Abstract
Excess generation of reactive oxygen species (ROS) and cytosolic calcium accumulation play major roles in the initiation of programmed cell death during acute myocardial infarction. Cell death may include necrosis, apoptosis and autophagy, and combinations thereof. During ischemia, calcium handling between the sarcoplasmic reticulum and myofilament is disrupted and calcium is diverted to the mitochondria causing swelling. Reperfusion, while essential for survival, reactivates energy transduction and contractility and causes the release of ROS and additional ionic imbalance. During acute ischemia–reperfusion, the principal death pathways are programmed necrosis and apoptosis through the intrinsic pathway, initiated by the opening of the mitochondrial permeability transition pore and outer mitochondrial membrane permeabilization, respectively. Despite intense investigation, the mechanisms of action and modes of regulation of mitochondrial membrane permeabilization are incompletely understood. Extrinsic apoptosis, necroptosis and autophagy may also contribute to ischemia–reperfusion injury. In this review, the roles of dysregulated calcium and ROS and the contributions of Bcl-2 proteins, as well as mitochondrial morphology in promoting mitochondrial membrane permeability change and the ensuing cell death during myocardial infarction are discussed.
References
- 1 Adams JM, Cory S. The Bcl-2-regulated apoptosis switch: mechanism and therapeutic potential. Curr. Opin. Immunol.19(5),488–496 (2007).Crossref, Medline, CAS, Google Scholar
- 2 Konstantinidis K, Whelan RS, Kitsis RN. Mechanisms of cell death in heart disease. Arterioscler. Thromb. Vasc. Biol.32(7),1552–1562 (2012).Crossref, Medline, CAS, Google Scholar
- 3 Oerlemans MI, Koudstaal S, Chamuleau SA, de Kleijn DP, Doevendans PA, Sluijter JP. Targeting cell death in the reperfused heart: pharmacological approaches for cardioprotection. Int. J. Cardiol. doi:10.1016/j.ijcard.2012.03.055 (2012) (Epub ahead of print).Medline, Google Scholar
- 4 Machado NG, Alves MG, Carvalho RA, Oliveira PJ. Mitochondrial involvement in cardiac apoptosis during ischemia and reperfusion: can we close the box? Cardiovasc. Toxicol.9(4),211–227 (2009).Crossref, Medline, Google Scholar
- 5 Dorn GW 2nd. Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodelling. Cardiovasc. Res.81(3),465–473 (2009).Crossref, Medline, CAS, Google Scholar
- 6 Hamacher-Brady A, Brady NR, Gottlieb RA. The interplay between pro-death and pro-survival signaling pathways in myocardial ischemia/reperfusion injury: apoptosis meets autophagy. Cardiovasc. Drugs Ther.20(6),445–462 (2006).Crossref, Medline, CAS, Google Scholar
- 7 Webster KA, Graham RM, Thompson JW et al. Redox stress and the contributions of BH3-only proteins to infarction. Antioxid. Redox. Signal.8(9–10),1667–1676 (2006).Crossref, Medline, CAS, Google Scholar
- 8 Degterev A, Yuan J. Expansion and evolution of cell death programmes. Nat. Rev. Mol. Cell. Biol.9(5),378–390 (2008).Crossref, Medline, CAS, Google Scholar
- 9 Jung JE, Kim GS, Chen H et al. Reperfusion and neurovascular dysfunction in stroke: from basic mechanisms to potential strategies for neuroprotection. Mol. Neurobiol.41(2–3),172–179 (2010).Crossref, Medline, CAS, Google Scholar
- 10 Nieminen AL. Apoptosis and necrosis in health and disease: role of mitochondria. Int. Rev. Cytol.224,29–55 (2003).Crossref, Medline, CAS, Google Scholar
