, Seferovic MD, Aagaard KM. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 23(3), 314–326 (2017).
    • 41. Vaginal microbiota. https://evolmedwomenshealth.weebly.com/vaginal-microbiota.html (Accessed 25 May 2022).
    • 42. Hammerschlag MR, Alpert S, Rosner I et al. Microbiology of the vagina in children: normal and potentially pathogenic organisms. Pediatrics 62(1), 57–62 (1978).
    • 43. Hammerschlag MR, Alpert S, Onderdonk AB et al. Anaerobic microflora of the vagina in children. Am. J. Obstet. Gynecol. 131(8), 853–856 (1978).
    • 44. Ceccarani C, Foschi C, Parolin C et al. Diversity of vaginal microbiome and metabolome during genital infections. Sci. Rep. 9(1), 1–12 (2019).
    • 45. Buchta V. Vaginal microbiome. Ceska Gynekol. 83(5), 371–379 (2018).
    • 46. Farage MA, Maibach HI, Deliveliotou A, Creatsas G. Changes in the vulva and vagina throughout life. The Vulva, Taylor and Francis, UK, 14–21 (2017).
    • 47. Morison L, Ekpo G, West B et al. Bacterial vaginosis in relation to menstrual cycle, menstrual protection method, and sexual intercourse in rural Gambian women. Sex. Transm. Infect. 81(3), 242–247 (2005).
    • 48. Eschenbach DA, Thwin SS, Patton DL et al. Influence of the normal menstrual cycle on vaginal tissue, discharge, and microflora. Clin. Infect. Dis. 30(6), 901–907 (2000).
    • 49. MSD. Gynecology and Obstetrics MSD Manual Professional Edition. www.msdmanuals.com/en-in/professional/gynecology-and-obstetrics/female-reproductive-endocrinology/female-reproductive-endocrinology (Accessed 19 May 2022).
    • 50. Onderdonk AB, Delaney ML, Fichorova RN. The human microbiome during bacterial vaginosis. Clin. Microbiol. Rev. 29(2), 223–238 (2016). • The alterations in the vaginal microbiota that occur during bacterial vaginosis are described in this research.
    • 51. Hickey R, Abdo Z, Zhou X et al. Effects of tampons and menses on the composition and diversity of vaginal microbial communities over time. BJOG 120(6), 695–706 (2013).
    • 52. Yockey LJ, Iwasaki A. Interferons and proinflammatory cytokines in pregnancy and fetal development. Immunity 49(3), 397–412 (2018).
    • 53. Gajer P, Brotman RM, Bai G et al. Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med. 4(132), 132ra152 (2012).
    • 54. Kumar M, Saadaoui M, Elhag DA et al. Omouma: a prospective mother and child cohort aiming to identify early biomarkers of pregnancy complications in women living in Qatar. BMC Pregnancy Childbirth 21(1), 570 (2021).
    • 55. Tulchinsky D, Hobel CJ, Yeager E, Marshall JR. Plasma estrone, estradiol, estriol, progesterone, and 17-hydroxyprogesterone in human pregnancy: I. Normal pregnancy. Am. J. Obstet. Gynecol. 112(8), 1095–1100 (1972).
    • 56. Mor G, Cardenas I. The immune system in pregnancy: a unique complexity. Am. J. Reprod. Immunol. 63(6), 425–433 (2010).
    • 57. House M, Kaplan DL, Socrate S. Relationships between mechanical properties and extracellular matrix constituents of the cervical stroma during pregnancy. In: Semin. Perinatol. 33(5), 300–307 (2009).
    • 58. Soma-Pillay P, Catherine N-P, Tolppanen H, Mebazaa A, Tolppanen H, Mebazaa A. Physiological changes in pregnancy. Cardiovasc. J. Af. 27(2), 89 (2016).
    • 59. Gupta P, Singh MP, Goyal K. Diversity of vaginal microbiome in pregnancy: deciphering the obscurity. Front. Public Health 8, 326 (2020).
    • 60. Lash GE. Molecular cross-talk at the feto–maternal interface. Cold Spring Harb. Perspect. Med. 5(12), 1–14 (2015).
    • 61. Kumar M, Saadaoui M, Al Khodor S. Infections and pregnancy: effects on maternal and child health. Front. Cell. Infect. Microbiol. 12, 873253 (2022).
    • 62. Kumar P, Magon N. Hormones in pregnancy. Niger. Med. J. 53(4), 179–183 (2012).
    • 63. Schock H, Zeleniuch-Jacquotte A, Lundin E et al. Hormone concentrations throughout uncomplicated pregnancies: a longitudinal study. BMC Pregnancy Childbirth 16(1), 1–11 (2016).
