We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Synergistic effects of anti-MRSA herbal extracts combined with antibiotics

    Mei Bao

    Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China

    Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China

    ,
    Lulu Zhang

    Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China

    Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China

    ,
    Bin Liu

    Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China

    ,
    Li Li

    Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China

    ,
    Yin Zhang

    Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China

    Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China

    ,
    Heru Zhao

    Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China

    Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China

    ,
    Xinyu Ji

    Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China

    ,
    Qing Chen

    Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China

    Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China

    ,
    Mingliang Hu

    Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China

    Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China

    ,
    Jingan Bai

    Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China

    ,
    Guoming Pang

    Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, China

    ,
    Jianfeng Yi

    ***Author for correspondence:

    E-mail Address: ycxyyjf@163.com

    Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China

    ,
    Yong Tan

    **Author for correspondence:

    E-mail Address: tcmtanyong@126.com

    Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China

    &
    Cheng Lu

    *Author for correspondence:

    E-mail Address: lv_cheng0816@163.com

    Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China

    Published Online:https://doi.org/10.2217/fmb-2020-0001

    MRSA is a super drug-resistant bacterium. Developing new drug or therapeutic strategies against MRSA is urgently needed. Increasing evidence has shown that herbal extracts and antibiotics can have synergistic effects against MRSA. This review focuses on commonly used antibiotics combined with herbal extracts against MRSA and the corresponding mechanisms. Through systematic analysis, we found that herbal extracts combined with antibiotics, such as β-lactams, quinolones, aminoglycosides, tetracyclines and glycopeptides, could greatly enhance the antibacterial effects of the antibiotics, reduce the dosage and toxic side effects, and reverse MRSA resistance. Therefore, we conclude that herbal extracts combined with antibiotics may be a promising strategy to combat MRSA. This review provides a novel idea for overcoming antibiotic resistance.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Edwards B, Andini R, Esposito S et al. Treatment options for methicillin-resistant Staphylococcus aureus (MRSA) infection: where are we now? J. Glob. Antimicrob. Resist. 2(3), 133–140 (2014). • Describes what MRSA is and what damage MRSA can cause.
    • 2. Ahmadi M. Investigation of antibacterial effect of cadmium oxide nanoparticles on Staphylococcus aureus bacteria. J. Nanobiotechnol. 12(1), 26 (2014).
    • 3. Gurieva TV, Bootsma MC, Bonten MJ. Decolonization of patients and health care workers to control nosocomial spread of methicillin-resistant Staphylococcus aureus: a simulation study. BMC Infect. Dis. 12, 302 (2012).
    • 4. Peacock SJ, Paterson GK. Mechanisms of methicillin resistance in Staphylococcus aureus. Annu. Rev. Biochem. 84, 577–601 (2015).
