We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Swertiamarin-mediated immune modulation/adaptation confers protection against Plasmodium berghei

    Naisargee Patel

    Institute of Science, Nirma University, Ahmedabad, Gujarat, India

    ,
    Aarushi Zinzuvadia

    Institute of Science, Nirma University, Ahmedabad, Gujarat, India

    ,
    Mitali Prajapati

    Institute of Science, Nirma University, Ahmedabad, Gujarat, India

    ,
    Rajeev K Tyagi

    Division of Cell Biology and Immunology Biomedical Parasitology and Nano-immunology LabCSIR-Institute of Microbial Technology (IMTECH)Sec-39A, Chandigarh, 160036, India

    &
    Sarat Dalai

    *Author for correspondence:

    E-mail Address: sarat.dalai@nirmauni.ac.in

    Institute of Science, Nirma University, Ahmedabad, Gujarat, India

    Published Online:https://doi.org/10.2217/fmb-2021-0298

    Aims: Development of resistance by the malaria parasite, a systemic inflammatory and infectious pathogen, has raised the need for novel efficacious antimalarials. Plant-derived natural compounds are known to modulate the immune response and eradicate the infectious pathogens. Therefore we carried out experiments with swertiamarin to dissect its anti-inflammatory and immunomodulatory potential. Materials & methods: We carried out studies in Swiss albino mice that received infectious challenge with Plasmodium berghei and swertiamarin treatment in a prophylactic manner. Results & conclusion: Oral administration of swertiamarin prior to infectious challenge with P. berghei in experimental mice showed delayed parasite development as compared with untreated control. IFN-γ and IL-10 appeared to be adapted/modulated by regular swertiamarin treatment. Further, withdrawal of swertiamarin pressure did not affect parasite replication. However, the short half-life of swertiamarin limited its long-lasting therapeutic effect, requiring higher and frequent dosing schedules.