- 11 Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat. Med.17(7),796–808 (2011).Crossref, Medline, CAS, Google Scholar
- 12 Baines CP, Kaiser RA, Purcell NH et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature434,658–662 (2005).Crossref, Medline, CAS, Google Scholar
- 13 Nakagawa T, Shimizu S, Watanabe T et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature434(7033),652–658 (2005).Crossref, Medline, CAS, Google Scholar
- 14 Halestrap AP. What is the mitochondrial permeability transition pore? J. Mol. Cell. Cardiol.46,821–831 (2009).Crossref, Medline, CAS, Google Scholar
- 15 Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD. Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat. Cell. Biol.9(5),550–555 (2007).Crossref, Medline, CAS, Google Scholar
- 16 Gustafsson AB, Gottlieb RA. Bcl-2 family members and apoptosis, taken to heart. Am. J. Physiol. Cell. Physiol.292,C45–C51 (2006).Crossref, Medline, Google Scholar
- 17 Juhaszova M, Zorov DB, Kim SH et al. Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J. Clin. Invest.113(11),1535–1549 (2004).Crossref, Medline, CAS, Google Scholar
- 18 Hunter DR, Haworth RA, Southard JH. Relationship between configuration, function, and permeability in calcium-treated mitochondria. J. Biol. Chem.1251(16),5069–5077 (1976).Crossref, Google Scholar
- 19 Haworth RA, Hunter DR. The Ca2+-induced membrane transition in mitochondria. Nature of the Ca2+ trigger site. Arch. Biochem. Biophys.195(2),460–467 (1979).Crossref, Medline, CAS, Google Scholar
- 20 Crompton M, Costi A. Kinetic evidence for a heart mitochondrial pore activated by Ca2+ inorganic phosphate and oxidative stress. A potential mechanism for mitochondrial dysfunction during cellular Ca2+ overload. Eur. J. Biochem.178,489–501 (1988).Crossref, Medline, CAS, Google Scholar
- 21 Nazareth W, Yafei N, Crompton M. Inhibition of anoxia-induced injury in heart myocytes by cyclosporin-A. J. Mol. Cell. Cardiol.23,1351–1354 (1991).Crossref, Medline, CAS, Google Scholar
- 22 Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell116,205–219 (2004).Crossref, Medline, CAS, Google Scholar
- 23 Tsujimoto Y, Nakagawa T, Shimizu S. Mitochondrial membrane permeability transition and cell death. Biochim. Biophys. Acta1757,1297–1300 (2006).Crossref, Medline, CAS, Google Scholar
- 24 Whelan RS, Konstantinidis K, Wei AC et al. Bax regulates primary necrosis through mitochondrial dynamics. Proc. Natl Acad. Sci. USA109,6566–6571 (2012).Crossref, Medline, CAS, Google Scholar
- 25 Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature399,483–487 (1999).Crossref, Medline, CAS, Google Scholar
- 26 Shimizu S, Matsuoka Y, Shinohara Y, Yoneda Y, Tsujimoto Y. Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells. J. Cell. Biol.152,237–250 (2001).Crossref, Medline, CAS, Google Scholar
- 27 Crompton M. On the involvement of mitochondrial intermembrane junctional complexes in apoptosis. Curr. Med. Chem.10,1473–1484 (2003).Crossref, Medline, CAS, Google Scholar
- 28 Lemasters JJ, Holmuhamedov E. Voltage-dependent anion channel (VDAC) as mitochondrial governator – thinking outside the box. Biochim. Biophys. Acta1762,1181–1190 (2006).Google Scholar
- 29 Majewski N, Nogueira V, Bhaskar P et al. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol. Cell16,819–830 (2004).Crossref, Medline, CAS, Google Scholar
- 30 Shoshan-Barmatz V, Israelson A, Brdiczka D, Sheu SS. The voltage-dependent anion channel (VDAC): function in intracellular signaling, cell life and cell death. Curr. Pharm. Design12,2249–2270 (2006).Crossref, Medline, CAS, Google Scholar
