We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Emergence of hypermucoviscous colistin-resistant high-risk convergent Klebsiella pneumoniae ST-2096 clone from Pakistan

    Maleeha Urooj

    Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan

    ,
    Mehreen Shoukat

    Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan

    ,
    Muhammad Imran

    Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan

    ,
    Muhammad Ansar

    Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan

    &
    Rani Faryal

    *Author for correspondence: Tel.: +92 519 064 3008;

    E-mail Address: ranifaryal@qau.edu.pk

    Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan

    Published Online:https://doi.org/10.2217/fmb-2021-0292

    Klebsiella pneumoniae convergent clones are considered a threat to healthcare settings. Here we report a comprehensive genomic profiling of an emerging colistin-resistant K. pneumoniae ST-2096 convergent clone from Pakistan. Methods: Whole-genome sequencing was performed and raw reads were assembled antimicrobial resistance and virulence genes were predicted using various online tools. Results & conclusion: The phenotypically multidrug-resistant (MDR) and hypermucoviscous (hv) colistin-resistant K. pneumoniae (hvCRKP-10718), which, intriguingly, possessed a wide range of antimicrobial resistance (blaTEM-1A, blaOXA-1, blaOXA-232, blaCTX-M-15, blaSHV-106, oqxA, oqxB, aac(6′)-Ib-cr, aadA2, aac(6′)-Ib-cr, armA, tetD, mphE, msrE, fosA, dfrA1, dfrA12, dfrA14, catB3, sul1) and virulence determinants (RmpA/RmpA2, yersiniabactin [ybt], aerobactin [iuc/iut], enterobactin). Furthermore, the acquisition of various mobile genetic elements (MDR/virulent plasmids, type II integron gene cassette, insertional sequences, transposases) and associated hv capsular type made this MDR/hv isolate a convergent clone belonging to a high-risk lineage (ST-2096). Based on core-genome multilocus sequence typing and single-nucleotide polymorphism analysis, this isolate showed ≥99% nucleotide identity with MDR K. pneumoniae isolates from India, depicting its evolutionary background. This study provides a comprehensive genomic profiling of this high-risk convergent K. pneumoniae ST-2096 clone from Pakistan. Comparative genomics of MDR/hv colistin-resistant K. pneumoniae isolates with other MDR convergent strains from the Indian subcontinent indicated the emergence of this evolving superbug.

