We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Leishmanial apolipoprotein A-I expression: a possible strategy used by the parasite to evade the host’s immune response

    Kurosh Kalantar

    Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

    ,
    Raúl Manzano-Román

    Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, 37007, Spain

    ,
    Esmaeel Ghani

    Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran

    ,
    Reza Mansouri

    Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences & Health Services, Yazd, Iran

    ,
    Gholamreza Hatam

    Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

    ,
    Paul Nguewa

    **Author for correspondence:

    E-mail Address: panguewa@unav.es

    Department of Microbiology & Parasitology, University of Navarra, ISTUN Instituto de Salud Tropical, IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea 1, Pamplona, 31008, Spain

    &
    Sajad Rashidi

    *Author for correspondence: Tel.: +98 713 230 5291;

    E-mail Address: sajaderashidi@yahoo.com

    Department of Parasitology & Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

    Published Online:https://doi.org/10.2217/fmb-2020-0303

    Apolipoprotein A-I (apo A-I) represents the main component of the Trypanosome lytic factor (TLF) which contributes to the host innate immunity against Trypanosoma and Leishmania. These parasites use complex and multiple strategies such as molecular mimicry to evade or subvert the host immune system. Previous studies have highlighted the adaptation mechanisms of TLF-resistant Trypanosoma species. These data might support the hypothesis that Leishmania parasites (amastigote forms in macrophages) might express apo A-I to bypass and escape from TLF action as a component of the host innate immune responses. The anti-inflammatory property of apo A-I is another mechanism that supports our idea that apo A-I may play a role in Leishmania parasites allowing them to bypass the host innate immune system.