    • 5. Groves MD, Crouch B, Coombs GW et al. Molecular epidemiology of methicillin-resistant Staphylococcus aureus isolated from Australian veterinarians. PLoS ONE 11(1), e0146034 (2016).
    • 6. Piatkowska E, Piatkowski J, Przondo-Mordarska A. The strongest resistance of Staphylococcus aureus to erythromycin is caused by decreasing uptake of the antibiotic into the cells. Cell Mol. Biol. Lett. 17(4), 633–645 (2012).
    • 7. Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resist. Updat. 13(6), 151–171 (2010).
    • 8. Van Bambeke F, Balzi E, Tulkens PM. Antibiotic efflux pumps. Biochem. Pharmacol. 60(4), 457–470 (2000).
    • 9. Aucken HM, Ganner M, Murchan S, Cookson BD, Johnson AP. A new UK strain of epidemic methicillin-resistant Staphylococcus aureus (EMRSA-17) resistant to multiple antibiotics. J. Antimicrob. Chemother. 50(2), 171–175 (2002).
    • 10. Roberts MC, Schwarz S, Aarts HJ. Erratum: acquired antibiotic resistance genes: an overview. Front. Microbiol. 3, 384 (2012).
    • 11. Wootton M, Howe RA, Walsh TR, Bennett PM, MacGowan AP. In vitro activity of 21 antimicrobials against vancomycin-resistant Staphylococcus aureus (VRSA) and heteroVRSA (hVRSA). J. Antimicrob. Chemother. 50(5), 760–761 (2002). • Introduces that vancomycin is the first-line drug for the treatment of MRSA infection-related diseases.
    • 12. Hiramatsu K, Hanaki H, Ino T, Yabuta K, Oguri T, Tenover FC. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J. Antimicrob. Chemother. 40(1), 135–136 (1997).
    • 13. Hiramatsu K, Aritaka N, Hanaki H et al. Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet 350(9092), 1670–1673 (1997).
    • 14. Deng Y, Yu Y, Luo H, Zhang M, Qin X, Li L. Antimicrobial activity of extract and two alkaloids from traditional Chinese medicinal plant Stephania dielsiana. Food Chem. 124(4), 1556–1560 (2011).
    • 15. Zuo GY, Zhang XJ, Yang CX, Han J, Wang GC, Bian ZQ. Evaluation of traditional Chinese medicinal plants for anti-MRSA activity with reference to the treatment record of infectious diseases. Molecules 17(3), 2955–2967 (2012).
    • 16. Zuo GY, Wang GC, Zhao YB et al. Screening of Chinese medicinal plants for inhibition against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). J. Ethnopharmacol. 120(2), 287–290 (2008).
    • 17. Gibbons S. Anti-staphylococcal plant natural products. Nat. Prod. Rep. 21(2), 263–277 (2004). •• Specifies the inhibitory effect of natural products on MRSA.
    • 18. Abreu AC, Mcbain AJ, Simoes M. Plants as sources of new antimicrobials and resistance-modifying agents. Nat. Prod. Rep. 29(9), 1007–1021 (2012).
    • 19. Sharifirad J. Phytochemical screening and antibacterial activity of different parts of the Prosopis farcta extracts against methicillin-resistant Staphylococcus aureus (MRSA). Minerva Biotecnol. 26(4), 287–293 (2014). • The inhibitory effect of extracts from different parts of natural products on MRSA was different.
    • 20. Silva JaTD. Chemical composition, antioxidant activity and in vitro antibacterial activity ofAchillea wilhelmsiiC. Koch essential oil on methicillin-susceptible and methicillin-resistant Staphylococcus aureus spp. Biotech 5(1), 39–44 (2015).
    • 21. Chung PY, Navaratnam P, Chung LY. Synergistic antimicrobial activity between pentacyclic triterpenoids and antibiotics against Staphylococcus aureus strains. Ann. Clin. Microbiol. Antimicrob. 10(1), 25–25 (2011).
    • 22. Fischbach MA. Combination therapies for combating antimicrobial resistance. Curr. Opin. Microbiol. 14(5), 519–523 (2011). •• Suggests that combination therapy is a promising strategy to combat MRSA.