    References

    • 1. Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev. 11(4), 589–603 (1998).
    • 2. WHO. Global action plan on antimicrobial resistance. Microbe Mag. 10(9), 354–355 (2015).
    • 3. Wyres KL, Lam MMC, Holt KE. Population genomics of Klebsiella pneumoniae. Nat. Rev. Microbiol. 18(6), 344–359 (2020).
    • 4. Araújo BF, Ferreira ML, de Campos PA et al. Hypervirulence and biofilm production in KPC-2-producing Klebsiella pneumoniae CG258 isolated in Brazil. J. Med. Microbiol. 67(4), 523–528 (2018).
    • 5. Cerdeira L, Nakamura-Silva R, Oliveira-Silva M et al. Draft genome sequences of PDR and XDR Klebsiella pneumoniae belonging to high-risk CG258 isolated from a Brazilian tertiary hospital. Infect. Genet. Evol. 87, 104643 (2021).
    • 6. Lam MMC, Wick RR, Watts SC, Cerdeira LT, Wyres KL, Holt KE. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat. Commun. 12(1), 4188 (2021).
    • 7. Russo TA, Olson R, Fang CT et al. Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K. pneumoniae. J. Clin. Microbiol. 56(9), 776–794 (2018).
    • 8. Lan P, Jiang Y, Zhou J, Yu Y. A global perspective on the convergence of hypervirulence and carbapenem resistance in Klebsiella pneumoniae. J. Glob. Antimicrob. Resist. 25, 26–34 (2021).
    • 9. Cejas D, Canigia LF, Cruz GR et al. First isolate of KPC-2-producing Klebsiella pneumoniae sequence type 23 from the Americas. J. Clin. Microbiol. 52(9), 3483–3485 (2014).
    • 10. Turton J, Davies F, Turton J, Perry C, Payne Z, Pike R. Hybrid resistance and virulence plasmids in ‘high-risk’ clones of Klebsiella pneumoniae, including those carrying blaNDM-5. Microorganisms 7(9), 326 (2019).
    • 11. Scaltriti E, Piccinelli G, Corbellini S, Caruso A, Latronico N, De Francesco MA. Detection of a hypermucoviscous Klebsiella pneumoniae co-producing NDM-5 and OXA-48 carbapenemases with sequence type 383, Brescia, Italy. Int. J. Antimicrob. Agents 56(4), 106130 (2020).
    • 12. Mataseje LF, Boyd DA, Mulvey MR, Longtin Y. Two hypervirulent Klebsiella pneumoniae isolates producing a blaKPC-2 carbapenemase from a canadian patient. Antimicrob. Agents Chemother. 63(7), PMC6591601 (2019).
    • 13. Lev AI, Astashkin EI, Kislichkina AA et al. Comparative analysis of Klebsiella pneumoniae strains isolated in 2012–2016 that differ by antibiotic resistance genes and virulence genes profiles. Pathog. Glob. Health. 112(3), 142–151 (2018).
    • 14. Becker L, Kaase M, Pfeifer Y et al. Genome-based analysis of carbapenemase-producing Klebsiella pneumoniae isolates from German hospital patients, 2008-2014. Antimicrob. Resist. Infect. Control. 7(1), doi:10.1186/s13756-018-0352-y (2018).
    • 15. Harada S, Aoki K, Ishii Y et al. Emergence of IMP-producing hypervirulent Klebsiella pneumoniae carrying a pLVPK-like virulence plasmid. Int. J. Antimicrob. Agents 53(6), 873–875 (2019).
    • 16. Octavia S, Kalisvar M, Venkatachalam I et al. Klebsiella pneumoniae and Klebsiella quasipneumoniae define the population structure of blaKPC-2 Klebsiella: a 5 year retrospective genomic study in Singapore. J. Antimicrob. Chemother. 74(11), 3205–3210 (2019).
    • 17. Mohammad Ali Tabrizi A, Badmasti F, Shahcheraghi F, Azizi O. Outbreak of hypervirulent Klebsiella pneumoniae harbouring blaVIM-2 among mechanically-ventilated drug-poisoning patients with high mortality rate in Iran. J. Glob. Antimicrob. Resist. 15, 93–98 (2018).
    • 18. Mukherjee S, Naha S, Bhadury P et al. Emergence of OXA-232-producing hypervirulent Klebsiella pneumoniae ST23 causing neonatal sepsis. J. Antimicrob. Chemother. 75(7), 2004–2006 (2020).
    • 19. Imtiaz W, Dasti JI, Andrews SC. Draft genome sequence of a carbapenemase-producing (NDM-1) and multidrug-resistant, hypervirulent Klebsiella pneumoniae ST11 isolate from Pakistan, with a non-hypermucoviscous phenotype associated with rmpA2 mutation. J. Glob. Antimicrob. Resist. 25, 359–362 (2021).
    • 20. Shankar C, Vasudevan K, Jacob JJ et al. Mosaic antimicrobial resistance/virulence plasmid in hypervirulent ST2096 Klebsiella pneumoniae in India: the rise of a new superbug? doi: https://doi.org/10.1101/2020.12.11.422261 (2020) (Epub ahead of print).
    • 21. Shankar C, Jacob JJ, Vasudevan K et al. Emergence of multidrug resistant hypervirulent ST23 Klebsiella pneumoniae: multidrug resistant plasmid acquisition drives evolution. Front. Cell. Infect. Microbiol. 10(1), 35–44 (2020).
    • 22. Wyres KL, Nguyen TNT, Lam MMC et al. Genomic surveillance for hypervirulence and multi-drug resistance in invasive Klebsiella pneumoniae from South and Southeast Asia. Genome Med. 12(1), https://doi.org/10.1186/s13073-019-0706-y (2020).