- 31 Zaid H, Abu-Hamad S, Israelson A, Nathan I, Shoshan-Barmatz V. The voltage-dependent anion channel-1 modulates apoptotic cell death. Cell Death Differ.12,751–760 (2005).Crossref, Medline, CAS, Google Scholar
- 32 Cheng EHY, Sheiko T, Fisher JK, Craigen WJ, Korsmeyer SJ. VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science5632,513–517 (2003).Crossref, Google Scholar
- 33 Kim R, Emi M, Tanabe K, Murakami S, Uchida Y, Arihiro K. Regulation and interplay of apoptotic and non-apoptotic cell death. J. Pathol.208,319–326 (2006).Crossref, Medline, CAS, Google Scholar
- 34 Rostovtseva TK, Antonsson B, Suzuki M, Youle RJ, Colombini M, Bezrukov SM. Bid, but not Bax, regulates VDAC channels. J. Biol. Chem.279,13575–13583 (2004).Crossref, Medline, CAS, Google Scholar
- 35 Szabó I, Zoratti M. The giant channel of the inner mitochondrial membrane is inhibited by cyclosporin A. J. Biol. Chem.266(6),3376–3379 (1991).Crossref, Medline, CAS, Google Scholar
- 36 Kaufmann T, Strasser A, Jost PJ. Fas death receptor signalling: roles of Bid and XIAP. Cell Death Differ.19(1),42–50 (2012).Crossref, Medline, CAS, Google Scholar
- 37 Jeremias I, Kupatt C, Martin-Villaba A et al. Involvement of CD95/Apo1/Fas in cell death after myocardial ischemia. Circulation102,915–920 (2000).Crossref, Medline, CAS, Google Scholar
- 38 Lee P, Sata M, Lefer DJ et al. Fas pathway is a critical mediator of cardiac myocyte death and MI during ischemia-reperfusion in vivo. Am. J. Physiol. Heart Circ. Physiol.284,H456–H463 (2003).Crossref, Medline, CAS, Google Scholar
- 39 Zhao WS, Xu L, Wang LF et al. A 60-s postconditioning protocol by percutaneous coronary intervention inhibits myocardial apoptosis in patients with acute myocardial infarction. Apoptosis14(10),1204–1211 (2009).Crossref, Medline, Google Scholar
- 40 Verhagen AM, Ekert PG, Pakusch M et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell102(1),43–53 (2000).Crossref, Medline, CAS, Google Scholar
- 41 Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell102(1),33–42 (2000).Crossref, Medline, CAS, Google Scholar
- 42 Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell8(3),613–621 (2001).Crossref, Medline, CAS, Google Scholar
- 43 Yang QH, Church-Hajduk R, Ren J, Newton ML, Du C. Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev.17(12),1487–1496 (2003).Crossref, Medline, CAS, Google Scholar
- 44 Oakes SA, Scorrano L, Opferman JT et al. Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc. Natl Acad. Sci. USA102(1),105–110 (2005).Crossref, Medline, CAS, Google Scholar
- 45 Bassik MC, Scorrano L, Oakes SA, Pozzan T, Korsmeyer SJ. Phosphorylation of BCL-2 regulates ER Ca2+ homeostasis and apoptosis. EMBO J.23(5),1207–1216 (2004).Crossref, Medline, CAS, Google Scholar
- 46 Oakes SA, Opferman JT, Pozzan T, Korsmeyer SJ, Scorrano L. Regulation of endoplasmic reticulum Ca2+ dynamics by proapoptotic BCL-2 family members. Biochem. Pharmacol.66(8),1335–1340 (2003).Crossref, Medline, CAS, Google Scholar
- 47 Scorrano L, Oakes SA, Opferman JT et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science300(5616),135–139 (2003).Crossref, Medline, CAS, Google Scholar
- 48 Thompson JW, Graham RM, Webster KA. DNase activation by hypoxia-acidosis parallels but is independent of programmed cell death. Life Sci.91(7–8),223–229 (2012).Crossref, Medline, CAS, Google Scholar