    • 23. Brehm-Stecher BF, Johnson EA. Sensitization of Staphylococcus aureus and Escherichia coli to antibiotics by the sesquiterpenoids nerolidol, farnesol, bisabolol, and apritone. Antimicrob. Agents Chemother. 47(10), 3357–3360 (2003).
    • 24. Grande MJ, Lopez RL, Abriouel H et al. Treatment of vegetable sauces with enterocin AS-48 alone or in combination with phenolic compounds to inhibit proliferation of Staphylococcus aureus. J. Food Prot. 70(2), 405–411 (2007).
    • 25. Braga LC, Leite AA, Xavier KG et al. Synergic interaction between pomegranate extract and antibiotics against Staphylococcus aureus. Can. J. Microbiol. 51(7), 541–547 (2005).
    • 26. Hemaiswarya S, Kruthiventi AK, Doble M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 15(8), 639–652 (2008). •• Suggests that the combination of traditional Chinese medicine and Western medicine can play a synergistic antibacterial effect.
    • 27. Sharifi-Rad J, Mnayer D, Roointan A et al. Antibacterial activities of essential oils from Iranian medicinal plants on extended-spectrum β-lactamase-producing Escherichia coli. Cell. Mol. Biol. 62(9), 75–82 (2016).
    • 28. Foster TJ. Can β-lactam antibiotics be resurrected to combat MRSA? Trends Microbiol. 27(1), 26–38 (2018).
    • 29. Chambers HF, Deleo FR. Waves of resistance: staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 7(9), 629–641 (2009).
    • 30. Yu HH, Kim KJ, Cha JD et al. Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. J. Med. Food. 8(4), 454–461 (2005).
    • 31. Liu IX, Durham DG, Richards RM. Baicalin synergy with beta-lactam antibiotics against methicillin-resistant Staphylococcus aureus and other beta-lactam-resistant strains of S. aureus. J. Pharm. Pharmacol. 52(3), 361 (2000).
    • 32. Zuo GY, An J, Han J et al. Isojacareubin from the Chinese Herb hypericum japonicum: potent antibacterial and synergistic effects on clinical methicillin-resistant Staphylococcus aureus (MRSA). Int. J. Mol. Sci. 13(7), 8210–8218 (2012).
    • 33. Basri DF, Sandra V. Synergistic interaction of methanol extract from canarium odontophyllum miq. leaf in combination with oxacillin against methicillin-resistant Staphylococcus aureus (MRSA) ATCC 33591. Int. J. Microbiol. 99(11), E2317–E2324 (2014).
    • 34. Hassan SM, Haq AU, Byrd JA, Berhow MA, Cartwright AL, Bailey CA. Haemolytic and antimicrobial activities of saponin-rich extracts from guar meal. Food Chem. 119(2), 600–605 (2010).
    • 35. Mun SH, Lee YS, Han SH et al. In vitro potential effect of morin in the combination with β-lactam antibiotics against methicillin-resistant Staphylococcus aureus. Foodborne Pathog. Dis. 12(6), 545–550 (2015).
    • 36. Zeng CH, Yang K, Ming-Guang XU, Guang WU, Chen YQ, Zhong ZG. In vitro antibiotic activities of total flavonoids from guangxi ampelopsis grossedentata in combination with β-lactam antibiotics. Herald Med. 2013(3), 9 (2013).
    • 37. Catteau L, Reichmann NT, Olson J et al. Synergy between ursolic and oleanolic acids from vitellaria paradoxa leaf extract and β-lactams against methicillin-resistant Staphylococcus aureus: in vitro and in vivo activity and underlying mechanisms. Molecules 22(12), 2245 (2017).
    • 38. Wang CM, Chen HT, Wu ZY, Jhan YL, Shyu CL, Chou CH. Antibacterial and synergistic activity of pentacyclic triterpenoids isolated from Alstonia scholaris. Molecules (Basel, Switzerland) 21(2), 139 (2016).
    • 39. Hu ZQ, Zhao WH, Hara Y, Shimamura T. Epigallocatechin gallate synergy with ampicillin/sulbactam against 28 clinical isolates of methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 48(3), 361–364 (2001).
