We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Quorum sensing: a new perspective to reveal the interaction between gut microbiota and host

    Lei Yang

    Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China

    ,
    Tian-jie Yuan

    Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China

    ,
    Yue Wan

    Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China

    ,
    Wen-wen Li

    Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China

    ,
    Chen Liu

    Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China

    ,
    Shu Jiang

    *Author for correspondence: Tel.: +86 258 581 1516;

    E-mail Address: jiangshu2020@126.com

    Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China

    &
    Jin-ao Duan

    Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China

    Published Online:https://doi.org/10.2217/fmb-2021-0217

    Quorum sensing (QS), a chemical communication process between bacteria, depends on the synthesis, secretion and detection of signal molecules. It can synchronize the gene expression of bacteria to promote cooperation within the population and improve competitiveness among populations. The preliminary exploration of bacterial QS has been completed under ideal and highly controllable conditions. There is an urgent need to investigate the QS of bacteria under natural conditions, especially the QS of intestinal flora, which is closely related to health. Excitingly, growing evidence has shown that QS also exists in the intestinal flora. The crosstalk of QS between gut microbiota and the host is systematically clarified in this review.

    Plain language summary

    A large number of bacteria live in the human intestinal tract and they are closely related to intestinal health. Bacteria also rely on a number of chemicals to communicate in the intestine. These chemicals play an essential role in the intestinal mucosal barrier as well as the inflammatory response. Studies have found that this method of communication affects the metabolic function of the bacteria in the gut. The cells in our intestine can also detect this communication between bacteria and communicate with the intestinal flora by producing similar substances.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Miller MB, Bassler BL. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55, 165–199 (2001).
    • 2. Haque S, Yadav DK, Bisht SC et al. Quorum sensing pathways in Gram-positive and -negative bacteria: potential of their interruption in abating drug resistance. J. Chemother. 31(4), 161–187 (2019). • This article introduced the quorum sensing system of Gram-positive and Gram-negative bacteria in detail and focused on the potential of the destruction of the quorum sensing system to control the virulence of pathogens.
    • 3. Ford CA, Hurford IM, Cassat JE. Antivirulence strategies for the treatment of Staphylococcus aureus infections: a mini review. Front. Microbiol. 11, 632706 (2020).
    • 4. Van Dyck K, Pinto RM, Pully D, Van Dijck P. Microbial interkingdom biofilms and the quest for novel therapeutic strategies. Microorganisms 9(2), 412 (2021).
    • 5. Carradori S, Di Giacomo N, Lobefalo M, Luisi G, Campestre C, Sisto F. Biofilm and quorum sensing inhibitors: the road so far. Expert. Opin. Ther. Pat. 30(12), 917–930 (2020).
    • 6. Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164(3), 337–340 (2016).
    • 7. Guarner F, Malagelada J. Gut flora in health and disease. Lancet 361(9356), 512–519 (2003).
    • 8. Mark Welch JL, Hasegawa Y, McNulty NP, Gordon JI, Borisy GG. Spatial organization of a model 15-member human gut microbiota established in gnotobiotic mice. Proc. Natl Acad. Sci. USA 114(43), e9105–e9114 (2017).
    • 9. Thompson JA, Oliveira RA, Djukovic A, Ubeda C, Xavier KB. Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota. Cell Rep. 10(11), 1861–1871 (2015).
    • 10. Tao S, Luo Y, He B et al. Paraoxonase 2 modulates a proapoptotic function in LS174T cells in response to quorum sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone. Sci. Rep. 6, 28778 (2016).
    • 11. Wu L, Luo Y. Bacterial quorum-sensing systems and their role in intestinal bacteria–host crosstalk. Front. Microbiol. 12, 611413 (2021).
    • 12. Srinath BS, Shastry RP, Kumar SB. Role of gut–lung microbiome crosstalk in COVID-19. Res. Biomed. Eng. doi:10.1007/s42600-020-00113-4 (2020) (Epub ahead of print).
