We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Antimicrobial and antibiofilm activities of desloratadine against multidrug-resistant Acinetobacter baumannii

    Junio Eduvirgem

    Universidade Federal da Grande Dourados (UFGD), Laboratório de Pesquisa em Ciências da Saúde, Dourados, Mato Grosso do Sul, 79804-970, Brazil

    ,
    Luana Rossato

    Universidade Federal da Grande Dourados (UFGD), Laboratório de Pesquisa em Ciências da Saúde, Dourados, Mato Grosso do Sul, 79804-970, Brazil

    ,
    Andressa LF Melo

    Universidade Federal da Grande Dourados (UFGD), Laboratório de Pesquisa em Ciências da Saúde, Dourados, Mato Grosso do Sul, 79804-970, Brazil

    ,
    Anna CM Valiente

    Universidade Federal da Grande Dourados (UFGD), Laboratório de Pesquisa em Ciências da Saúde, Dourados, Mato Grosso do Sul, 79804-970, Brazil

    ,
    Luiz F Plaça

    Grupo de Pesquisa Nano & Photon, Instituto de Física, Universidade Federal do Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil

    ,
    Heberton Wender

    Grupo de Pesquisa Nano & Photon, Instituto de Física, Universidade Federal do Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil

    ,
    Marcia SM Vaz

    Universidade Federal da Grande Dourados (UFGD), Laboratório de Pesquisa em Ciências da Saúde, Dourados, Mato Grosso do Sul, 79804-970, Brazil

    ,
    Suzana M Ribeiro‡

    Colégio Militar de Curitiba, Curitiba, Paraná, 82800-030, Brazil

    ‡Authors contributed equally

    Search for more papers by this author

    &
    Simone Simionatto‡

    *Author for correspondence: Tel.: +55 679 9958 5355;

    E-mail Address: simonesimionatto@ufgd.edu.br

    Universidade Federal da Grande Dourados (UFGD), Laboratório de Pesquisa em Ciências da Saúde, Dourados, Mato Grosso do Sul, 79804-970, Brazil

    ‡Authors contributed equally

    Search for more papers by this author

    Published Online:https://doi.org/10.2217/fmb-2022-0085

    Aim: The antimicrobial and antibiofilm activities of the antihistamine desloratadine against multidrug-resistant (MDR) Acinetobacter baumannii were evaluated. Results: Desloratadine inhibited 90% bacterial growth at a concentration of 64 μg/ml. The combination of desloratadine with meropenem reduced the MIC by twofold in the planktonic state and increased the antibiofilm activity by eightfold. Survival curves showed that combinations of these drugs were successful in eradicating all bacterial cells within 16 h. Scanning electron microscopy also confirmed a synergistic effect in imparting a harmful effect on the cellular structure of MDR A. baumannii. An in vivo model showed significant protection of up to 83% of Caenorhabditis elegans infected with MDR A. baumannii. Conclusion: Our results indicate that repositioning of desloratadine may be a safe and low-cost alternative as an antimicrobial and antibiofilm agent for the treatment of MDR A. baumannii infections.