    Papers of special note have been highlighted as: • of interest

    References

    • 1. Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R. Leishmaniasis: a review. F1000 Res. 6, 750 (2017).
    • 2. Mahanta A, Ganguli P, Barah P et al. Integrative approaches to understand the mastery in manipulation of host cytokine networks by protozoan parasites with emphasis on Plasmodium and Leishmania species. Front. Immunol. 9, 296 (2018).
    • 3. Shio MT, Hassani K, Isnard A et al. Host cell signalling and Leishmania mechanisms of evasion. J. Trop. Med. 2012, 819512 (2012).
    • 4. Hurford A, Day T. Immune evasion and the evolution of molecular mimicry in parasites. Evolution 67(10), 2889–2904 (2013).
    • 5. Rashidi S, Kalantar K, Nguewa P, Hatam G. Leishmanial selenoproteins and the host immune system: towards new therapeutic strategies? Trans. R. Soc. Trop. Med. Hyg. 114(7), 541–544 (2020).
    • 6. Veras PST, Bezerra de Menezes JP. Using proteomics to understand how Leishmania parasites survive inside the host and establish infection. Int. J. Mol. Sci. 17(8), 1270 (2016).
    • 7. Rashidi S, Kalantar K, Hatam G. Using proteomics as a powerful tool to develop a vaccine against Mediterranean visceral leishmaniasis. J. Parasit. Dis. 42(2), 162–170 (2018).
    • 8. Rashidi S, Nguewa P, Mojtahedi Z, Shahriari B, Kalantar K, Hatam G. Identification of immunoreactive proteins in secretions of Leishmania infantum promastigotes: an immunoproteomic approach. East. Mediterr. Health J. 26(12), 1548–1555 (2020).
    • 9. Rashidi S, Mojtahedi Z, Shahriari B et al. An immunoproteomic approach to identifying immunoreactive proteins in Leishmania infantum amastigotes using sera of dogs infected with canine visceral leishmaniasis. Pathog. Glob. Health 113(3), 124–132 (2019). • Confirms the expresion of leishmanial-apo A-I in Leishmania parasites (amastigote form) for the first time.
    • 10. Yelamanchili D, Liu J, Gotto AM Jr et al. Highly conserved amino acid residues in apolipoprotein A1 discordantly induce high density lipoprotein assembly in vitro and in vivo. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865(12), 158794 (2020).
    • 11. Mangaraj M, Nanda R, Panda S. Apolipoprotein AI: a molecule of diverse function. Indian J. Clin. Biochem. 31(3), 253–259 (2016).
    • 12. Edmunds SJ, Liébana-García R, Stenkula KG, Lagerstedt JO. A short peptide of the C-terminal class Y helices of apolipoprotein AI has preserved functions in cholesterol efflux and in vivo metabolic control. Sci. Rep. 10(1), 18070 (2020).
    • 13. Molina-Portela MP, Samanovic M, Raper J. Distinct roles of apolipoprotein components within the trypanosome lytic factor complex revealed in a novel transgenic mouse model. J. Exp. Med. 205(8), 1721–1728 (2008). • Highlights the role of Trypanosome lytic factor complex using experimental models.
    • 14. Samanovic M, Molina-Portela MP, Chessler A-DC, Burleigh BA, Raper J. Trypanosome lytic factor, an antimicrobial high-density lipoprotein, ameliorates Leishmania infection. PLoS Pathog. 5(1), e1000276 (2009). • Highlights the role of Trypanosome lytic factor in Leishmania parasites.
    • 15. Stoekenbroek R, Stroes E, Hovingh G. ApoA-I mimetics. Handb. Exp. Pharmacol. 224, 631–648 (2015).
    • 16. Wacker BK, Dronadula N, Bi L, Stamatikos A, Dichek DA. Apo AI (apolipoprotein AI) vascular gene therapy provides durable protection against atherosclerosis in hyperlipidemic rabbits. Arterioscler. Thromb. Vasc. Biol. 38(1), 206–217 (2018).
    • 17. Chen W, Wu Y, Lu Q, Wang S, Xing D. Endogenous ApoA-I expression in macrophages: a potential target for protection against atherosclerosis. Clin. Chim. Acta 505, 55–59 (2020).
    • 18. Wilhelm AJ, Zabalawi M, Owen JS et al. Apolipoprotein AI modulates regulatory T cells in autoimmune LDLr−/−, ApoA-I−/− mice. J. Biol. Chem. 285(46), 36158–36169 (2010). • Elucidates the role of apo A-I on the immune system in the experimental model.
    • 19. Cho NH, Seong SY. Apolipoproteins inhibit the innate immunity activated by necrotic cells or bacterial endotoxin. Immunology 128(1pt2), e479–e486 (2009).
    • 20. Yao X, Gordon EM, Figueroa DM, Barochia AV, Levine SJ. Emerging roles of apolipoprotein E and apolipoprotein AI in the pathogenesis and treatment of lung disease. Am. J. Respir. Cell Mol. Biol. 55(2), 159–169 (2016).