    • 13. Case RJ, Labbate M, Kjelleberg S. AHL-driven quorum-sensing circuits: their frequency and function among the Proteobacteria. ISME J. 2(4), 345–349 (2008).
    • 14. Bassler BL, Wright M, Showalter RE, Silverman MR. Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol. Microbiol. 9(4), 773–786 (1993).
    • 15. Laue BE, Jiang Y, Chhabra SR et al. The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl) homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. Microbiology 146(pt 10), 2469–2480 (2000).
    • 16. Neiditch MB, Capodagli GC, Prehna G, Federle MJ. Genetic and structural analyses of RRNPP intercellular peptide signaling of Gram-positive bacteria. Annu. Rev. Genet. 51, 311–333 (2017).
    • 17. Rocha-Estrada J, Aceves-Diez AE, Guarneros G, de la Torre M. The RNPP family of quorum-sensing proteins in Gram-positive bacteria. Appl. Microbiol. Biotechnol. 87(3), 913–923 (2010).
    • 18. Surette MG, Miller MB, Bassler BL. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc. Natl Acad. Sci. USA 96(4), 1639–1644 (1999).
    • 19. Li J, Wang L, Hashimoto Y et al. A stochastic model of Escherichia coli AI-2 quorum signal circuit reveals alternative synthesis pathways. Mol. Syst. Biol. 2, 67 (2006).
    • 20. Hiller CC, Lucca V, Carvalho D et al. Influence of catecholamines on biofilm formation by Salmonella enteritidis. Microb. Pathog. 130, 54–58 (2019).
    • 21. Kim CS, Gatsios A, Cuesta S et al. Characterization of autoinducer-3 structure and biosynthesis in E. coli. ACS Cent. Sci. 6(2), 197–206 (2020).
    • 22. Ng W, Bassler BL. Bacterial quorum-sensing network architectures. Annu. Rev. Genet. 43, 197–222 (2009).
    • 23. Lee J, Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6(1), 26–41 (2015).
    • 24. Jung SA, Hawver LA, Ng W. Parallel quorum sensing signaling pathways in Vibrio cholerae. Curr. Genet. 62(2), 255–260 (2016).
    • 25. Watve S, Barrasso K, Jung SA et al. Parallel quorum-sensing system in Vibrio cholerae prevents signal interference inside the host. PLoS Pathog. 16(2), e1008313 (2020). •• In this work, the researchers found that the four parallel quorum sensing systems in V. cholerae effectively prevented the host signal that could interfere with quorum sensing.
    • 26. Hossain S, Heckler I, Boon EM. Discovery of a nitric oxide responsive quorum sensing circuit in Vibrio cholerae. ACS Chem. Biol. 13(8), 1964–1969 (2018).
    • 27. Herzog R, Peschek N, Fröhlich KS, Schumacher K, Papenfort K. Three autoinducer molecules act in concert to control virulence gene expression in Vibrio cholerae. Nucleic Acids Res. 47(6), 3171–3183 (2019).
    • 28. Zohar B, Kolodkin-Gal I. Quorum sensing in Escherichia coli: interkingdom, inter- and intraspecies dialogues, and a suicide-inducing peptide. In: Quorum Sensing vs Quorum Quenching: A Battle with No End in Sight. Kalia V (Ed.). Springer, India, 85 –99 (2015).
    • 29. Kim J, Park W. Indole: a signaling molecule or a mere metabolic byproduct that alters bacterial physiology at a high concentration? J. Microbiol. 53(7), 421–428 (2015).
    • 30. Jenul C, Horswill AR. Regulation of Staphylococcus aureus virulence. Microbiol. Spectr. 7(2), GPP3–0031–2018 (2019).
    • 31. Galante J, Ho AC, Tingey S, Charalambous BM. Quorum sensing and biofilms in the pathogen, Streptococcus pneumoniae. Curr. Pharm. Design 21(1), 25–30 (2015).
    • 32. Ali L, Goraya MU, Arafat Y, Ajmal M, Chen J, Yu D. Molecular mechanism of quorum-sensing in Enterococcus faecalis: its role in virulence and therapeutic approaches. Int. J. Mol. Sci. 18(5), 960 (2017).
    • 33. Kalamara M, Spacapan M, Mandic-Mulec I, Stanley-Wall NR. Social behaviours by Bacillus subtilis: quorum sensing, kin discrimination and beyond. Mol. Microbiol. 110(6), 863–878 (2018).
    • 34. Hawver LA, Jung SA, Ng W. Specificity and complexity in bacterial quorum-sensing systems. FEMS Microbiol. Rev. 40(5), 738–752 (2016).
    • 35. Montagut EJ, Marco MP. Biological and clinical significance of quorum sensing alkylquinolones: current analytical and bioanalytical methods for their quantification. Anal. Bioanal. Chem. 413(18), 4599–4618 (2021).
    • 36. Lee J, Wu J, Deng Y et al. A cell–cell communication signal integrates quorum sensing and stress response. Nat. Chem. Biol. 9(5), 339–343 (2013).
