We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: an emerging tool for studying the vectors of human infectious diseases

    Jacques Sevestre

    IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France

    Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France

    ,
    Adama Z Diarra

    IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France

    Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France

    ,
    Maureen Laroche

    IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France

    ,
    Lionel Almeras

    IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France

    Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France

    Département Microbiologie et Maladies Infectieuses, Unité Parasitologie et Entomologie, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005, Marseille, France

    &
    Philippe Parola

    *Author for correspondence: Tel.: +33 (0)413 732 401;

    E-mail Address: philippe.parola@univ-amu.fr

    IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France

    Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France

    Published Online:https://doi.org/10.2217/fmb-2020-0145

    Arthropod vectors have historically been identified morphologically, and more recently using molecular biology methods. However, both of these methods are time-consuming and require specific expertise and equipment. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, which has revolutionized the routine identification of microorganisms in clinical microbiology laboratories, was recently successfully applied to the identification of arthropod vectors. Since then, the robustness of this identification technique has been confirmed, extended to a large panel of arthropod vectors, and assessed for detecting blood feeding behavior and identifying the infection status in regard to certain pathogenic agents. In this study, we summarize the state-of-the-art of matrix-assisted laser desorption ionization time-of-flight mass spectrometry applied to the identification of arthropod vectors (ticks, mosquitoes, phlebotomine sand-flies, fleas, triatomines, lice and Culicoides), their trophic preferences and their ability to discriminate between infection statuses.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Laroche M, Bérenger J-M, Delaunay P et al. Medical entomology: a reemerging field of research to better understand vector-borne infectious diseases. Clin. Infect. Dis. 65(Suppl. 1), S30–S38 (2017).
    • 2. Giribet G, Edgecombe GD. The phylogeny and evolutionary history of arthropods. Curr. Biol. 29(12), R592–R602 (2019).
    • 3. Laroche M, Raoult D, Parola P. Insects and the transmission of bacterial agents. Microbiol. Spectr. 6(5), doi:10.1128/microbiolspec.MTBP-0017-2016 (2018).
    • 4. WHO. A global brief on vector-borne diseases. http://www.who.int/campaigns/world-health-day/2014/global-brief/en/
    • 5. Cuisance D, Antoine Rioux J. Current status of medical and veterinary entomology in France: endangered discipline or promising science? Comp. Immunol. Microbiol. Infect. Dis. 27(5), 377–392 (2004).
    • 6. Yssouf A, Almeras L, Raoult D, Parola P. Emerging tools for identification of arthropod vectors. Future Microbiol. 11(4), 549–566 (2016). •• Presents considerable interest as it is the first to synthesize the emergence of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and innovative tools for arthropod vector identification.
