We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Zika control through the bacterium Wolbachia pipientis

    Eric P Caragata

    Centro de Pesquisas René Rachou – Fiocruz, Belo Horizonte, Minas Gerais, Brazil

    ,
    Heverton LC Dutra

    Centro de Pesquisas René Rachou – Fiocruz, Belo Horizonte, Minas Gerais, Brazil

    ,
    Scott L O’Neill

    School of Biological Sciences, Monash University, Clayton, Melbourne, Victoria, Australia

    &
    Luciano A Moreira

    *Author for correspondence:

    E-mail Address: luciano@cpqrr.fiocruz.br

    Centro de Pesquisas René Rachou – Fiocruz, Belo Horizonte, Minas Gerais, Brazil

    Published Online:https://doi.org/10.2217/fmb-2016-0177
    Free first page

    References

    • 1 Cao-Lormeau VM, Blake A, Mons S et al. Guillain-Barre Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet 387(10027), 1531–1539 (2016).
    • 2 Martines RB, Bhatnagar J, de Oliveira Ramos AM et al. Pathology of congenital Zika syndrome in Brazil: a case series. Lancet 388(10047), 898–904 (2016).
    • 3 Wikan N, Smith DR. Zika virus: history of a newly emerging arbovirus. Lancet Infect. Dis. 16(7), e119–e126 (2016).
    • 4 Larocca RA, Abbink P, Peron JP et al. Vaccine protection against Zika virus from Brazil. Nature 536(7617), 474–478 (2016).
    • 5 McGraw EA, O’Neill SL. Beyond insecticides: new thinking on an ancient problem. Nat. Rev. Microbiol. 11(3), 181–193 (2013).
    • 6 Moreira LA, Iturbe-Ormaetxe I, Jeffery JA et al. A Wolbachia symbiont in Aedes aegypti limits infection with Dengue, Chikungunya, and Plasmodium. Cell 139(7), 1268–1278 (2009).
    • 7 Walker T, Johnson PH, Moreira LA et al. A non-virulent Wolbachia infection blocks dengue transmission and rapidly invades Aedes aegypti populations. Nature 476, 450–455 (2011).
    • 8 Nguyen TH, Nguyen HL, Nguyen TY et al. Field evaluation of the establishment potential of wMelPop Wolbachia in Australia and Vietnam for dengue control. Parasit. Vectors 8, 563 (2015).
    • 9 Ferguson NM, Kien DT, Clapham H et al. Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti. Sci. Transl. Med. 7(279), 279ra237 (2015).
    • 10 Eliminate Dengue Program. www.eliminatedengue.com
    • 11 Aliota MT, Peinado SA, Velez ID, Osorio JE. The wMel strain of Wolbachia reduces transmission of Zika virus by Aedes aegypti. Sci. Rep. 6, 28792 (2016).
    • 12 Dutra HL, Rocha MN, Dias FB, Mansur SB, Caragata EP, Moreira LA. Wolbachia blocks currently circulating Zika virus isolates in Brazilian Aedes aegypti mosquitoes. Cell Host Microbe 19(6), 771–774 (2016).
    • 13 Aliota MT, Walker EC, Uribe Yepes A, Dario Velez I, Christensen BM, Osorio JE. The wMel Strain of Wolbachia reduces transmission of Chikungunya virus in Aedes aegypti. PLoS Negl. Trop. Dis. 10(4), e0004677 (2016).
    • 14 van den Hurk AF, Hall-Mendelin S, Pyke AT et al. Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector Aedes aegypti. PLoS Negl. Trop. Dis. 6(11), e1892 (2012).
    • 15 Hoffmann AA, Iturbe-Ormaetxe I, Callahan AG et al. Stability of the wMel Wolbachia infection following invasion into Aedes aegypti populations. PLoS Negl. Trop. Dis. 8(9), e3115 (2014).
    • 16 Sun Yat-Sen University–Michigan State University Joint Centre of Vector Control for Tropical Disease. www.wolbachia.cn
    • 17 Mosquito Mate. www.mosquitomate.com
    • 18 Bourtzis K, Dobson SL, Xi Z et al. Harnessing mosquito–Wolbachia symbiosis for vector and disease control. Acta Trop. 132(Suppl.), S150–S163 (2014).
    • 19 O’Connor L, Plichart C, Sang AC, Brelsfoard CL, Bossin HC, Dobson SL. Open release of male mosquitoes infected with a Wolbachia biopesticide: field performance and infection containment. PLoS Negl. Trop. Dis. 6(11), e1797 (2012).
    • 20 Atyame CM, Pasteur N, Dumas E et al. Cytoplasmic incompatibility as a means of controlling Culex pipiens quinquefasciatus mosquito in the islands of the south-western Indian Ocean. PLoS Negl. Trop. Dis. 5(12), e1440 (2011).
    • 21 Gilles JR, Schetelig MF, Scolari F et al. Towards mosquito sterile insect technique programmes: exploring genetic, molecular, mechanical and behavioural methods of sex separation in mosquitoes. Acta Trop. 132(Suppl.), S178–S187 (2014).