    • 37. McKnight SL, Iglewski BH, Pesci EC. The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 182(10), 2702–2708 (2000).
    • 38. Lee J, Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6(1), 26–41 (2015).
    • 39. Wu S, Liu J, Liu C, Yang A, Qiao J. Quorum sensing for population-level control of bacteria and potential therapeutic applications. Cell. Mol. Life Sci. 77(7), 1319–1343 (2020).
    • 40. Kim S, Kerns SJ, Ziesack M et al. Quorum sensing can be repurposed to promote information transfer between bacteria in the mammalian gut. ACS Synth. Biol. 7(9), 2270–2281 (2018).
    • 41. Gorelik O, Levy N, Shaulov L, Yegodayev K, Meijler MM, Sal-Man N. Vibrio cholerae autoinducer-1 enhances the virulence of enteropathogenic Escherichia coli. Sci. Rep. 9(1), 4122 (2019).
    • 42. Sabag-Daigle A, Ahmer BMM. ExpI and PhzI are descendants of the long lost cognate signal synthase for SdiA. PLoS One 7(10), e47720 (2012).
    • 43. Tang K, Su Y, Brackman G et al. MomL, a novel marine-derived N-acyl homoserine lactonase from Muricauda olearia. Appl. Environ. Microb. 81(2), 774–782 (2015).
    • 44. LaSarre B, Federle MJ. Exploiting quorum sensing to confuse bacterial pathogens. Microbiol. Mol. Biol. Rev. 77(1), 73–111 (2013).
    • 45. Hema M, Princy SA, Sridharan V, Vinoth P, Balamurugan P, Sumana MN. Synergistic activity of quorum sensing inhibitor, pyrizine-2-carboxylic acid and antibiotics against multi-drug resistant V. cholerae. RSC Adv. 6(51), 45938–45946 (2016).
    • 46. Augustine N, Kumar P, Thomas S. Inhibition of Vibrio cholerae biofilm by AiiA enzyme produced from Bacillus spp. Arch. Microbiol. 192(12), 1019–1022 (2010).
    • 47. Luo J, Dong B, Wang K et al. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PLoS ONE 12(4), e176883 (2017).
    • 48. Sun T, Li X, Hong J et al. Inhibitory effect of two traditional Chinese medicine monomers, berberine and matrine, on the quorum sensing system of antimicrobial-resistant Escherichia coli. Front. Microbiol. 10, 2584 (2019).
    • 49. Šimunović K, Sahin O, Kovač J et al. (-)-α-Pinene reduces quorum sensing and Campylobacter jejuni colonization in broiler chickens. PLoS ONE 15(4), e230423 (2020).
    • 50. Dinh CV, Prather KLJ. Development of an autonomous and bifunctional quorum-sensing circuit for metabolic flux control in engineered Escherichia coli. Proc. Natl Acad. Sci. USA 116(51), 25562–25568 (2019). • Quorum sensing has been applied to the field of synthetic biology. Researchers modified the quorum sensing system to achieve dynamic regulation of naringenin and salicylic acid biosynthesis in engineered Escherichia coli.
    • 51. Yong Y, Yu Y, Li C, Zhong J, Song H. Bioelectricity enhancement via overexpression of quorum sensing system in Pseudomonas aeruginosa-inoculated microbial fuel cells. Biosens. Bioelectron. 30(1), 87–92 (2011).
    • 52. Yong Y, Zhong J. N-acylated homoserine lactone production and involvement in the biodegradation of aromatics by an environmental isolate of Pseudomonas aeruginosa. Process Biochem. 45(12), 1944–1948 (2010).
    • 53. Verbeke F, De Craemer S, Debunne N et al. Peptides as quorum sensing molecules: measurement techniques and obtained levels in vitro and in vivo. Front. Neurosci. 11, 183 (2017).
    • 54. Xue J, Chi L, Tu P et al. Detection of gut microbiota and pathogen produced N-acyl homoserine in host circulation and tissues. NPJ Biofilms Microbiomes. 7(1), 53 (2021).
    • 55. Debunne N, Verbeke F, Janssens Y, Wynendaele E, De Spiegeleer B. Chromatography of quorum sensing peptides: an important functional class of the bacterial peptidome. Chromatographia 81(1), 25–40 (2018).
    • 56. Verbeke F, De Craemer S, Debunne N et al. Peptides as quorum sensing molecules: measurement techniques and obtained levels in vitro and in vivo. Front. Neurosci. 11, 183 (2017).
    • 57. Jing Y, Zuo J, Phouthapane V, Chen Z, Han X. An optimized method for detecting AI-2 signal molecule by a bioassay with Vibrio harveyi BB170. Microbiology 90(3), 383–391 (2021).
    • 58. Kumari A, Pasini P, Daunert S. Detection of bacterial quorum sensing N-acyl homoserine lactones in clinical samples. Anal. Bioanal. Chem. 391(5), 1619–1627 (2008).