    • 40. Shiota S, Shimizu M, Mizushima T et al. Marked reduction in the minimum inhibitory concentration (MIC) of beta-lactams in methicillin-resistant Staphylococcus aureus produced by epicatechin gallate, an ingredient of green tea (Camellia sinensis). Biol. Pharm. Bull. 22(12), 1388–1390 (1999).
    • 41. Shiota S, Shimizu M, Sugiyama J, Morita Y, Mizushima T, Tsuchiya T. Mechanisms of action of corilagin and tellimagrandin I that remarkably potentiate the activity of beta-lactams against methicillin-resistant Staphylococcus aureus. Microbiol. Immunol. 48(1), 67–73 (2004).
    • 42. Shiota S, Shimizu M, Mizusima T et al. Restoration of effectiveness of beta-lactams on methicillin-resistant Staphylococcus aureus by tellimagrandin I from rose red. FEMS Microbiol. Lett. 185(2), 135–138 (2000).
    • 43. Harnett N, Brown S, Krishnan C. Emergence of quinolone resistance among clinical isolates of methicillin-resistant Staphylococcus aureus in Ontario, Canada. Antimicrob. Agents Chemother. 35(9), 1911–1913 (1991).
    • 44. Bebear CM, Renaudin J, Charron A et al. Mutations in the gyrA, parC, and parE genes associated with fluoroquinolone resistance in clinical isolates of Mycoplasma hominis. Antimicrob. Agents Chemother. 43(4), 954 (1999).
    • 45. Toshinobu H, Yasuhiro S, Akio M et al. Detection of mutations in quinolone resistance-determining regions in levofloxacin- and methicillin-resistant Staphylococcus aureus: effects of the mutations on fluoroquinolone MICs. Diagn. Microbiol. Infect. Dis. 46(2), 139–145 (2003).
    • 46. Spigaglia P, Barbanti F, Louie T, Barbut F, Mastrantonio P. Molecular analysis of the gyrA and gyrB quinolone resistance-determining regions of fluoroquinolone-resistant Clostridium difficile mutants selected in vitro. Antimicrob. Agents Chemother. 53(6), 2463–2468 (2009).
    • 47. Stavri M, Piddock LJ, Gibbons S. Bacterial efflux pump inhibitors from natural sources. J. Antimicrob. Chemother. 59(6), 1247–1260 (2007).
    • 48. Piddock LJ. Multidrug-resistance efflux pumps – not just for resistance. Nat. Rev. Microbiol. 4(8), 629–636 (2006).
    • 49. Piddock LJ. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin. Microbiol. Rev. 19(2), 382–402 (2006).
    • 50. Stermitz FR, Lorenz P, Tawara JN, Zenewicz LA, Lewis K. Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor. Proc. Natl Acad. Sci. USA 97(4), 1433–1437 (2000).
    • 51. Costa SS, Sobkowiak B, Parreira R et al. Genetic diversity of norA, Coding for a main efflux pump of Staphylococcus aureus. Front. Genet. 9, 710 (2018).
    • 52. Yu JL, Grinius L, Hooper DC. NorA functions as a multidrug efflux protein in both cytoplasmic membrane vesicles and reconstituted proteoliposomes. J. Bacteriol. 184(5), 1370–1377 (2002).
    • 53. Trucksis M, Wolfson JS, Hooper DC. A novel locus conferring fluoroquinolone resistance in Staphylococcus aureus. J. Bacteriol. 173(18), 5854–5860 (1991).
    • 54. Noguchi N, Okada H, Narui K, Sasatsu M. Comparison of the nucleotide sequence and expression of norA genes and microbial susceptibility in 21 strains of Staphylococcus aureus. Microb. Drug Resist. 10(3), 197–203 (2004).
    • 55. Uddin MJ, Ahn J. Associations between resistance phenotype and gene expression in response to serial exposure to oxacillin and ciprofloxacin in Staphylococcus aureus. Lett. Appl. Microbiol. 65(6), 462–468 (2017).
    • 56. Sundaramoorthy NS, Mitra K, Ganesh JS et al. Ferulic acid derivative inhibits NorA efflux and in combination with ciprofloxacin curtails growth of MRSA in vitro and in vivo. Microb. Pathog. 124, 54–62 (2018).
    • 57. Chan BC, Ip M, Lau CB et al. Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. J. Ethnopharmacol. 137(1), 767–773 (2011).