    • 64. Kumar P, Magon N. Hormones in pregnancy. Niger. Med. J. 53(4), 179 (2012).
    • 65. Haque MM, Merchant M, Kumar PN, Dutta A, Mande SS. First-trimester vaginal microbiome diversity: a potential indicator of preterm delivery risk. Sci. Rep. 7(1), 1–10 (2017).
    • 66. Laghi L, Zagonari S, Patuelli G et al. Vaginal metabolic profiles during pregnancy: changes between first and second trimester. PLOS ONE 16(4), e0249925 (2021).
    • 67. Nuriel-Ohayon M, Neuman H, Koren O. Microbial changes during pregnancy, birth, and infancy. Front. Microbiol. 7, 1031 (2016).
    • 68. Romero R, Hassan SS, Gajer P et al. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome 2(1), 1–19 (2014).
    • 69. Saadaoui M, Kumar M, Al Khodor S. COVID-19 infection during pregnancy: risk of vertical transmission, fetal, and neonatal outcomes. J. Pers. Med. 11(6), 1–11 (2021).
    • 70. Vinturache AE, Gyamfi-Bannerman C, Hwang J, Mysorekar IU, Jacobsson B, Collaborative TPBI. Maternal microbiome – a pathway to preterm birth. Semin. Fetal Neonatal Med. 21(2), 94–99 (2016).
    • 71. Macintyre DA, Chandiramani M, Lee YS et al. The vaginal microbiome during pregnancy and the postpartum period in a European population. Sci. Rep. 5(1), 1–9 (2015).
    • 72. Hendrick V, Altshuler LL, Suri R. Hormonal changes in the postpartum and implications for postpartum depression. Psychosomatics 39(2), 93–101 (1998).
    • 73. DiGiulio DB, Callahan BJ, Mcmurdie PJ et al. Temporal and spatial variation of the human microbiota during pregnancy. Proc. Natl Acad. Sci. USA 112(35), 11060–11065 (2015).
    • 74. Severgnini M, Morselli S, Camboni T et al. A deep look at the vaginal environment during pregnancy and puerperium. Front. Cell. Infect. Microbiol. 12, 838405 (2022).
    • 75. Gomez-Lopez N, Stlouis D, Lehr MA, Sanchez-Rodriguez EN, Arenas-Hernandez M. Immune cells in term and preterm labor. Cell. Mol. Immunol. 11(6), 571–581 (2014).
    • 76. Taylor KR, Trowbridge JM, Rudisill JA, Termeer CC, Simon JC, Gallo RL. Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. J. Biol. Chem. 279(17), 17079–17084 (2004).
    • 77. Hong Y, Kim YK, Kim GB et al. Degradation of tumour stromal hyaluronan by small extracellular vesicle-PH20 stimulates CD103+ dendritic cells and in combination with PD-L1 blockade boosts anti-tumour immunity. J. Extracell. Vesicles 8(1), 1670893 (2019).
    • 78. Nunn KL, Witkin SS, Schneider GM et al. Changes in the vaginal microbiome during the pregnancy to postpartum transition. Reprod. Sci. 28(7), 1996–2005 (2021). •• The paper highlights the changes that occur in the vaginal microbiota in females during their postpartum period.
    • 79. Stout MJ, Zhou Y, Wylie KM, Tarr PI, Macones GA, Tuuli MG. Early pregnancy vaginal microbiome trends and preterm birth. Am. J. Obstet. Gynecol. 217(3), 356.e1–356.e18 (2017).
    • 80. Gudnadottir U, Debelius JW, Du J et al. The vaginal microbiome and the risk of preterm birth: a systematic review and network meta-analysis. Sci. Rep. 12(1), 1–8 (2022).
    • 81. Chu DM, Seferovic M, Pace RM, Aagaard KM. The microbiome in preterm birth. Best Pract. Res. Clin. Obstet. Gynaecol. 52, 103–113 (2018).
    • 82. Sun S, Serrano MG, Fettweis JM et al. Race, the vaginal microbiome, and spontaneous preterm birth. mSystems 7(3), e0001722 (2022).
    • 83. Kumar M, Murugesan S, Singh P et al. Vaginal microbiota and cytokine levels predict preterm delivery in Asian women. Front. Cell. Infect. Microbiol. 11, 639665 (2021).
    • 84. Mohamed I, Zakeer S, Azab M, Hanora A. Changes in vaginal microbiome in pregnant and nonpregnant women with bacterial vaginosis: toward microbiome diagnostics? OMICS 24(10), 602–614 (2020).
    • 85. Dall'Asta M, Laghi L, Morselli S et al. Pre-pregnancy diet and vaginal environment in Caucasian pregnant women: an exploratory study. Front. Mol. Biosci. 8, 702370 (2021).