    • 59. O'Connor G, Knecht LD, Salgado N, Strobel S, Pasini P, Daunert S. Whole-cell biosensors as tools for the detection of quorum-sensing molecules: uses in diagnostics and the investigation of the quorum-sensing mechanism. Adv. Biochem. Eng. Biotechnol. doi:10.1007/10_2015_337 (2015) (Epub ahead of print).
    • 60. Raut N, Pasini P, Daunert S. Deciphering bacterial universal language by detecting the quorum sensing signal, autoinducer-2, with a whole-cell sensing system. Anal. Chem. 85(20), 9604–9609 (2013).
    • 61. Rumbaugh KP, Trivedi U, Watters C, Burton-Chellew MN, Diggle SP, West SA. Kin selection, quorum sensing and virulence in pathogenic bacteria. Pro. Biol. Sci. 279(1742), 3584–3588 (2012).
    • 62. Adiliaghdam F, Almpani M, Gharedaghi MH, Najibi M, Hodin RA, Rahme LG. Targeting bacterial quorum sensing shows promise in improving intestinal barrier function following burn-site infection. Mol. Med. Rep. 19(5), 4057–4066 (2019).
    • 63. Hawver LA, Giulietti JM, Baleja JD, Ng W. Quorum sensing coordinates cooperative expression of pyruvate metabolism genes to maintain a sustainable environment for population stability. mBio 7(6), e01863–16 (2016).
    • 64. Wee P, Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers 9(5), 52 (2017).
    • 65. Wynendaele E, Verbeke F, D'Hondt M et al. Crosstalk between the microbiome and cancer cells by quorum sensing peptides. Peptides 64, 40–48 (2015).
    • 66. Debunne N, Wynendaele E, Janssens Y et al. The quorum sensing peptide EntF* promotes colorectal cancer metastasis in mice: a new factor in the microbiome-host interaction. bioRxiv doi:https://doi.org/10.1101/2020.09.17.301044 (2020) (Epub ahead of print).
    • 67. Dolnick R, Wu Q, Angelino NJ et al. Enhancement of 5-fluorouracil sensitivity by an rTS signaling mimic in H630 colon cancer cells. Cancer Res. 65(13), 5917–5924 (2005).
    • 68. Kaneda S, Nalbantoglu J, Takeishi K et al. Structural and functional analysis of the human thymidylate synthase gene. J. Biol. Chem. 265(33), 20277–20284 (1990).
    • 69. Tao S, Niu L, Cai L et al. N-(3-oxododecanoyl)-L-homoserine lactone modulates mitochondrial function and suppresses proliferation in intestinal goblet cells. Life Sci. 201, 81–88 (2018).
    • 70. Bu X, Li N, Tian X, Huang P. Caco-2 and LS174T cell lines provide different models for studying mucin expression in colon cancer. Tissue Cell 43(3), 201–206 (2011).
    • 71. Janssens Y, Wynendaele E, Verbeke F et al. Screening of quorum sensing peptides for biological effects in neuronal cells. Peptides 101, 150–156 (2018).
    • 72. Wynendaele E, Verbeke F, Stalmans S et al. Quorum sensing peptides selectively penetrate the blood–brain barrier. PLoS ONE 10(11), e142071 (2015).
    • 73. Janssens Y, Debunne N, De Spiegeleer A et al. PapRIV, a BV-2 microglial cell activating quorum sensing peptide. Sci. Rep. 11(1), 10723 (2021).
    • 74. Sturbelle RT, de Avila LFDC, Roos TB et al. The role of quorum sensing in Escherichia coli (ETEC) virulence factors. Vet. Microbiol. 180(3–4), 245–252 (2015).
    • 75. Choi J, Shin D, Ryu S. Implication of quorum sensing in Salmonella enterica serovar typhimurium virulence: the luxS gene is necessary for expression of genes in pathogenicity island 1. Infect. Immun. 75(10), 4885–4890 (2007).
    • 76. Smith RS, Iglewski BH. P. aeruginosa quorum-sensing systems and virulence. Curr. Opin. Microbiol. 6(1), 56–60 (2003).
    • 77. Zhu J, Miller MB, Vance RE, Dziejman M, Bassler BL, Mekalanos JJ. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc. Natl Acad. Sci. USA 99(5), 3129–3134 (2002).
    • 78. Zhu J, Mekalanos JJ. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev. Cell 5(4), 647–656 (2003).
    • 79. Vidal JE, Shak JR, Canizalez-Roman A. The CpAL quorum sensing system regulates production of hemolysins CPA and PFO to build Clostridium perfringens biofilms. Infect. Immun. 83(6), 2430–2442 (2015).
    • 80. Piewngam P, Zheng Y, Nguyen TH et al. Pathogen elimination by probiotic Bacillus via signalling interference. Nature 562(7728), 532–537 (2018).
    • 81. Jemielita M, Wingreen NS, Bassler BL. Quorum sensing controls Vibrio cholerae multicellular aggregate formation. Elife 7, e42057 (2018).
    • 82. Watve S, Barrasso K, Jung SA et al. Parallel quorum-sensing system in Vibrio cholerae prevents signal interference inside the host. PLoS Pathog. 16(2), e1008313 (2020).