    • 7. Mathieu B, Cêtre-Sossah C, Garros C et al. Development and validation of IIKC: an interactive identification key for Culicoides (Diptera: Ceratopogonidae) females from the Western Palaearctic region. Parasit. Vectors 5(1), 137 (2012).
    • 8. Murugaiyan J, Roesler U. MALDI-TOF MS profiling-advances in species identification of pests, parasites, and vectors. Front. Cell. Infect. Microbiol. 7, 184 (2017).
    • 9. Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am. J. Trop. Med. Hyg. 49(4), 520–529 (1993).
    • 10. Fang Q, Keirans JE, Mixson T. The use of the nuclear protein-encoding gene, RNA polymerase II, for tick molecular systematics. Exp. Appl. Acarol. 28(1), 69–75 (2002).
    • 11. Lv J, Wu S, Zhang Y et al. Assessment of four DNA fragments (COI, 16S rDNA, ITS2, 12S rDNA) for species identification of the Ixodida (Acari: Ixodida). Parasit. Vectors 7(1), 93 (2014).
    • 12. Karas M, Bachmann D, Bahr U, Hillenkamp F. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int. J. Mass Spectrom. Ion Process. 78, 53–68 (1987).
    • 13. Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front. Microbiol. 6, 791 (2015).
    • 14. Clark AE, Kaleta EJ, Arora A, Wolk DM. Matrix-assisted laser desorption ionization–time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin. Microbiol. Rev. 26(3), 547–603 (2013).
    • 15. Chace DH, Millington DS, Terada N, Kahler SG, Roe CR, Hofman LF. Rapid diagnosis of phenylketonuria by quantitative analysis for phenylalanine and tyrosine in neonatal blood spots by tandem mass spectrometry. Clin. Chem. 39(1), 66–71 (1993).
    • 16. Lay JO Jr. MALDI-TOF mass spectrometry of bacteria. Mass Spectrom. Rev. 20(4), 172–194 (2001).
    • 17. Fenselau C, Demirev PA. Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom. Rev. 20(4), 157–171 (2001).
    • 18. Feucherolles M, Poppert S, Utzinger J, Becker SL. MALDI-TOF mass spectrometry as a diagnostic tool in human and veterinary helminthology: a systematic review. Parasit. Vectors 12(1), 245 (2019).
    • 19. Seng P, Rolain J-M, Fournier PE, La Scola B, Drancourt M, Raoult D. MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol. 5(11), 1733–1754 (2010).
    • 20. Patel R. MALDI-TOF MS for the diagnosis of infectious diseases. Clin. Chem. 61(1), 100–111 (2015).
    • 21. Predel R, Roth S, Neupert S, Picker M. New insect order Mantophasmatodea: species differentiation by mass fingerprints of peptide hormones? J. Zool. Syst. Evol. Res. 43(2), 149–156 (2005).
    • 22. Campbell PM. Species differentiation of insects and other multicellular organisms using matrix-assisted laser desorption/ionization time of flight mass spectrometry protein profiling. Syst. Entomol. 30(2), 186–190 (2005).
    • 23. Perera MR, Vargas RDF, Jones MGK. Identification of aphid species using protein profiling and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Entomol. Exp. Appl. 117(3), 243–247 (2005).
    • 24. Yssouf A, Flaudrops C, Drali R et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid identification of tick vectors. J. Clin. Microbiol. 51(2), 522–528 (2013).
    • 25. Yssouf A, Almeras L, Berenger J-M, Laroche M, Raoult D, Parola P. Identification of tick species and disseminate pathogen using hemolymph by MALDI-TOF MS. Ticks Tick-Borne Dis. 6(5), 579–586 (2015).
    • 26. Kumsa B, Laroche M, Almeras L, Mediannikov O, Raoult D, Parola P. Morphological, molecular and MALDI-TOF mass spectrometry identification of ixodid tick species collected in Oromia, Ethiopia. Parasitol. Res. 115(11), 4199–4210 (2016).
    • 27. Rothen J, Githaka N, Kanduma EG et al. Matrix-assisted laser desorption/ionization time of flight mass spectrometry for comprehensive indexing of East African ixodid tick species. Parasit. Vectors 9, 151 (2016).