- 49 Ravichandran KS, Lorenz U. Engulfment of apoptotic cells: signals for a good meal. Nat. Rev. Immunol.7(12),964–974 (2007).Crossref, Medline, CAS, Google Scholar
- 50 Dutta D, Calvani R, Bernabei R, Leeuwenburgh C, Marzetti E. Contribution of impaired mitochondrial autophagy to cardiac aging: mechanisms and therapeutic opportunities. Circ. Res.110(8),1125–1138 (2012).Crossref, Medline, CAS, Google Scholar
- 51 Verfaillie T, Salazar M, Velasco G, Agostinis P. Linking ER stress to autophagy: potential implications for cancer therapy. Int. J. Cell. Biol.2010,930509 (2010).Crossref, Medline, Google Scholar
- 52 Gustafsson AB, Gottlieb RA. Autophagy in ischemic heart disease. Circ. Res.104(2),150–158 (2009).Crossref, Medline, CAS, Google Scholar
- 53 Sadoshima J. The role of autophagy during ischemia/reperfusion. Autophagy4(4),402–403 (2008).Crossref, Medline, Google Scholar
- 54 Kubasiak LA, Hernandez OM, Bishopric NH, Webster KA. Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proc. Natl Acad. Sci. USA99(20),12825–12830 (2002).Crossref, Medline, CAS, Google Scholar
- 55 Webster KA, Graham RM, Bishopric NH. BNip3 and signal-specific programmed death in the heart. J. Mol. Cell. Cardiol.38(1),35–45 (2005).Crossref, Medline, CAS, Google Scholar
- 56 Diwan A, Krenz M, Syed FM et al. Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. J. Clin. Invest.117(10),2825–2833 (2007).Crossref, Medline, CAS, Google Scholar
- 57 Groenendyk J, Sreenivasaiah PK, Do HK, Agellon LB, Michalak M. Biology of endoplasmic reticulum stress in the heart. Circ. Res.107(10),1185–1197 (2010).Crossref, Medline, CAS, Google Scholar
- 58 Giricz Z, Mentzer RM Jr, Gottlieb RA. Autophagy, myocardial protection and the metabolic syndrome. J. Cardiovasc. Pharmacol.60(2),125–132 (2012).Crossref, Medline, CAS, Google Scholar
- 59 Li Q, Zhou LY, Gao GF, Jiao JQ, Li PF. Mitochondrial network in the heart. Protein Cell3(6),410–418 (2012).Crossref, Medline, CAS, Google Scholar
- 60 Inserte J, Barrabés JA, Hernando V, Garcia-Dorado D. Orphan targets for reperfusion injury. Cardiovasc. Res.83(2),169–178 (2009).Crossref, Medline, CAS, Google Scholar
- 61 Pott C, Eckardt L, Goldhaber JI. Triple threat: the Na+/Ca2+ exchanger in the pathophysiology of cardiac arrhythmia, ischemia and heart failure. Curr. Drug Targets12(5),737–747 (2011).Crossref, Medline, CAS, Google Scholar
- 62 Bers DM. Cardiac excitation contraction coupling. Nature415,198–205 (2002).Crossref, Medline, CAS, Google Scholar
- 63 Chen-Izu Y, McCulle SL, Ward CW et al. Three-dimensional distribution of ryanodine receptor clusters in cardiac myocytes. Biophys. J.91,1–13 (2006).Crossref, Medline, Google Scholar
- 64 Collins TJ, Lipp P, Berridge MJ, Bootman MD. Mitochondrial Ca(2+) uptake depends on the spatial and temporal profile of cytosolic Ca(2+) signals. J. Biol. Chem.276,26411–26420 (2001).Crossref, Medline, CAS, Google Scholar
- 65 Jones PP, Bazzazi H, Kargacin GJ, Colyer J. Inhibition of cAMP dependent protein kinase under conditions occurring in the cardiac dyad during a Ca2+ transient. Biophys. J.91,433–443 (2006).Crossref, Medline, CAS, Google Scholar
- 66 Peskoff A, Post JA, Langer GA. Sarcolemmal calcium binding sites in heart: II. Mathematical model for diffusion of calcium released from the sarcoplasmic reticulum into the dyadic region. J. Membr. Biol.129,59–69 (1992).Crossref, Medline, CAS, Google Scholar