    • 58. Yang ZC, Wang BC, Yang XS, Wang Q, Ran L. The synergistic activity of antibiotics combined with eight traditional Chinese medicines against two different strains of Staphylococcus aureus. Colloids Surf. B. Biointerfaces 41(2), 79–81 (2005).
    • 59. Norihisa N, Hiroyuki O, Koji N, Masanori S. Comparison of the nucleotide sequence and expression of norA genes and microbial susceptibility in 21 strains of Staphylococcus aureus. Microb. Drug Resist. 10(3), 197–203 (2004).
    • 60. Costa SS, Viveiros M, Amaral L, Couto I. Multidrug efflux pumps in Staphylococcus aureus: an update. Open Microbiol. J. 7, 59–71 (2013).
    • 61. Khan IA, Mirza ZM, Kumar A, Verma V, Qazi GN. Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus. Antimicrob. Agents Chemother. 50(2), 810–812 (2006).
    • 62. Gibbons S, Oluwatuyi M, Kaatz GW. A novel inhibitor of multidrug efflux pumps in Staphylococcus aureus. J. Antimicrob. Chemother. 51(1), 13–17 (2003).
    • 63. Bernard FX, Sablé S, Cameron B et al. Glycosylated flavones as selective inhibitors of topoisomerase IV. Antimicrob. Agents Chemother. 41(5), 992–998 (1997).
    • 64. Liu MH, Otsuka N, Noyori K et al. Synergistic effect of kaempferol glycosides purified from Laurus nobilis and fluoroquinolones on methicillin-resistant Staphylococcus aureus. Biol. Pharm. Bull. 32(3), 489–492 (2009).
    • 65. Bernd B, Cooper MA. Aminoglycoside antibiotics in the 21st century. ACS Chem. Biol. 8(1), 105 (2013).
    • 66. Nakazawa H, Kikuchi Y, Honda T, Isago T, Nozaki M. Enhancement of antimicrobial effects of various antibiotics against methicillin-resistant Staphylococcus aureus (MRSA) by combination with fosfomycin. J. Infect. Chemother. 9(4), 304–309 (2003).
    • 67. Adwan GM, Abushanab BA, Adwan KM. In vitro activity of certain drugs in combination with plant extracts against Staphylococcus aureus infections. African J. Biotechnol. 8(17), 4239–4241 (2009).
    • 68. Lee YS, Kang OH, Choi JG et al. Synergistic effects of the combination of galangin with gentamicin against methicillin-resistant Staphylococcus aureus. J. Microbiol. 46(3), 283–288 (2008).
    • 69. Kim ES, Jeong SI, Kim JH et al. Synergistic effects of the combination of 20-hydroxyecdysone with ampicillin and gentamicin against methicillin-resistant Staphylococcus aureus. J. Microbiol. Biotechnol. 19(12), 1576–1581 (2009).
    • 70. Guo Y, Wu Y, Chen W, Lin J. Endotoxic damage to the stria vascularis: the pathogenesis of sensorineural hearing loss secondary to otitis media? J. Laryngol. Otol. 108(4), 310–313 (1994).
    • 71. Mates SM, Eisenberg ES, Mandel LJ, Patel L, Kaback HR, Miller MH. Membrane potential and gentamicin uptake in Staphylococcus aureus. Proc. Natl Acad. Sci. USA 79(21), 6693–6697 (1982).
    • 72. Vázquez NM, Fiorilli G, Guido PaC, Moreno S. Carnosic acid acts synergistically with gentamicin in killing methicillin-resistant Staphylococcus aureus clinical isolates. Phytomedicine 23(12), 1337–1343 (2016).
    • 73. Teng Z, Li M, Shi D, Deng X, Wang J. Synergistic interactions of cryptotanshinone and aminoglycoside antibiotics against Staphylococcus aureus in vitro. J. Glob. Antimicrob. Resist. 13, 264–265 (2018).
    • 74. Cha JD, Lee JH, Choi KM, Choi SM, Park JH. Synergistic effect between cryptotanshinone and antibiotics against clinic methicillin and vancomycin-resistant Staphylococcus aureus. Evid. Based Complement. Alternat. Med. 2014, 450572 (2014). • Indicates synergistic properties of glycopeptide antibiotic combined with herbal extract against MRSA.