    • 28. Yssouf A, Socolovschi C, Flaudrops C et al. Matrix-assisted laser desorption ionization – time of flight mass spectrometry: an emerging tool for the rapid identification of mosquito vectors. PLoS ONE 8(8), e72380 (2013).
    • 29. Nebbak A, Willcox AC, Bitam I, Raoult D, Parola P, Almeras L. Standardization of sample homogenization for mosquito identification using an innovative proteomic tool based on protein profiling. Proteomics 16(24), 3148–3160 (2016).
    • 30. Tandina F, Niaré S, Laroche M et al. Using MALDI-TOF MS to identify mosquitoes collected in Mali and their blood meals. Parasitology 145(9), 1170–1182 (2018).
    • 31. Raharimalala FN, Andrianinarivomanana TM, Rakotondrasoa A, Collard JM, Boyer S. Usefulness and accuracy of MALDI-TOF mass spectrometry as a supplementary tool to identify mosquito vector species and to invest in development of international database. Med. Vet. Entomol. 31(3), 289–298 (2017). • Shows applicability of the technique for vector surveillance in a malaria endemic zone, moreover the researchers advocate for creation on an international database.
    • 32. Nebbak A, Koumare S, Willcox AC et al. Field application of MALDI-TOF MS on mosquito larvae identification. Parasitology 145(5), 677–687 (2018).
    • 33. Yssouf A, Socolovschi C, Leulmi H et al. Identification of flea species using MALDI-TOF/MS. Comp. Immunol. Microbiol. Infect. Dis. 37(3), 153–157 (2014).
    • 34. Zurita A, Djeghar R, Callejón R, Cutillas C, Parola P, Laroche M. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry as a useful tool for the rapid identification of wild flea vectors preserved in alcohol. Med. Vet. Entomol. 33(2), 185–194 (2019).
    • 35. Hoppenheit A, Murugaiyan J, Bauer B, Steuber S, Clausen P-H, Roesler U. Identification of Tsetse (Glossina spp.) using matrix-assisted laser desorption/ionisation time of flight mass spectrometry. PLoS Negl. Trop. Dis. 7(7), e2305 (2013).
    • 36. Dvorak V, Halada P, Hlavackova K, Dokianakis E, Antoniou M, Volf P. Identification of phlebotomine sand flies (Diptera: Psychodidae) by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Parasit. Vectors 7, 21 (2014).
    • 37. Mathis A, Depaquit J, Dvořák V et al. Identification of phlebotomine sand flies using one MALDI-TOF MS reference database and two mass spectrometer systems. Parasit. Vectors 8, 266 (2015).
    • 38. Laroche M, Bérenger J-M, Gazelle G, Blanchet D, Raoult D, Parola P. MALDI-TOF MS protein profiling for the rapid identification of Chagas disease triatomine vectors and application to the triatomine fauna of French Guiana. Parasitology 145(5), 665–675 (2018).
    • 39. Dos Santos Souza É, Fernandes RP, Galvão C, de Paiva VF, da Rosa JA. Distinguishing two species of Cavernicola (Hemiptera, Reduviidae, Triatominae) with matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Acta Trop. 198, 105071 (2019).
    • 40. Dos Santos Souza É, Fernandes RP, Guedes WN et al. Rhodnius spp. are differentiated based on the peptide/protein profile by matrix-assisted laser desorption/ionization mass spectrometry and chemometric tools. Anal. Bioanal. Chem. 412(6), 1431–1439 (2020).
    • 41. El Hamzaoui B, Laroche M, Parola P. Detection of Bartonella spp. in Cimex lectularius by MALDI-TOF MS. Comp. Immunol. Microbiol. Infect. Dis. 64, 130–137 (2019).
    • 42. Parola P, Raoult D. Ticks and tickborne bacterial diseases in humans: an emerging infectious threat. Clin. Infect. Dis. 32(6), 897–928 (2001).