    • 21. Xu Z, Zhai L, Yi T et al. Hepatitis B virus X induces inflammation and cancer in mice liver through dysregulation of cytoskeletal remodeling and lipid metabolism. Oncotarget 7(43), 70559–70574 (2016).
    • 22. Zhang T, Xie N, He W et al. An integrated proteomics and bioinformatics analyses of hepatitis B virus X interacting proteins and identification of a novel interactor apoA-I. J. Proteomics 84, 92–105 (2013).
    • 23. Lugli EB, Pouliot M, Portela MdPM, Loomis MR, Raper J. Characterization of primate trypanosome lytic factors. Mol. Biochem. Parasitol. 138(1), 9–20 (2004).
    • 24. Raper J, Fung R, Ghiso J, Nussenzweig V, Tomlinson S. Characterization of a novel trypanosome lytic factor from human serum. Infect. Immun. 67(4), 1910–1916 (1999).
    • 25. Thomson R, Samanovic M, Raper J. Activity of trypanosome lytic factor: a novel component of innate immunity. Future Microbiol. 4(7), 789–796 (2009). • Provides important information on the role of Trypanosome lytic factor regarding innate immunity.
    • 26. Oli MW, Cotlin LF, Shiflett AM, Hajduk SL. Serum resistance-associated protein blocks lysosomal targeting of trypanosome lytic factor in Trypanosoma brucei. Eukaryot. Cell 5(1), 132–139 (2006).
    • 27. Radwanska M, Vereecke N, Deleeuw V, Pinto J, Magez S. Salivarian trypanosomosis: a review of parasites involved, their global distribution and their interaction with the innate and adaptive mammalian host immune system. Front. Immunol. 9, 2253 (2018).
    • 28. Pays E, Vanhollebeke B. Human innate immunity against African trypanosomes. Curr. Opin. Immunol. 21(5), 493–498 (2009).
    • 29. Greene AS, Hajduk SL. Trypanosome lytic factor-1 initiates oxidation-stimulated osmotic lysis of Trypanosoma brucei brucei. J. Biol. Chem. 291(6), 3063–3075 (2016).
    • 30. Alsford S. Increased Trypanosoma brucei cathepsin-L activity inhibits human serum-mediated trypanolysis. Microb. Cell 1(8), 270–272 (2014).
    • 31. Capewell P, Veitch NJ, Turner CMR et al. Differences between Trypanosoma brucei gambiense groups 1 and 2 in their resistance to killing by trypanolytic factor 1. PLoS Negl. Trop. Dis. 5(9), e1287 (2011).
    • 32. Kieft R, Capewell P, Turner CMR, Veitch NJ, MacLeod A, Hajduk S. Mechanism of Trypanosoma brucei gambiense (group 1) resistance to human trypanosome lytic factor. Proc. Natl Acad. Sci. USA 107(37), 16137–16141 (2010).
    • 33. Paswan R, Bimal S, Kumari A, Sinha P, Rabidas V. Reduced high density lipoprotein concentration modulates increased interleukin-10 and decreased interferon-gamma in visceral leishmaniasis patients. Gen. Med. 4(2), 1–6 (2016).
    • 34. Catapano AL, Pirillo A, Bonacina F, Norata GD. HDL in innate and adaptive immunity. Cardiovasc. Res. 103(3), 372–383 (2014).
    • 35. Chen Y, Chan CK, Kerishnan JP, Lau YL, Wong Y-L, Gopinath SC. Identification of circulating biomarkers in sera of Plasmodium knowlesi-infected malaria patients-comparison against Plasmodium vivax infection. BMC Infect. Dis. 15, 49 (2015).
    • 36. Liberopoulos E, Alexandridis G, Bairaktari E, Elisaf M. Severe hypocholesterolemia with reduced serum lipoprotein (a) in a patient with visceral leishmaniasis. Ann. Clin. Lab. Sci. 32(3), 305–308 (2002).
    • 37. Escribano D, Tvarijonaviciute A, Kocaturk M et al. Serum apolipoprotein-A1 as a possible biomarker for monitoring treatment of canine leishmaniosis. Comp. Immunol. Microbiol. Infect. Dis. 49, 82–87 (2016).
    • 38. Fuertes MA, Berberich C, Lozano RM, Gimenez-Gallego G, Alonso C. Folding stability of the kinetoplastid membrane protein-11 (KMP-11) from Leishmania infantum. Eur. J. Biochem. 260(2), 559–567 (1999).
    • 39. Delgado G, Parra-López CA, Vargas LE et al. Characterizing cellular immune response to kinetoplastid membrane protein-11 (KMP-11) during Leishmania (Viannia) panamensis infection using dendritic cells (DCs) as antigen presenting cells (APCs). Parasite Immunol. 25(4), 199–209 (2003).
    • 40. Sannigrahi A, Mullick D, Sanyal D, Sen S, Maulik U, Chattopadhyay K. Effect of ergosterol on the binding of KMP-11 with phospholipid membranes: implications in leishmaniasis. ACS Omega 4(3), 5155–5164 (2019). • Investigates the important role of KMP-11 (protein with a possible corelation with the leishmanial-apo A-I) in leishmaniasis.