    • 83. Ventura M, Turroni F, Motherway MO, MacSharry J, van Sinderen D. Host–microbe interactions that facilitate gut colonization by commensal bifidobacteria. Trends Microbiol. 20(10), 467–476 (2012).
    • 84. Teplitski M, Mathesius U, Rumbaugh KP. Perception and degradation of N-acyl homoserine lactone quorum sensing signals by mammalian and plant cells. Chem. Rev. 111(1), 100–116 (2011).
    • 85. Pritchard DI. Immune modulation by Pseudomonas aeruginosa quorum-sensing signal molecules. Int. J. Med. Microbiol. 296(2), 111–116 (2006).
    • 86. Mayer ML, Sheridan JA, Blohmke CJ, Turvey SE, Hancock RE. The Pseudomonas aeruginosa autoinducer 3O-C12 homoserine lactone provokes hyperinflammatory responses from cystic fibrosis airway epithelial cells. PLoS ONE 6(1), e16246 (2011).
    • 87. Thomas GL, Böhner CM, Williams HE et al. Immunomodulatory effects of Pseudomonas aeruginosa quorum sensing small molecule probes on mammalian macrophages. Mol. Biosyst. 2(2), 132–137 (2006).
    • 88. Smith RS, Fedyk ER, Springer T, Mukaida N, Iglewski BH, Phipps RP. IL-8 production in human lung fibroblasts and epithelial cells activated by the Pseudomonas autoinducer N-3-oxododecanoyl homoserine lactone is transcriptionally regulated by NF-κB and activator protein-2. J. Immunol. 167(1), 366–374 (2001).
    • 89. Skindersoe ME, Zeuthen LH, Brix S et al. Pseudomonas aeruginosa quorum-sensing signal molecules interfere with dendritic cell-induced T-cell proliferation. FEMS Immunol. Med. Microbiol. 55(3), 335–345 (2009).
    • 90. Kravchenko VV, Kaufmann GF, Mathison JC et al. Modulation of gene expression via disruption of NF-κB signaling by a bacterial small molecule. Science 321(5886), 259–263 (2008).
    • 91. Luiz de Freitas L, Pereira da Silva F, Fernandes KM et al. The virulence of Salmonella enteritidis in Galleria mellonella is improved by N-dodecanoyl-homoserine lactone. Microb. Pathog. 152, 104730 (2021).
    • 92. Guo J, Yoshida K, Ikegame M, Okamura H. Quorum sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone: an all-rounder in mammalian cell modification. J. Oral Biosci. 62(1), 16–29 (2020).
    • 93. Skindersoe ME, Zeuthen LH, Brix S et al. Pseudomonas aeruginosa quorum-sensing signal molecules interfere with dendritic cell-induced T-cell proliferation. FEMS Immunol. Med. Microbiol. 55(3), 335–345 (2009).
    • 94. Li Y, Zhou H, Zhang Y et al. N-3-(oxododecanoyl)-L-homoserine lactone promotes the induction of regulatory T-cells by preventing human dendritic cell maturation. Exp. Biol. Med. 240(7), 896–903 (2015).
    • 95. Song D, Meng J, Cheng J et al. Pseudomonas aeruginosa quorum-sensing metabolite induces host immune cell death through cell surface lipid domain dissolution. Nat. Microbiol. 4(1), 97–111 (2019). •• This article showed that 3-oxo-C12-HSL could solubilize the lipid domain of immune cells and cause apoptosis of host cells.
    • 96. Zargar A, Quan DN, Carter KK et al. Bacterial secretions of nonpathogenic Escherichia coli elicit inflammatory pathways: a closer investigation of interkingdom signaling. mBio 6(2), e25 (2015).
    • 97. Jacobi CA, Grundler S, Hsieh C et al. Quorum sensing in the probiotic bacterium Escherichia coli Nissle 1917 (Mutaflor)–evidence that furanosyl borate diester (AI-2) is influencing the cytokine expression in the DSS colitis mouse model. Gut Pathog. 4(1), 8 (2012).
    • 98. Li Q, Peng W, Wu J et al. Autoinducer-2 of gut microbiota, a potential novel marker for human colorectal cancer, is associated with the activation of TNFSF9 signaling in macrophages. Oncoimmunology 8(10), e1626192 (2019). • In this study, the author proved for the first time the relationship between AI-2 of the intestinal flora and colorectal cancer. With the onset of colorectal cancer, the level of AI-2 increased and the expression of TNFSF9 in macrophages increased.
    • 99. Wu J, Wang Y, Jiang Z. Immune induction identified by TMT proteomics analysis in Fusobacterium nucleatum autoinducer-2 treated macrophages. Expert Rev. Proteomic 17(2), 175–185 (2020).
    • 100. Fang Y, Wu C, Wang Q, Tang J. Farnesol contributes to intestinal epithelial barrier function by enhancing tight junctions via the JAK/STAT3 signaling pathway in differentiated Caco-2 cells. J. Bioenerg. Biomembr. 51(6), 403–412 (2019).