    References

    • 1. Duarte S da CM, Stipp MAC, da Silva MM et al. Adverse events and safety in nursing care. Rev. Bras. Enferm. 68(1), 144–154 (2015).
    • 2. Fishbain J, Peleg AY. Treatment of Acinetobacter infections. Clin. Infect. Dis. 51(1), 79–84 (2010).
    • 3. Greene C, Vadlamudi G, Newton D, Foxman B, Xi C. The influence of biofilm formation and multidrug resistance on environmental survival of clinical and environmental isolates of Acinetobacter baumannii. Am. J. Infect. Control 44(5), e65–71 (2016).
    • 4. Al-Shamiri MM, Zhang S, Mi P et al. Phenotypic and genotypic characteristics of Acinetobacter baumannii enrolled in the relationship among antibiotic resistance, biofilm formation and motility. Microb. Pathog. 155, 104922 (2021).
    • 5. Chapartegui-González I, Lázaro-Díez M, Bravo Z, Navas J, Icardo JM, Ramos-Vivas J. Acinetobacter baumannii maintains its virulence after long-time starvation. PLOS ONE 13(8), e0201961 (2018).
    • 6. Carvalhaes CG, Cayô R, Assis DM et al. Detection of SPM-1-producing Pseudomonas aeruginosa and class D β-lactamase-producing Acinetobacter baumannii isolates by use of liquid chromatography–mass spectrometry and matrix-assisted laser desorption ionization–time of flight mass spectrometry. J. Clin. Microbiol. 51(1), 287–290 (2013).
    • 7. Maciel WG, da Silva KE, Croda J et al. Clonal spread of carbapenem-resistant Acinetobacter baumannii in a neonatal intensive care unit. J. Hosp. Infect. 98(3), 300–304 (2018).
    • 8. Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6(12), 1451–1474 (2013).
    • 9. World Health Organization. Antibacterial agents in preclinical development: an open access database (2019). www.who.int/publications-detail-redirect/WHO-EMP-IAU-2019.12
    • 10. Doi Y. Treatment options for carbapenem-resistant Gram-negative bacterial infections. Clin. Infect. Dis. 69(Suppl. 7), S565–S575 (2019).
    • 11. Karaiskos I, Lagou S, Pontikis K, Rapti V, Poulakou G. The ‘old’ and the ‘new’ antibiotics for MDR Gram-negative pathogens: for whom, when, and how. Front. Public Health 7, 151 (2019).
    • 12. Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence 9(1), 522–554 (2018).
    • 13. Uchil RR, Kohli GS, Katekhaye VM, Swami OC. Strategies to combat antimicrobial resistance. J. Clin. Diagn. Res. 8(7), ME01–ME04 (2014).
    • 14. Cha Y, Erez T, Reynolds IJ et al. Drug repurposing from the perspective of pharmaceutical companies. Br. J. Pharmacol. 175(2), 168–180 (2018).
    • 15. Farha MA, Brown ED. Drug repurposing for antimicrobial discovery. Nat. Microbiol. 4(4), 565–577 (2019).
    • 16. Langedijk J, Mantel-Teeuwisse AK, Slijkerman DS, Schutjens M-HDB. Drug repositioning and repurposing: terminology and definitions in literature. Drug Discov. Today 20(8), 1027–1034 (2015).
    • 17. Mercorelli B, Palù G, Loregian A. Drug repurposing for viral infectious diseases: how far are we? Trends Microbiol. 26(10), 865–876 (2018).
    • 18. Cruz-Muñiz MY, López-Jacome LE, Hernández-Durán M et al. Corrigendum to ‘Repurposing the anticancer drug mitomycin C for the treatment of persistent Acinetobacter baumannii infections’ [International Journal of Antimicrobial Agents 49/1 (2017) 88–92]. Int. J. Antimicrob. Agents 52(6), 868 (2018).
    • 19. Pawar AY. Combating devastating COVID-19 by drug repurposing. Int. J. Antimicrob. Agents 56(2), 105984 (2020).
    • 20. Pushpakom S, Iorio F, Eyers PA et al. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov. 18(1), 41–58 (2019).
    • 21. Madhusoodanan J. Common allergy drug makes resistant bacteria vulnerable to antibiotics (2019). https://cen.acs.org/pharmaceuticals/antibiotics/Common-allergy-drug-makes-resistant/97/i24
    • 22. Bachert C. A review of the efficacy of desloratadine, fexofenadine, and levocetirizine in the treatment of nasal congestion in patients with allergic rhinitis. Clin. Ther. 31(5), 921–944 (2009).
    • 23. Wang XY, Lim-Jurado M, Prepageran N, Tantilipikorn P, Wang DY. Treatment of allergic rhinitis and urticaria: a review of the newest antihistamine drug bilastine. Ther. Clin. Risk Manag. 12, 585–597 (2016).
    • 24. Michalopoulos A, Falagas ME. Treatment of Acinetobacter infections. Expert Opin. Pharmacother. 11(5), 779–788 (2010).
    • 25. da Silva KE, Maciel WG, Croda J et al. A high mortality rate associated with multidrug-resistant Acinetobacter baumannii ST79 and ST25 carrying OXA-23 in a Brazilian intensive care unit. PLOS ONE 13(12), e0209367 (2018).
    • 26. Fehlberg LCC, Andrade LHS, Assis DM, Pereira RHV, Gales AC, Marques EA. Performance of MALDI-ToF MS for species identification of Burkholderia cepacia complex clinical isolates. Diagn. Microbiol. Infect. Dis. 77(2), 126–128 (2013).
    • 27. Clinical & Laboratory Standards Institute C. Clinical & Laboratory Standards Institute: CLSI Guidelines (2020). https://clsi.org/
    • 28. Saputo S, Faustoferri RC, Quivey RG. A drug repositioning approach reveals that Streptococcus mutans is susceptible to a diverse range of established antimicrobials and nonantibiotics. Antimicrob. Agents Chemother. 62(1), e01674–17 (2017).