    • 41. Sannigrahi A, Maity P, Karmakar S, Chattopadhyay K. Interaction of KMP-11 with phospholipid membranes and its implications in leishmaniasis: effects of single tryptophan mutations and cholesterol. J. Phys. Chem. B. 121(8), 1824–1834 (2017).
    • 42. Halder A, Sannigrahi A, De N, Chattopadhyay K, Karmakar S. Kinetoplastid membrane protein-11 induces pores in anionic phospholipid membranes: effect of cholesterol. Langmuir 36(13), 3522–3530 (2020).
    • 43. Bhaumik S, Basu R, Sen S, Naskar K, Roy S. KMP-11 DNA immunization significantly protects against L. donovani infection but requires exogenous IL-12 as an adjuvant for comparable protection against L. major. Vaccine 27(9), 1306–1316 (2009).
    • 44. Basu R, Bhaumik S, Basu JM, Naskar K, De T, Roy S. Kinetoplastid membrane protein-11 DNA vaccination induces complete protection against both pentavalent antimonial-sensitive and-resistant strains of Leishmania donovani that correlates with inducible nitric oxide synthase activity and IL-4 generation: evidence for mixed Th1-and Th2-like responses in visceral leishmaniasis. J. Immunol. 174(11), 7160–7171 (2005).
    • 45. Rashidi S, Kalantar K, Hatam G. Achievement amastigotes of Leishmania infantum and investigation of pathological changes in the tissues of infected golden hamsters. J. Parasit. Dis. 42(2), 187–195 (2018).
    • 46. Mohapatra A, Karan S, Kar B, Garg L, Dixit A, Sahoo P. Apolipoprotein AI in Labeo rohita: cloning and functional characterisation reveal its broad spectrum antimicrobial property, and indicate significant role during ectoparasitic infection. Fish Shellfish Immunol. 55, 717–728 (2016).
    • 47. Kieft R, Stephens NA, Capewell P, MacLeod A, Hajduk SL. Role of expression site switching in the development of resistance to human trypanosome lytic factor-1 in Trypanosoma brucei brucei. Mol. Biochem. Parasitol. 183(1), 8–14 (2012).
    • 48. Brouillette CG, Anantharamaiah G, Engler JA, Borhani DW. Structural models of human apolipoprotein AI: a critical analysis and review. Biochim. Biophys. Acta 1531(1–2), 4–46 (2001).
    • 49. Hyka N, Dayer J-M, Modoux C et al. Apolipoprotein AI inhibits the production of interleukin-1β and tumor necrosis factor-α by blocking contact-mediated activation of monocytes by T lymphocytes. Blood 97(8), 2381–2389 (2001).
    • 50. Datta G, Kramer PA, Johnson MS et al. Bioenergetic programming of macrophages by the apolipoprotein AI mimetic peptide 4F. Biochem. J. 467(3), 517–527 (2015).
    • 51. White CR, Smythies LE, Crossman DK, Palgunachari MN, Anantharamaiah G, Datta G. Regulation of pattern recognition receptors by the apolipoprotein AI mimetic peptide 4F. Arterioscler. Thromb. Vasc. Biol. 32(11), 2631–2639 (2012).
    • 52. Chroni A, Kardassis D. HDL dysfunction caused by mutations in apoA-I and other genes that are critical for HDL biogenesis and remodeling. Curr. Med. Chem. 26(9), 1544–1575 (2019).
    • 53. Song X, Shi Y, You J et al. D-4F, an apolipoprotein AI mimetic, suppresses IL-4 induced macrophage alternative activation and pro-fibrotic TGF-β1 expression. Pharm. Biol. 57(1), 470–476 (2019).
    • 54. Tian H, Yao S-t, Yang N-n et al. D4F alleviates macrophage-derived foam cell apoptosis by inhibiting the NF-κB-dependent Fas/FasL pathway. Sci. Rep. 7(1), 7333 (2017).
    • 55. Garg A, Kumari B, Singhal N, Kumar M. Using molecular-mimicry-inducing pathways of pathogens as novel drug targets. Drug Discov. Today 24(9), 1943–1952 (2019).
    • 56. Canesi F, Mateo V, Couchie D et al. A thioredoxin-mimetic peptide exerts potent anti-inflammatory, antioxidant, and atheroprotective effects in ApoE2. Ki mice fed high fat diet. Cardiovas. Res. 115(2), 292–301 (2019).
    • 57. Wanderley JLM, Deolindo P, Carlsen E et al. CD4+ T cell-dependent macrophage activation modulates sustained PS exposure on intracellular amastigotes of Leishmania amazonensis. Front. Cell. Infect. Microbiol. 9, 105 (2019).
    • 58. Gautam S, Kumar R, Maurya R et al. IL-10 neutralization promotes parasite clearance in splenic aspirate cells from patients with visceral leishmaniasis. J. Infect. Dis. 204(7), 1134–1137 (2011).
    • 59. Barth S, Thepen T, Barral-Netto M, Barral A, Van Weyenbergh J. WO/2016/116550 (2017).