    • 101. Eum SY, Jaraki D, Bertrand L, András IE, Toborek M. Disruption of epithelial barrier by quorum-sensing N-3-(oxododecanoyl)-homoserine lactone is mediated by matrix metalloproteinases. Am. J. Physiol. Gastrointest. Liver Physiol. 306(11), G992–G1001 (2014).
    • 102. Nava P, Vidal JE. The CpAL system regulates changes of the trans-epithelial resistance of human enterocytes during Clostridium perfringens type C infection. Anaerobe 39, 143–149 (2016).
    • 103. Khan R, Sultana S. Farnesol attenuates 1,2-dimethylhydrazine induced oxidative stress, inflammation and apoptotic responses in the colon of Wistar rats. Chem. Biol. Interact. 192(3), 193–200 (2011).
    • 104. Hubbard TD, Murray IA, Perdew GH. Indole and tryptophan metabolism: endogenous and dietary routes to Ah receptor activation. Drug Metab. Dispos. 43(10), 1522–1535 (2015).
    • 105. Shimada Y, Kinoshita M, Harada K et al. Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon. PLoS ONE 8(11), e80604 (2013).
    • 106. Venkatesh M, Mukherjee S, Wang H et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity 41(2), 296–310 (2014).
    • 107. Tao S, Luo Y, He B et al. Paraoxonase 2 modulates a proapoptotic function in LS174T cells in response to quorum sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone. Sci. Rep. 6(1), 1–12 (2016).
    • 108. Taguchi R, Tanaka S, Joe G et al. Mucin 3 is involved in intestinal epithelial cell apoptosis via N-(3-oxododecanoyl)-L-homoserine lactone-induced suppression of Akt phosphorylation. Am. J. Physiol. Cell Physiol. 307(2), C162–C168 (2014).
    • 109. Ye L, Li G, Li H et al. Pseudomonas aeruginosa pvdQ gene prevents Caco-2 cells from obstruction of quorum-sensing signal. Curr. Microbiol. 62(1), 32–37 (2011).
    • 110. Cheng W, Wang Z, Xiong Y et al. N-(3-oxododecanoyl)-homoserine lactone disrupts intestinal barrier and induces systemic inflammation through perturbing gut microbiome in mice. Sci. Total Environ. 778, 146347 (2021).
    • 111. Fujiya M, Musch MW, Nakagawa Y et al. The Bacillus subtilis quorum-sensing molecule CSF contributes to intestinal homeostasis via OCTN2, a host cell membrane transporter. Cell Host Microbe 1(4), 299–308 (2007).
    • 112. Okamoto K, Fujiya M, Nata T et al. Competence and sporulation factor derived from Bacillus subtilis improves epithelial cell injury in intestinal inflammation via immunomodulation and cytoprotection. Int. J. Colorectal Dis. 27(8), 1039–1046 (2012).
    • 113. Ropeleski MJ, Riehm J, Baer KA, Musch MW, Chang EB. Anti-apoptotic effects of L-glutamine-mediated transcriptional modulation of the heat shock protein 72 during heat shock. Gastroenterology 129(1), 170–184 (2005).
    • 114. Ropeleski MJ, Tang J, Walsh-Reitz MM, Musch MW, Chang EB. Interleukin-11-induced heat shock protein 25 confers intestinal epithelial-specific cytoprotection from oxidant stress. Gastroenterology 124(5), 1358–1368 (2003).
    • 115. Musch MW, Kaplan B, Chang EB. Role of increased basal expression of heat shock protein 72 in colonic epithelial c2BBE adenocarcinoma cells. Cell Growth Differ. 12(8), 419–426 (2001).
    • 116. Krndija D, El Marjou F, Guirao B et al. Active cell migration is critical for steady-state epithelial turnover in the gut. Science 365(6454), 705–710 (2019).
    • 117. Karlsson T, Turkina MV, Yakymenko O, Magnusson K, Vikström E. The Pseudomonas aeruginosa N-acylhomoserine lactone quorum sensing molecules target IQGAP1 and modulate epithelial cell migration. PLoS Pathog. 8(10), e1002953 (2012).
    • 118. Shimada Y, Kinoshita M, Harada K et al. Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon. PLoS ONE 8(11), e80604 (2013).
    • 119. Bansal T, Alaniz RC, Wood TK, Jayaraman A. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc. Natl Acad. Sci. USA 107(1), 228–233 (2010).
    • 120. Lee J, Wood TK, Lee J. Roles of indole as an interspecies and interkingdom signaling molecule. Trends Microbiol. 23(11), 707–718 (2015).
    • 121. Yadav M, Verma MK, Chauhan NS. A review of metabolic potential of human gut microbiome in human nutrition. Arch. Microbiol. 200(2), 203–217 (2018).
    • 122. Ha J, Hauk P, Cho K et al. Evidence of link between quorum sensing and sugar metabolism in Escherichia coli revealed via cocrystal structures of LsrK and HPr. Sci. Adv. 4(6), r7063 (2018).