    • 86. Jefferson KK, Parikh HI, Garcia EM et al. Relationship between vitamin D status and the vaginal microbiome during pregnancy. J. Perinatol. 39(6), 824–836 (2019). • The paper highlights the role of vitamin D in maintaining a health vaginal microbiota.
    • 87. Zhou SS, Tao YH, Huang K, Zhu BB, Tao FB. Vitamin D and risk of preterm birth: up-to-date meta-analysis of randomized controlled trials and observational studies. J. Obstet. Gynaecol. Res. 43(2), 247–256 (2017).
    • 88. Tabatabaei N, Eren A, Barreiro L et al. Vaginal microbiome in early pregnancy and subsequent risk of spontaneous preterm birth: a case-control study. BJOG 126(3), 349–358 (2019).
    • 89. Wee BA, Thomas M, Sweeney EL et al. A retrospective pilot study to determine whether the reproductive tract microbiota differs between women with a history of infertility and fertile women. Aust. N. Z. J. Obstet. Gynaecol. 58(3), 341–348 (2018).
    • 90. Wright VC, Schieve LA, Reynolds MA, Jeng G. Assisted reproductive technology surveillance – United States, 2002. MMWR Surveill. Summ. 54(2), 1–24 (2005).
    • 91. Campisciano G, Florian F, D'eustacchio A et al. Subclinical alteration of the cervical-vaginal microbiome in women with idiopathic infertility. J. Cell. Physiol. 232(7), 1681–1688 (2017).
    • 92. Lledo B, Fuentes A, Lozano F et al. Identification of vaginal microbiome associated with IVF pregnancy. Sci. Rep. 12(1), 1–10 (2022).
    • 93. Moreno I, Simon C. Deciphering the effect of reproductive tract microbiota on human reproduction. Reprod. Med. Biol. 18(1), 40–50 (2019).
    • 94. Azpiroz MA, Orguilia L, Palacio MI et al. Potential biomarkers of infertility associated with microbiome imbalances. Am. J. Reprod. Immunol. 86(4), e13438 (2021).
    • 95. University of California Los Angeles Health Menopause. www.uclahealth.org/obgyn/menopause
    • 96. Dalal PK, Agarwal M. Postmenopausal syndrome. Indian J. Psychiatry 57(Suppl. 2), S222 (2015).
    • 97. Gupta S, Kumar N, Singhal N, Kaur R, Manektala U. Vaginal microflora in postmenopausal women on hormone replacement therapy. Indian J. Pathol. Microbiol. 49(3), 457–461 (2006).
    • 98. Brotman RM, Shardell MD, Gajer P et al. Association between the vaginal microbiota, menopause status and signs of vulvovaginal atrophy. Menopause 21(5), 450 (2014).
    • 99. Gliniewicz K, Schneider GM, Ridenhour BJ et al. Comparison of the vaginal microbiomes of premenopausal and postmenopausal women. Front. Microbiol. 10, 193 (2019).
    • 100. Abdi F, Mobedi H, Roozbeh N. Hops for menopausal vasomotor symptoms: mechanisms of action. J. Menopausal Med. 22(2), 62–64 (2016).
    • 101. Muhleisen AL, Herbst-Kralovetz MM. Menopause and the vaginal microbiome. Maturitas 91, 42–50 (2016). •• The paper highlights the vaginal microbiome present in the postmenopausal women.
    • 102. Vitali D, Wessels JM, Kaushic C. Role of sex hormones and the vaginal microbiome in susceptibility and mucosal immunity to HIV-1 in the female genital tract. AIDS Res. Ther. 14(1), 1–5 (2017).
    • 103. Pabich WL, Fihn SD, Stamm WE, Scholes D, Boyko EJ, Gupta K. Prevalence and determinants of vaginal flora alterations in postmenopausal women. J. Infect. Dis. 188(7), 1054–1058 (2003).
    • 104. Bank NK. Menopausal hormone replacement therapy. Nicole K Banks. https://emedicine.medscape.com/article/276104-overview (Accessed 24 May 2022).
    • 105. Bisanz JE, Seney S, Mcmillan A et al. A systems biology approach investigating the effect of probiotics on the vaginal microbiome and host responses in a double blind, placebo-controlled clinical trial of post-menopausal women. PLOS ONE 9(8), e104511 (2014).
    • 106. Kim J-M, Park YJ. Probiotics in the prevention and treatment of postmenopausal vaginal infections. J. Menopausal Med. 23(3), 139 (2017).
    • 107. Ma B, Forney LJ, Ravel J. Vaginal microbiome: rethinking health and disease. Annu. Rev. Microbiol. 66, 371–389 (2012).