    References

    • 1. World Health Organization. World Malaria Report (2020). www.who.int/publications/i/item/9789240015791
    • 2. Institute of Medicine (US) Committee on the Economics of Antimalarial Drugs. Saving lives, buying time: economics of malaria drugs in an age of resistance. National Academies Press (US) (2004). www.ncbi.nlm.nih.gov/books/NBK215631/
    • 3. Balint GA. Artemisinin and its derivatives: an important new class of antimalarial agents. Pharmacol. Ther. 90(2), 261–265 (2001).
    • 4. Yeung S, Pongtavornpinyo W, Hastings IM, Mills AJ, White NJ. Antimalarial drug resistance, artemisinin-based combination therapy, and the contribution of modeling to elucidating policy choices. Am. J. Trop. Med. Hyg. 71(Suppl. 2), 179–186 (2004).
    • 5. Tyagi RK, Gleeson PJ, Arnold L et al. High-level artemisinin-resistance with quinine co-resistance emerges in P. falciparum malaria under in vivo artesunate pressure. BMC Med. 16(1), 181 (2018).
    • 6. Ashley EA, Dhorda M, Fairhurst RM et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 371(5), 411–423 (2014).
    • 7. World Health Organization. Global plan for artemisinin resistance containment (GPARC) (2011). https://apps.who.int/iris/bitstream/handle/10665/44482/9789241500838_eng.pdf
    • 8. Ghanchi NK, Qurashi B, Raees H, Beg MA. Molecular surveillance of drug resistance: Plasmodium falciparum artemisinin resistance single nucleotide polymorphisms in Kelch protein propeller (K13) domain from Southern Pakistan. Malar. J. 20(1), 1–6 (2021).
    • 9. Dondorp AM, Nosten F, Yi P et al. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 361(5), 455–467 (2009).
    • 10. Witkowski B, Lelièvre J, Barragán MJL et al. Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism. Antimicrob. Agents Chemother. 54(5), 1872–1877 (2010).
    • 11. Wright CW. Traditional antimalarials and the development of novel antimalarial drugs. J. Ethnopharmacol. 100(1), 67–71 (2005).
    • 12. Uzor PF. Alkaloids from plants with antimalarial activity: a review of recent studies. Evid. Based Complement. Altern. Med. 2020, 8749083 (2020).
    • 13. Sanket S, Sarita G. In vitro anti plasmodial activity of Enicostemma littorale. Am. J. Infect. Dis. 5(3), 259–262 (2009).
    • 14. Vaidya H, Goyal RK, Cheema SK. Anti-diabetic activity of swertiamarin is due to an active metabolite, gentianine, that upregulates PPAR-γ gene expression in 3T3-L1 cells. Phytother. Res. 27(4), 624–627 (2013).
    • 15. Bhattacharya SK, Reddy PK, Ghosal S, Singh AK, Sharma PV. Chemical constituents of Gentianaceae XIX: CNS-depressant effects of swertiamarin. J. Pharm. Sci. 65(10), 1547–1549 (1976).
    • 16. Patel N, Tyagi RK, Tandel N, Garg NK, Soni N. The molecular targets of swertiamarin and its derivatives confer anti-diabetic and anti-hyperlipidemic effects. Curr. Drug Targets 19(16), 1958–1967 (2018).
    • 17. Yamahara J, Kobayashi M, Matsuda H, Aoki S. Anticholinergic action of Swertia japonica and an active constituent. J. Ethnopharmacol. 33(1-2), 31–35 (1991).
    • 18. Patel TP, Soni S, Parikh P, Gosai J, Chruvattil R, Gupta S. Swertiamarin: an active lead from Enicostemma littorale regulates hepatic and adipose tissue gene expression by targeting PPAR-γ and improves insulin sensitivity in experimental NIDDM rat model. Evid. Based Complement. Altern. Med. 2013, 358673 (2013).
    • 19. Wu T, Li J, Li Y, Song H. Antioxidant and hepatoprotective effect of swertiamarin on carbon tetrachloride-induced hepatotoxicity via the Nrf2/HO-1 pathway. Cell Physiol. Biochem. 41(6), 2242–2254 (2017).
    • 20. He YM, Zhu S, Ge YW et al. The anti-inflammatory secoiridoid glycosides from Gentianae scabrae radix: the root and rhizome of Gentiana scabra. J. Nat. Med. 69(3), 303–312 (2015).
    • 21. Shitlani D, Choudhary R, Pandey DP, Bodakhe SH. Ameliorative antimalarial effects of the combination of rutin and swertiamarin on malarial parasites. Asian Pac. J. Trop. Med. 6(6), 453–459 (2016).
    • 22. Saravanan S, Islam VI, Thirugnanasambantham K et al. Swertiamarin ameliorates inflammation and osteoclastogenesis intermediates in IL-1β induced rat fibroblast-like synoviocytes. Inflamm. Res. 63(6), 451–462 (2014).
    • 23. Saravanan S, Prakash Babu N, Pandikumar P, Karunai Raj M, Gabriel Paulraj M, Ignacimuthu S. Immunomodulatory potential of Enicostema axillare (Lam.) A. Raynal, a traditional medicinal plant. J. Ethnopharmacol. 140(2), 239–246 (2012).
    • 24. Saravanan S, Islam VI, Babu NP et al. Swertiamarin attenuates inflammation mediators via modulating NF-κB/I κB and JAK2/STAT3 transcription factors in adjuvant induced arthritis. Eur. J. Pharm. Sci. 56, 70–86 (2014).
    • 25. Saravanan S, Pandikumar P, Prakash Babu N et al. In vivo and in vitro immunomodulatory potential of swertiamarin isolated from Enicostema axillare (Lam.) A. Raynal that acts as an anti-inflammatory agent. Inflammation 37(5), 1374–1388 (2014).
    • 26. Hunt NH, Ball HJ, Hansen AM et al. Cerebral malaria: gamma-interferon redux. Front Cell Infect. Microbiol. 4, 113 (2014).
    • 27. Amante FH, Stanley AC, Randall LM et al. A role for natural regulatory T cells in the pathogenesis of experimental cerebral malaria. Am. J. Pathol. 171(2), 548–559 (2007).
    • 28. Frimpong A, Amponsah J, Adjokatseh AS et al. Asymptomatic malaria infection is maintained by a balanced pro- and anti-inflammatory response. Front. Microbiol. 11, 559255–559255 (2020).
    • 29. Cabantous S, Poudiougou B, Traore A et al. Evidence that interferon-γ plays a protective role during cerebral malaria. J. Infect. Dis. 192(5), 854–860 (2005).
    • 30. Gimenez F, Barraud De Lagerie S, Fernandez C, Pino P, Mazier D. Tumor necrosis factor α in the pathogenesis of cerebral malaria. Cell. Mol. Life Sci. 60(8), 1623–1635 (2003).
    • 31. Jason J, Archibald LK, Nwanyanwu OC et al. Cytokines and malaria parasitemia. J. Clin. Immunol. 100(2), 208–218 (2001).
    • 32. Kumar R, Ng S, Engwerda C. The role of IL-10 in malaria: a double edged sword. Front. immunol. 10, 229 (2019).
    • 33. Leong X, Thanikachalam P, Pandey M, Ramamurthy S. A systematic review of the protective role of swertiamarin in cardiac and metabolic diseases. Biomed. Pharmacother. 84, 1051–1060 (2016).
    • 34. Liu Y, Chen Y, Li Z et al. Role of IL-10-producing regulatory B cells in control of cerebral malaria in Plasmodium berghei infected mice. Eur. J. Immunol. 43(11), 2907–2918 (2013).