    • 123. Kim E, Lee K, Hyeon DY et al. Bacterial nucleoside catabolism controls quorum sensing and commensal-to-pathogen transition in the Drosophila gut. Cell Host Microbe 27(3), 345–357 (2020). •• The study found that bacterial nucleoside metabolism could induce quorum sensing to regulate the expression of pathogenic bacterial virulence genes.
    • 124. Li J, Liu H, Wu P et al. Quorum sensing signals enhanced caproate production by changing microbial community in chain elongation enrichments. J. Environ. Chem. Eng. 9(6), 106623 (2021).
    • 125. Kamareddine L, Wong ACN, Vanhove AS et al. Activation of Vibrio cholerae quorum sensing promotes survival of an arthropod host. Nat. Microbiol. 3(2), 243–252 (2018).
    • 126. Josephson H, Ntzouni M, Skoglund C, Linder S, Turkina MV, Vikström E. Pseudomonas aeruginosa N-3-oxo-dodecanoyl-homoserine lactone impacts mitochondrial networks morphology, energetics, and proteome in host cells. Front. Microbiol. 11, 1069 (2020).
    • 127. Pacheco AR, Curtis MM, Ritchie JM et al. Fucose sensing regulates bacterial intestinal colonization. Nature 492(7427), 113–117 (2012).
    • 128. Xu J, Bjursell MK, Himrod J et al. A genomic view of the human-bacteroides thetaiotaomicron symbiosis. Science 299(5615), 2074–2076 (2003).
    • 129. Keeney KM, Finlay BB. Microbiology: EHEC downregulates virulence in response to intestinal fucose. Curr. Biol. 23(3), R108–R110 (2013).
    • 130. Shao C, Shang W, Yang Z et al. LuxS-dependent AI-2 regulates versatile functions in Enterococcus faecalis V583. J. Proteome Res. 11(9), 4465–4475 (2012).
    • 131. Yao CK, Muir JG, Gibson PR. Review article: insights into colonic protein fermentation, its modulation and potential health implications. Aliment. Pharm. Ther. 43(2), 181–196 (2016).
    • 132. Windey K, De Preter V, Verbeke K. Relevance of protein fermentation to gut health. Mol. Nutr. Food Res. 56(1), 184–196 (2012).
    • 133. Yang Q, Pande GSJ, Wang Z et al. Indole signalling and (micro)algal auxins decrease the virulence of Vibrio campbellii, a major pathogen of aquatic organisms. Environ. Microbiol. 19(5), 1987–2004 (2017).
    • 134. Kim IH, Kim S, Park N et al. Cyclo-(l-Phe-l-Pro), a quorum-sensing signal of Vibrio vulnificus, induces expression of hydroperoxidase through a ToxR-LeuO-HU-RpoS signaling pathway to confer resistance against oxidative stress. Infect. Immun. 86(9), e00932–17 (2018).
    • 135. Yan C, Li X, Zhang G et al. Quorum sensing-mediated and growth phase-dependent regulation of metabolic pathways in Hafnia alvei H4. Front. Microbiol. 12, 567942 (2021).
    • 136. Pietschke C, Treitz C, Forêt S et al. Host modification of a bacterial quorum-sensing signal induces a phenotypic switch in bacterial symbionts. Proc. Natl Acad. Sci. USA 114(40), e8488–e8497 (2017).
    • 137. Tao S, Xiong Y, Wang Z et al. N-acyl-homoserine lactones may affect the gut health of low-birth-weight piglets by altering intestinal epithelial cell barrier function and amino acid metabolism. J. Nutr. 151(7), 1736–1746 (2021).
    • 138. Chun CK, Ozer EA, Welsh MJ, Zabner J, Greenberg EP. Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc. Natl Acad. Sci. USA 101(10), 3587–3590 (2004).
    • 139. Valastyan JS, Kraml CM, Pelczer I, Ferrante T, Bassler BL. Saccharomyces cerevisiae requires CFF1 to produce 4-hydroxy-5-methylfuran-3(2H)-one, a mimic of the bacterial quorum-sensing autoinducer AI-2. mBio 12(2), e03303–20 (2021).
    • 140. Yeo S, Park H, Ji Y et al. Influence of gastrointestinal stress on autoinducer-2 activity of two Lactobacillus species. FEMS Microbiol. Ecol. 91(7), fiv065 (2015).
    • 141. Funke M, Büchler R, Mahobia V, Schneeberg A, Ramm M, Boland W. Rapid hydrolysis of quorum-sensing molecules in the gut of lepidopteran larvae. ChemBioChem 9(12), 1953–1959 (2008).
    • 142. Draganov DI, Teiber JF, Speelman A, Osawa Y, Sunahara R, La Du BN. Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. J. Lipid Res. 46(6), 1239–1247 (2005).
    • 143. Shih DM, Xia Y, Yu JM, Lusis AJ. Temporal and tissue-specific patterns of Pon3 expression in mouse: in situ hybridization analysis. Adv. Exp. Med. Biol. 660, 73–87 (2010).
    • 144. Teiber JF, Horke S, Haines DC et al. Dominant role of paraoxonases in inactivation of the Pseudomonas aeruginosa quorum-sensing signal N-(3-oxododecanoyl)-L-homoserine lactone. Infect. Immun. 76(6), 2512–2519 (2008).