    • 43. Madison-Antenucci S, Kramer LD, Gebhardt LL, Kauffman E. Emerging tick-borne diseases. Clin. Microbiol. Rev. 33(2), 2 (2020).
    • 44. Mead PS. Epidemiology of lyme disease. Infect. Dis. Clin. North Am. 29(2), 187–210 (2015).
    • 45. Pecina CA. Tick paralysis. Semin. Neurol. 32(5), 531–532 (2012).
    • 46. Fischer J, Yazdi AS, Biedermann T. Clinical spectrum of α-Gal syndrome: from immediate-type to delayed immediate-type reactions to mammalian innards and meat. Allergo J. Int. 25, 55–62 (2016).
    • 47. Estrada-Peña A. Ticks as vectors: taxonomy, biology and ecology. Rev. Sci. Tech. Int. Off. Epizoot. 34(1), 53–65 (2015).
    • 48. Nava S, Gerardi M, Szabó MPJ et al. Different lines of evidence used to delimit species in ticks: a study of the South American populations of Amblyomma parvum (Acari: Ixodidae). Ticks Tick-Borne Dis. 7(6), 1168–1179 (2016).
    • 49. Hornok S, Wang Y, Otranto D et al. Phylogenetic analysis of Haemaphysalis erinacei Pavesi, 1884 (Acari: Ixodidae) from China, Turkey, Italy and Romania. Parasit. Vectors 9(1), 643 (2016).
    • 50. Dantas-Torres F. Species concepts: what about ticks? Trends Parasitol. 34(12), 1017–1026 (2018).
    • 51. Karger A, Kampen H, Bettin B et al. Species determination and characterization of developmental stages of ticks by whole-animal matrix-assisted laser desorption/ionization mass spectrometry. Ticks Tick-Borne Dis. 3(2), 78–89 (2012).
    • 52. Fotso Fotso A, Mediannikov O, Diatta G et al. MALDI-TOF mass spectrometry detection of pathogens in vectors: the Borrelia crocidurae/Ornithodoros sonrai paradigm. PLoS Negl. Trop. Dis. 8(7), e2984 (2014). • Represents the first application of MALDI-TOF MS to distinguish infected vectors from uninfected ones.
    • 53. Yssouf A, Almeras L, Terras J, Socolovschi C, Raoult D, Parola P. Detection of Rickettsia spp in ticks by MALDI-TOF MS. PLoS Negl. Trop. Dis. 9(2), e0003473 (2015).
    • 54. Diarra AZ, Almeras L, Laroche M et al. Molecular and MALDI-TOF identification of ticks and tick-associated bacteria in Mali. PLoS Negl. Trop. Dis. 11(7), e0005762 (2017).
    • 55. Boucheikhchoukh M, Laroche M, Aouadi A et al. MALDI-TOF MS identification of ticks of domestic and wild animals in Algeria and molecular detection of associated microorganisms. Comp. Immunol. Microbiol. Infect. Dis. 57, 39–49 (2018).
    • 56. Blow F, Douglas AE. The hemolymph microbiome of insects. J. Insect Physiol. 115, 33–39 (2019).
    • 57. Boyer PH, Almeras L, Plantard O et al. Identification of closely related Ixodes species by protein profiling with MALDI-TOF mass spectrometry. PLoS ONE 14(10), e0223735 (2019).
    • 58. Nebbak A, Hamzaoui BE, Berenger J-M et al. Comparative analysis of storage conditions and homogenization methods for tick and flea species for identification by MALDI-TOF MS. Med. Vet. Entomol. 31(4), 438–448 (2017).
    • 59. Rueda LM. Global Diversity of Mosquitoes (Insecta: Diptera: Culicidae) in Freshwater (Volume 198). Springer, NY, USA (2007).
    • 60. Health TLG. Vector control: time for a planetary health approach. Lancet Glob. Health 5(6), e556 (2017).
    • 61. Dieme C, Bechah Y, Socolovschi C et al. Transmission potential of Rickettsia felis infection by Anopheles gambiae mosquitoes. Proc. Natl Acad. Sci. USA 112(26), 8088–8093 (2015).
    • 62. Musso D, Ko AI, Baud D. Zika virus infection – after the pandemic. N. Engl. J. Med. 381(15), 1444–1457 (2019).
    • 63. Beebe NW. DNA barcoding mosquitoes: advice for potential prospectors. Parasitology 145(5), 622–633 (2018).