    • 23. Hala S, Antony CP, Alshehri M et al. An emerging clone (ST2096) of Klebsiella pneumoniae clonal complex 14 with enhanced virulence causes an outbreak in Saudi Arabia. J. Infect. Public Health 13(2), 363–364 (2020).
    • 24. Rahmat Ullah S, Majid M, Andleeb S. Draft genome sequence of an extensively drug-resistant neonatal Klebsiella pneumoniae isolate harbouring multiple plasmids contributing to antibiotic resistance. J. Glob. Antimicrob. Resist. 23, 100–101 (2020).
    • 25. Shon AS, Bajwa RPS, Russo TA. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence 4(2), 107–118 (2013).
    • 26. Institute CALS. CLSI 2019.pdf (2019). https://clsi.org/
    • 27. Feng Y, Zou S, Chen H, Yu Y, Ruan Z. BacWGSTdb 2.0: a one-stop repository for bacterial whole-genome sequence typing and source tracking. Nucleic Acids Res. 49(D1), D644–D650 (2021).
    • 28. Cury J, Jové T, Touchon M, Néron B, Rocha EP. Identification and analysis of integrons and cassette arrays in bacterial genomes. Nucleic Acids Res. 44(10), 4539–4550 (2016).
    • 29. Tang M, Kong X, Hao J, Liu J. Epidemiological characteristics and formation mechanisms of multidrug-resistant hypervirulent Klebsiella pneumoniae. Front. Microbiol. 11, 581543 (2020).
    • 30. Lan P, Jiang Y, Zhou J, Yu Y. A global perspective on the convergence of hypervirulence and carbapenem resistance in Klebsiella pneumoniae. J. Glob. Antimicrob. Resist. 25, 26–34 (2021).
    • 31. Sabbagh P, Rajabnia M, Maali A, Ferdosi-Shahandashti E. Integron and its role in antimicrobial resistance: a literature review on some bacterial pathogens. Iran. J. Basic Med. Sci. 24(2), 136–142 (2021).
    • 32. Yang X, Dong N, Chan EWC, Zhang R, Chen S. Carbapenem resistance-encoding and virulence-encoding conjugative plasmids in Klebsiella pneumoniae. Trends Microbiol. 29(1), 65–83 (2021).
    • 33. Wyres KL, Nguyen TNT, Lam MMC et al. Genomic surveillance for hypervirulence and multi-drug resistance in invasive Klebsiella pneumoniae from South and Southeast Asia. Genome Med. 12(1), 1–16 (2020).
    • 34. Lam MMC, Wick RR, Wyres KL et al. Genetic diversity, mobilisation and spread of the yersiniabactin-encoding mobile element ICEKp in Klebsiella pneumoniae populations. Microb. Genomics. 4(9), e000196 (2018).
    • 35. Liu C, Guo J. Characteristics of ventilator-associated pneumonia due to hypervirulent Klebsiella pneumoniae genotype in genetic background for the elderly in two tertiary hospitals in China. Antimicrob. Resist. Infect. Control. 7(1), doi:10.1186/s13756-018-0371-8 (2018).
    • 36. Li J, Ren J, Wang W et al. Risk factors and clinical outcomes of hypervirulent Klebsiella pneumoniae induced bloodstream infections. Eur. J. Clin. Microbiol. Infect. Dis. 37(4), 679–689 (2018).
    • 37. de Campos TA, Gonçalves LF, Magalhães KG et al. A fatal bacteremia caused by hypermucousviscous KPC-2 producing extensively drug-resistant K64-ST11 Klebsiella pneumoniae in Brazil. Front. Med. 5, 265 (2018).
    • 38. Osei Sekyere J, Govinden U, Bester LA, Essack SY. Colistin and tigecycline resistance in carbapenemase-producing Gram-negative bacteria: emerging resistance mechanisms and detection methods. J. Appl. Microbiol. 121(3), 601–617 (2016).
    • 39. Hussein NH, Al-Kadmy IMS, Taha BM, Hussein JD. Mobilized colistin resistance (mcr) genes from 1 to 10: a comprehensive review. Mol. Biol. Rep. 48(3), 2897–2907 (2021).
    • 40. Binsker U, Käsbohrer A, Hammerl JA. Global colistin use: a review of the emergence of resistant Enterobacterales and the impact on their genetic basis. FEMS Microbiol. Rev. 46(1), 1–37 (2022).
    • 41. Mathur P, Veeraraghavan B, Devanga Ragupathi NK et al. Multiple mutations in lipid-A modification pathway & novel fosA variants in colistin-resistant Klebsiella pneumoniae. Futur. Sci. OA 4(7), FSO319 (2018).
    • 42. Pragasam AK, Shankar C, Veeraraghavan B et al. Molecular mechanisms of colistin resistance in Klebsiella pneumoniae causing bacteremia from India – a first report. Front. Microbiol. 7), 2135 (2017).
    • 43. Boszczowski I, Salomão MC, Moura ML et al. Multidrug-resistant Klebsiella pneumoniae: genetic diversity, mechanisms of resistance to polymyxins and clinical outcomes in a tertiary teaching hospital in Brazil. Rev. Inst. Med. Trop. Sao Paulo 61, 1–9 (2019).
    • 44. Silvester R, Madhavan A, Kokkat A et al. Global surveillance of antimicrobial resistance and hypervirulence in Klebsiella pneumoniae from LMICs: an in-silico approach. Sci. Total Environ. 802, 149859 (2022).
    • 45. Imtiaz W, Syed Z, Rafaque Z, Andrews SC, Dasti JI. Analysis of antibiotic resistance and virulence traits (genetic and phenotypic) in Klebsiella pneumoniae clinical isolates from Pakistan: identification of significant levels of carbapenem and colistin resistance. Infect. Drug Resist. 14, 227–236 (2021).