    • 29. Adusei EBA, Adosraku RK, Oppong-Kyekyeku J, Amengor CDK, Jibira Y. Resistance modulation action, time–kill kinetics assay, and inhibition of biofilm formation effects of plumbagin from Plumbago zeylanica Linn. J. Trop. Med. 2019, 1250645 (2019).
    • 30. Moody JA. Synergy testing: broth microdilution checkerboard and broth macrodilution methods. In: Clinical Microbiology Procedures Handbook. Eisenberg HD (Ed.). American Society for Microbiology, WA, USA, 5.18.1–5.18.23 (2007).
    • 31. Ianevski A, Giri AK, Aittokallio T. SynergyFinder 2.0: visual analytics of multi-drug combination synergies. Nucleic Acids Res. 48(W1), W488–W493 (2020).
    • 32. Bardbari AM, Arabestani MR, Karami M et al. Highly synergistic activity of melittin with imipenem and colistin in biofilm inhibition against multidrug-resistant strong biofilm producer strains of Acinetobacter baumannii. Eur. J. Clin. Microbiol. Infect. Dis. 37(3), 443–454 (2018).
    • 33. Kamaladevi A, Balamurugan K. Global proteomics revealed Klebsiella pneumoniae induced autophagy and oxidative stress in Caenorhabditis elegans by inhibiting PI3K/AKT/mTOR pathway during infection. Front. Cell. Infect. Microbiol. 7, 393 (2017).
    • 34. Stiernagle T. Maintenance of C. elegans. WormBook 10.1895/wormbook.1.101.1 (2006).
    • 35. Cheng Y-S, Sun W, Xu M et al. Repurposing screen identifies unconventional drugs with activity against multidrug resistant Acinetobacter baumannii. Front. Cell. Infect. Microbiol. 8, 438 (2018).
    • 36. Chagas TPG, Carvalho KR, de Oliveira Santos IC, Carvalho-Assef APD, Asensi MD. Characterization of carbapenem-resistant Acinetobacter baumannii in Brazil (2008–2011): countrywide spread of OXA-23-producing clones (CC15 and CC79). Diagn. Microbiol. Infect. Dis. 79(4), 468–472 (2014).
    • 37. Sennati S, Villagran AL, Bartoloni A, Rossolini GM, Pallecchi L. OXA-23-producing ST25 Acinetobacter baumannii: first report in Bolivia. J. Glob. Antimicrob. Resist. 4, 70–71 (2016).
    • 38. Young HL, Croyle C, Janelle SJ et al. Collaboration for containment: detection of OXA-23-like carbapenamase-producing Acinetobacter baumannii in Colorado. Infect. Control Hosp. Epidemiol. 39(10), 1273–1274 (2018).
    • 39. Gontijo AVL, Pereira SL, de Lacerda Bonfante H. Can drug repurposing be effective against carbapenem-resistant Acinetobacter baumannii? Curr. Microbiol. 79(1), 13 (2021).
    • 40. Attwood D, Udeala OK. Aggregation of antihistamines in aqueous solution: micellar properties of some diphenylmethane derivatives. J. Pharm. Pharmacol. 26(11), 854–860 (1974).
    • 41. Dasgupta A, Dastidar SG, Shirataki Y. Antibacterial activity of artificial phenothiazines and isoflavones from plants. In: Bioactive Heterocycles VI: Flavonoids and Anthocyanins in Plants, and Latest Bioactive Heterocycles I. Motohashi N (Ed.). Springer, Berlin, Heidelberg, Germany, 67–132 (2008).
    • 42. Guth P, Spirtes M. The phenothiazinetranquilizers: biochemical and biophysical actions. Int. Rev. Neurobiol. 7, 231–278 (1964).
    • 43. Molnár J, Király J, Mándi Y. The antibacterial action and R-factor-inhibiting activity by chlorpromazine. Experientia 31(4), 444–445 (1975).
    • 44. Harding CM, Hennon SW, Feldman MF. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat. Rev. Microbiol. 16(2), 91–102 (2018).
    • 45. Perlmutter JI, Forbes LT, Krysan DJ et al. Repurposing the antihistamine terfenadine for antimicrobial activity against Staphylococcus aureus. J. Med. Chem. 57(20), 8540–8562 (2014).
    • 46. El-Banna TE-S, Sonbol FI, El-Aziz AAA, Al-Fakharany OM. Modulation of antibiotic efficacy against Klebsiella pneumoniae by antihistaminic drugs. Med. Microbiol. Diagn. 5(2), 1–13 (2016).
    • 47. El-Nakeeb M, Abou-Shleib H, Khalil A, Omar H, El-Halfawy O. In vitro antibacterial activity of some antihistaminics belonging to different groups against multi-drug resistant clinical isolates. Braz. J. Microbiol. 42(3), 980–991 (2011).
    • 48. Cutrona N, Gillard K, Ulrich R, Seemann M, Miller HB, Blackledge MS. From antihistamine to anti-infective: loratadine inhibition of regulatory PASTA kinases in Staphylococci reduces biofilm formation and potentiates β-lactam antibiotics and vancomycin in resistant strains of Staphylococcus aureus. ACS Infect. Dis. 5(8), 1397–1410 (2019).
    • 49. Chung PY. The emerging problems of Klebsiella pneumoniae infections: carbapenem resistance and biofilm formation. FEMS Microbiol. Lett. 363(20), fnw219 (2016).
    • 50. Ribeiro SM, Cardoso MH, Cândido E de S, Franco OL. Understanding, preventing and eradicating Klebsiella pneumoniae biofilms. Future Microbiol. 11(4), 527–538 (2016).
    • 51. Aguilar-Vega L, López-Jácome LE, Franco B et al. Antibacterial properties of phenothiazine derivatives against multidrug-resistant Acinetobacter baumannii strains. J. Appl. Microbiol. 131(5), 2235–2243 (2021).
    • 52. Cobb DB, Watson WA, Fernández MC. High-dose loratadine exposure in a six-year-old child. Vet. Hum. Toxicol. 43(3), 163–164 (2001).
    • 53. Simons FE. H1-receptor antagonists. Comparative tolerability and safety. Drug Saf. 10(5), 350–380 (1994).
    • 54. Henz BM. The pharmacologic profile of desloratadine: a review. Allergy 56(Suppl. 65), 7–13 (2001).