    • 145. Horke S, Xiao J, Schütz E et al. Novel paraoxonase 2-dependent mechanism mediating the biological effects of the Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxo-dodecanoyl)-L-homoserine lactone. Infect. Immun. 83(9), 3369–3380 (2015).
    • 146. Ismail AS, Valastyan JS, Bassler BL. A host-produced autoinducer-2 mimic activates bacterial quorum sensing. Cell Host Microbe 19(4), 470–480 (2016).
    • 147. Sperandio V, Torres AG, Jarvis B, Nataro JP, Kaper JB. Bacteria–host communication: the language of hormones. Proc. Natl Acad. Sci. USA 100(15), 8951–8956 (2003).
    • 148. Lyte M, Vulchanova L, Brown DR. Stress at the intestinal surface: catecholamines and mucosa–bacteria interactions. Cell Tissue Res. 343(1), 23–32 (2011).
    • 149. Cogan TA, Thomas AO, Rees LEN et al. Norepinephrine increases the pathogenic potential of Campylobacter jejuni. Gut 56(8), 1060–1065 (2007).
    • 150. Nakano M, Takahashi A, Sakai Y, Nakaya Y. Modulation of pathogenicity with norepinephrine related to the type III secretion system of Vibrio parahaemolyticus. J. Infect. Dis. 195(9), 1353–1360 (2007).
    • 151. Hegde M, Wood TK, Jayaraman A. The neuroendocrine hormone norepinephrine increases Pseudomonas aeruginosa PA14 virulence through the las quorum-sensing pathway. Appl. Microbiol. Biot. 84(4), 763–776 (2009).
    • 152. Clarke MB, Hughes DT, Zhu C, Boedeker EC, Sperandio V. The QseC sensor kinase: a bacterial adrenergic receptor. Proc. Natl Acad. Sci. USA 103(27), 10420–10425 (2006).
    • 153. Cambronel M, Nilly F, Mesguida O et al. Influence of catecholamines (epinephrine/norepinephrine) on biofilm formation and adhesion in pathogenic and probiotic strains of Enterococcus faecalis. Front. Microbiol. 11, 1501 (2020).
    • 154. Sule N, Pasupuleti S, Kohli N et al. The norepinephrine metabolite 3,4-dihydroxymandelic acid is produced by the commensal microbiota and promotes chemotaxis and virulence gene expression in enterohemorrhagic Escherichia coli. Infect. Immun. 85(10), e00431–17 (2017).
    • 155. Rooks MG, Veiga P, Reeves AZ et al. QseC inhibition as an antivirulence approach for colitis-associated bacteria. Proc. Natl Acad. Sci. USA 114(1), 142–147 (2017).
    • 156. Knecht LD, O'Connor G, Mittal R et al. Serotonin activates bacterial quorum sensing and enhances the virulence of Pseudomonas aeruginosa in the host. Ebiomedicine 9, 161–169 (2016).
    • 157. Kumar A, Russell RM, Pifer R et al. The serotonin neurotransmitter modulates virulence of enteric pathogens. Cell Host Microbe 28(1), 41–53 (2020). •• In this article, the study found that host serotonin could also regulate the quorum sensing-related gene CpxA to inhibit the expression of virulence genes.
    • 158. Lesouhaitier O, Veron W, Chapalain A et al. Gram-negative bacterial sensors for eukaryotic signal molecules. Sensors 9(9), 6967–6990 (2009).
    • 159. Zaborina O, Lepine F, Xiao G et al. Dynorphin activates quorum sensing quinolone signaling in Pseudomonas aeruginosa. PLoS Pathog. 3(3), e35 (2007).
    • 160. Stockinger B, Di Meglio P, Gialitakis M, Duarte JH. The aryl hydrocarbon receptor: multitasking in the immune system. Annu. Rev. Immunol. 32, 403–432 (2014).
    • 161. Murray IA, Nichols RG, Zhang L, Patterson AD, Perdew GH. Expression of the aryl hydrocarbon receptor contributes to the establishment of intestinal microbial community structure in mice. Sci. Rep. 6, 33969 (2016).
    • 162. Moura-Alves P, Puyskens A, Stinn A et al. Host monitoring of quorum sensing during Pseudomonas aeruginosa infection. Science 366(6472), eaaw1629 (2019).
    • 163. Pundir P, Liu R, Vasavda C et al. A connective tissue mast-cell-specific receptor detects bacterial quorum-sensing molecules and mediates antibacterial immunity. Cell Host Microbe 26(1), 114–122 (2019). •• This article reported that host mast cells could detect quorum sensing molecules, thereby stimulating the release of antibacterial mediators from the body.
    • 164. Howitt MR, Lavoie S, Michaud M et al. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 351(6279), 1329–1333 (2016).
    • 165. Lee RJ, Xiong G, Kofonow JM et al. T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. J. Clin. Invest. 122(11), 4145–4159 (2012).
    • 166. Jaggupilli A, Singh N, Jesus VCD, Duan K, Chelikani P. Characterization of the binding sites for bacterial acyl homoserine lactones (AHLs) on human bitter taste receptors (T2Rs). ACS Infect. Dis. 4(7), 1146–1156 (2018).