    • 75. Zuo GY, Han ZQ, Hao XY, Han J, Li ZS, Wang GC. Synergy of aminoglycoside antibiotics by 3-Benzylchroman derivatives from the Chinese drug Caesalpinia sappan against clinical methicillin-resistant Staphylococcus aureus (MRSA). Phytomedicine 21(7), 936–941 (2014).
    • 76. Xu HX, Lee SF. The antibacterial principle of Caesalpina sappan. Phytother. Res. 18(8), 647–651 (2010).
    • 77. Ball PR, Shales SW, Chopra I. Plasmid-mediated tetracycline resistance in escherichia coli involves increased efflux of the antibiotic. Biochem. Biophys. Res. Commun. 93(1), 74–81 (1980).
    • 78. Khan SA, Novick RP. Complete nucleotide sequence of pT181, a tetracycline-resistance plasmid from Staphylococcus aureus. Plasmid 10(3), 251–259 (1983).
    • 79. Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65(2), 232–260 (2001).
    • 80. Connell SR, Tracz DM, Nierhaus KH, Taylor DE. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob. Agents Chemother. 47(12), 3675 (2003).
    • 81. Burdett V. Tet(M)-promoted release of tetracycline from ribosomes is GTP dependent. J. Bacteriol. 178(11), 3246 (1996).
    • 82. Mai F, Sumiko S, Teruo K et al. Remarkable synergies between baicalein and tetracycline, and baicalein and beta-lactams against methicillin-resistant Staphylococcus aureus. Microbiol. Immunol. 49(4), 391–396 (2013).
    • 83. Novy P, Urban J, Leuner O, Vadlejch J, Kokoska L. In vitro synergistic effects of baicalin with oxytetracycline and tetracycline against Staphylococcus aureus. J. Antimicrob. Chemother. 66(6), 1298 (2011). • Indicates synergistic antimicrobial effect of tetracycline combined with herbal extract against MRSA.
    • 84. Kurek A, Nadkowska P, Pliszka S, Wolska KI. Modulation of antibiotic resistance in bacterial pathogens by oleanolic acid and ursolic acid. Phytomedicine 19(6), 515–519 (2012).
    • 85. Bonvicini F, Mandrone M, Antognoni F, Poli F, Angela Gentilomi G. Ethanolic extracts of Tinospora cordifolia and Alstonia scholaris show antimicrobial activity towards clinical isolates of methicillin-resistant and carbapenemase-producing bacteria. Nat. Prod. Res. 28(18), 1438–1445 (2014).
    • 86. Kumiko H, Sumiko S, Tsutomu H, Takashi Y, Teruo K, Tomofusa T. Antimicrobial activity of oleanolic acid from Salvia officinalis and related compounds on vancomycin-resistant enterococci (VRE). Biol. Pharm. Bull. 30(6), 1147–1149 (2007).
    • 87. hdullah S, Kakru DK, Thoker MA, Bhat FA, Hussain N, Shah A. Emergence of low level vancomycin resistance in MRSA. Indian J. Med. Microbiol. 21(3), 196–198 (2003).
    • 88. Kollef M. Limitations of vancomycin in the management of resistant staphylococcal infections. Clin. Infect. Dis. 45(3), 191–195 (2007).
    • 89. van Hal SJ, Lodise TP, Paterson DL. The clinical significance of vancomycin minimum inhibitory concentration in Staphylococcus aureus infections: a systematic review and meta-analysis. Clin. Infect. Dis. 54(6), 755–771 (2012).
    • 90. Bruniera FR, Ferreira FM, Saviolli LR et al. The use of vancomycin with its therapeutic and adverse effects: a review. Eur. Rev. Med. Pharmacol. Sci. 19(4), 694–700 (2015).
    • 91. Leandro DL, Beatriz B, Laila M. Antimicrobial activity of 6-oxophenolic triterpenoids. Mode of action against Bacillus subtilis. Planta Med. 71(04), 313–319 (2005).
    • 92. Walencka E, Rozalska S, Wysokinska H, Rozalski M, Kuzma L, Rozalska B. Salvipisone and aethiopinone from Salvia sclarea hairy roots modulate staphylococcal antibiotic resistance and express anti-biofilm activity. Planta Med. 73(06), 545–551 (2007).
    • 93. Feng H, Xiang H, Zhang J et al. Genome-wide transcriptional profiling of the response of Staphylococcus aureus to Cryptotanshinone. Biomed. Res. Int. 2009(1110–7243), 617509 (2009).