    • 64. Müller P, Pflüger V, Wittwer M et al. Identification of cryptic anopheles mosquito species by molecular protein profiling. PLoS ONE 8(2), e57486 (2013).
    • 65. Schaffner F, Kaufmann C, Pflüger V, Mathis A. Rapid protein profiling facilitates surveillance of invasive mosquito species. Parasit. Vectors 7, 142 (2014).
    • 66. Dieme C, Yssouf A, Vega-Rúa A et al. Accurate identification of Culicidae at aquatic developmental stages by MALDI-TOF MS profiling. Parasit. Vectors 7, 544 (2014).
    • 67. Nebbak A, Almeras L. Identification of Aedes mosquitoes by MALDI-TOF MS biotyping using protein signatures from larval and pupal exuviae. Parasit. Vectors 13(1), 161 (2020).
    • 68. Vega-Rúa A, Pagès N, Fontaine A et al. Improvement of mosquito identification by MALDI-TOF MS biotyping using protein signatures from two body parts. Parasit. Vectors 11(1), 574 (2018).
    • 69. Diarra AZ, Laroche M, Berger F, Parola P. Use of MALDI-TOF MS for the identification of chad mosquitoes and the origin of their blood meal. Am. J. Trop. Med. Hyg. 100(1), 47–53 (2019).
    • 70. Yssouf A, Parola P, Lindström A et al. Identification of European mosquito species by MALDI-TOF MS. Parasitol. Res. 113(6), 2375–2378 (2014).
    • 71. Alten B, Ozbel Y, Ergunay K et al. Sampling strategies for phlebotomine sand flies (Diptera: Psychodidae) in Europe. Bull. Entomol. Res. 105(6), 664–678 (2015).
    • 72. Ready PD. Biology of phlebotomine sand flies as vectors of disease agents. Annu. Rev. Entomol. 58, 227–250 (2013).
    • 73. Alexander B, Maroli M. Control of phlebotomine sandflies. Med. Vet. Entomol. 17(1), 1–18 (2003).
    • 74. Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med. Vet. Entomol. 27(2), 123–147 (2013).
    • 75. Lafri I, Almeras L, Bitam I et al. Identification of Algerian field-caught phlebotomine sand fly vectors by MALDI-TOF MS. PLoS Negl. Trop. Dis. 10(1), e0004351 (2016).
    • 76. Halada P, Hlavackova K, Dvorak V, Volf P. Identification of immature stages of phlebotomine sand flies using MALDI-TOF MS and mapping of mass spectra during sand fly life cycle. Insect Biochem. Mol. Biol. 93, 47–56 (2018).
    • 77. Halada P, Hlavackova K, Risueño J, Berriatua E, Volf P, Dvorak V. Effect of trapping method on species identification of phlebotomine sandflies by MALDI-TOF MS protein profiling. Med. Vet. Entomol. 32(3), 388–392 (2018).
    • 78. Arfuso F, Gaglio G, Abbate JM et al. Identification of phlebotomine sand flies through MALDI-TOF mass spectrometry and in-house reference database. Acta Trop. 194, 47–52 (2019).
    • 79. Chavy A, Nabet C, Normand AC et al. Identification of French Guiana sand flies using MALDI-TOF mass spectrometry with a new mass spectra library. PLoS Negl. Trop. Dis. 13(2), e0007031 (2019).
    • 80. Bitam I, Dittmar K, Parola P, Whiting MF, Raoult D. Fleas and flea-borne diseases. Int. J. Infect. Dis. IJID 14(8), e667–676 (2010).
    • 81. Monteiro FA, Weirauch C, Felix M, Lazoski C, Abad-Franch F. Evolution, systematics, and biogeography of the triatominae, vectors of Chagas disease. Adv. Parasitol. 99, 265–344 (2018).
    • 82. Coates SJ, Thomas C, Chosidow O, Engelman D, Chang AY. Part II - ectoparasites: pediculosis and tungiasis. J. Am. Acad. Dermatol. 82, 551–569 (2019).
    • 83. Boutellis A, Abi-Rached L, Raoult D. The origin and distribution of human lice in the world. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 23, 209–217 (2014).
    • 84. Ouarti B, Laroche M, Righi S et al. Development of MALDI-TOF mass spectrometry for the identification of lice isolated from farm animals. Parasite 27, 28 (2020).
    • 85. Sambou M, Aubadie-Ladrix M, Fenollar F et al. Comparison of matrix-assisted laser desorption ionization–time of flight mass spectrometry and molecular biology techniques for identification of Culicoides (Diptera: Ceratopogonidae) biting midges in Senegal. J. Clin. Microbiol. 53(2), 410–418 (2015).
    • 86. Sick F, Beer M, Kampen H, Wernike K. Culicoides biting midges – underestimated vectors for arboviruses of public health and veterinary importance. Viruses 11(4), 376 (2019).
    • 87. Kaufmann C, Ziegler D, Schaffner F, Carpenter S, Pflüger V, Mathis A. Evaluation of matrix-assisted laser desorption/ionization time of flight mass spectrometry for characterization of Culicoides nubeculosus biting midges. Med. Vet. Entomol. 25(1), 32–38 (2011).
    • 88. Kaufmann C, Schaffner F, Ziegler D, Pflüger V, Mathis A. Identification of field-caught Culicoides biting midges using matrix-assisted laser desorption/ionization time of flight mass spectrometry. Parasitology 139(2), 248–258 (2012).
    • 89. Steinmann IC, Pflüger V, Schaffner F, Mathis A, Kaufmann C. Evaluation of matrix-assisted laser desorption/ionization time of flight mass spectrometry for the identification of ceratopogonid and culicid larvae. Parasitology 140(3), 318–327 (2013).
    • 90. Delaunay P, Blanc V, Del Giudice P et al. Bedbugs and infectious diseases. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 52(2), 200–210 (2011).
    • 91. Parola P, Izri A. Bedbugs. N. Engl. J. Med. 382(23), 2230–2237 (2020).
    • 92. Ashcroft R, Seko Y, Chan LF, Dere J, Kim J, McKenzie K. The mental health impact of bed bug infestations: a scoping review. Int. J. Public Health 60(7), 827–837 (2015).
    • 93. Benkacimi Linda, Gazelle Basma Gladys, Hamzaoui El, Bérenger Jean-Michel, Philippe Parola, Maureen Laroche. MALDI-TOF MS identification of Cimex lectularius and Cimex hemipterus bedbugs. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis.
    • 94. Fyodorova MV, Savage HM, Lopatina JV et al. Evaluation of potential West Nile virus vectors in Volgograd region, Russia, 2003 (Diptera: Culicidae): species composition, blood meal host utilization, and virus infection rates of mosquitoes. J. Med. Entomol. 43(3), 552–563 (2006).
    • 95. Ngo KA, Kramer LD. Identification of mosquito blood meals using polymerase chain reaction (PCR) with order-specific primers. J. Med. Entomol. 40(2), 215–222 (2003).
    • 96. Kent RJ. Molecular methods for arthropod blood meal identification and applications to ecological and vector-borne disease studies. Mol. Ecol. Resour. 9(1), 4–18 (2009).
    • 97. Niare S, Berenger J-M, Dieme C et al. Identification of blood meal sources in the main African malaria mosquito vector by MALDI-TOF MS. Malar. J. 15, 87 (2016). • Represents the first vector blood meal identification made possible by the use of MALDI-TOF MS.
    • 98. Niare S, Tandina F, Davoust B et al. Accurate identification of Anopheles gambiae Giles trophic preferences by MALDI-TOF MS. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 63, 410–419 (2018).
    • 99. Tandina F, Laroche M, Davoust B, K Doumbo O, Parola P. Blood meal identification in the cryptic species Anopheles gambiae and Anopheles coluzzii using MALDI-TOF MS. Parasite Paris Fr. 25, 40 (2018).
    • 100. Niare S, Almeras L, Tandina F et al. MALDI-TOF MS identification of Anopheles gambiae Giles blood meal crushed on Whatman filter papers. PLoS ONE 12(8), e0183238 (2017).
    • 101. Tandina F, Niare S, Almeras L et al. Identification of mixed and successive blood meals of mosquitoes using MALDI-TOF MS protein profiling. Parasitology 1–35 (2019).
    • 102. Bassene H, Kengne P, Ndiath MO et al. [Comparison of PCR, ELISA-CSP and direct microscopic observation methods for the detection of Plasmodium falciparum sporozoites in Anopheles gambiae M in Senegal]. Bull. Soc. Pathol. Exot. 1990 102(4), 233–237 (2009).
    • 103. Durnez L, Van Bortel W, Denis L et al. False positive circumsporozoite protein ELISA: a challenge for the estimation of the entomological inoculation rate of malaria and for vector incrimination. Malar. J. 10, 195 (2011).
    • 104. Parola P, Ryelandt J, Mangold AJ, Mediannikov O, Guglielmone AA, Raoult D. Relapsing fever Borrelia in Ornithodoros ticks from Bolivia. Ann. Trop. Med. Parasitol. 105(5), 407–411 (2011).
    • 105. Parola P, Diatta G, Socolovschi C et al. Tick-borne relapsing fever borreliosis, rural senegal. Emerg. Infect. Dis. 17(5), 883–885 (2011).
    • 106. Boyer PH, Boulanger N, Nebbak A, Collin E, Jaulhac B, Almeras L. Assessment of MALDI-TOF MS biotyping for Borrelia burgdorferi sl detection in Ixodes ricinus. PLoS ONE 12(9), e0185430 (2017).
    • 107. Laroche M, Almeras L, Pecchi E et al. MALDI-TOF MS as an innovative tool for detection of Plasmodium parasites in Anopheles mosquitoes. Malar. J. 16(1), 5 (2017). •• Shows the ability of MALDI-TOF MS to differentiate Plasmodium-infected mosquitos, which shows high potential against a major vector-borne disease.
    • 108. Tahir D, Almeras L, Varloud M, Raoult D, Davoust B, Parola P. Assessment of MALDI-TOF mass spectrometry for filariae detection in Aedes aegypti mosquitoes. PLoS Negl. Trop. Dis. 11(12), e0006093 (2017).
    • 109. El Hamzaoui B, Laroche M, Almeras L, Bérenger J-M, Raoult D, Parola P. Detection of Bartonella spp. in fleas by MALDI-TOF MS. PLoS Negl. Trop. Dis. 12(2), e0006189 (2018).
    • 110. Dhiman N, Hall L, Wohlfiel SL, Buckwalter SP, Wengenack NL. Performance and cost analysis of matrix-assisted laser desorption ionization–time of flight mass spectrometry for routine identification of yeast▿. J. Clin. Microbiol. 49(4), 1614–1616 (2011).
    • 111. Tran A, Alby K, Kerr A, Jones M, Gilligan PH. Cost savings realized by implementation of routine microbiological identification by matrix-assisted laser desorption ionization–time of flight mass spectrometry. J. Clin. Microbiol. 53(8), 2473–2479 (2015).
    • 112. Flaudrops C, Faye N, Mediannikov O et al. Value of matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry in clinical microbiology and infectious diseases in Africa and tropical areas. Afr. J. Microbiol. Res. 11(35), 1360–1370 (2017).
    • 113. Lo CI, Fall B, Sambe-Ba B et al. MALDI-TOF mass spectrometry: a powerful tool for clinical microbiology at Hôpital Principal de Dakar, Senegal (West Africa). PLoS ONE 10(12), e0145889 (2015).
    • 114. Whitman JD, Yanega D, Watson CBG, Strode VW. Collection and preservation of terrestrial arthropods. Methods Mol. Biol. Clifton NJ 1897, 163–189 (2019).
    • 115. Drevinek M, Dresler J, Klimentova J, Pisa L, Hubalek M. Evaluation of sample preparation methods for MALDI-TOF MS identification of highly dangerous bacteria. Lett. Appl. Microbiol. 55(1), 40–46 (2012).
    • 116. Aubry C, Socolovschi C, Raoult D, Parola P. Bacterial agents in 248 ticks removed from people from 2002 to 2013. Ticks Tick-Borne Dis. 7(3), 475–481 (2016).
    • 117. Mewara A, Sharma M, Kaura T, Zaman K, Yadav R, Sehgal R. Rapid identification of medically important mosquitoes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Parasit. Vectors 11(1), 281 (2018).