- 67 Shannon TR, Wang F, Puglisi J, Weber C, Bers DM. A mathematical treatment of integrated Ca dynamics within the ventricular myocyte. Biophys. J.87,3351–3371 (2004).Crossref, Medline, CAS, Google Scholar
- 68 Weber CR, Piacentino V 3rd, Ginsburg KS, Houser SR, Bers DM. Na(+)-Ca(2+) exchange current and submembrane [Ca(2+)] during the cardiac action potential. Circ. Res.90,182–189 (2002).Crossref, Medline, CAS, Google Scholar
- 69 Rizzuto R, Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol. Rev.86,369–408 (2006).Crossref, Medline, CAS, Google Scholar
- 70 Lee JA, Allen DG. Mechanisms of acute ischemic contractile failure of the heart. Role of intracellular calcium. J. Clin. Invest.88(2),361–367 (1991).Crossref, Medline, CAS, Google Scholar
- 71 Arnaudeau S, Kelley WL, Walsh JV Jr, Demaurex N. Mitochondria recycle Ca(2þ) to the endoplasmic reticulum and prevent the depletion of neighboring endoplasmic reticulum regions. J. Biol. Chem.276,29430–29439 (2001).Crossref, Medline, CAS, Google Scholar
- 72 Cox DA, Matlib MA. A role for the mitochondrial Na(+)-Ca2+ exchanger in the regulation of oxidative phosphorylation in isolated heart mitochondria. J. Biol. Chem.268,938–947 (1993).Crossref, Medline, CAS, Google Scholar
- 73 Territo PR, French SA, Balaban RS. Simulation of cardiac work transitions, in vitro: effects of simultaneous Ca2+ and ATPase additions on isolated porcine heart mitochondria. Cell Calcium30,19–27 (2001).Crossref, Medline, CAS, Google Scholar
- 74 Maack C, O’Rourke B. Excitation-contraction coupling and mitochondrial energetics. Basic Res. Cardiol.102(5),369–392 (2007).Crossref, Medline, CAS, Google Scholar
- 75 Kirichok Y, Krapivinsky G, Clapham DE. The mitochondrial calcium uniporter is a highly selective ion channel. Nature427,360–364 (2004).Crossref, Medline, CAS, Google Scholar
- 76 Maak C, O’Rourke B. Excitation-contraction coupling and mitochondrial bioenergetics. Basic Res. Cardiol.102,369–392 (2007).Crossref, Medline, Google Scholar
- 77 Maack C, Cortassa S, Aon MA, Ganesan AN, Liu T, O’Rourke B. Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation- contraction coupling and impairs energetic adaptation in cardiac myocytes. Circ. Res.99,172–182 (2006).Crossref, Medline, CAS, Google Scholar
- 78 Skulachev VP. Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem. Sci.26(1),23–29 (2001).Crossref, Medline, CAS, Google Scholar
- 79 Szabadkai G, Simoni AM, Chami M, Wieckowski MR, Youle RJ, Rizzuto R. Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol. Cell16(1),59–68 (2004).Crossref, Medline, CAS, Google Scholar
- 80 Turrens JF. Mitochondrial formation of reactive oxygen species. J. Physiol.552,335–344 (2003).Crossref, Medline, CAS, Google Scholar
- 81 Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE. Mitochondria and reactive oxygen species. Free Radic. Biol. Med.47(4),333–343 (2009).Crossref, Medline, CAS, Google Scholar
- 82 Orrenius S, Gogvadze V, Zhivotovsky B. Mitochondrial oxidative stress: implications for cell death. Annu. Rev. Pharmacol. Toxicol.47,143–183 (2007).Crossref, Medline, CAS, Google Scholar
- 83 Dougherty CJ, Kubasiak LA, Frazier DP et al. Mitochondrial signals initiate the activation of c-Jun N-terminal kinase (JNK) by hypoxia-reoxygenation. FASEB J.18(10),1060–1070 (2004).Crossref, Medline, CAS, Google Scholar
- 84 Frazier DP, Wilson A, Dougherty CJ et al. PKC-α and TAK-1 are intermediates in the activation of c-Jun NH2-terminal kinase by hypoxia-reoxygenation. Am. J. Physiol. Heart Circ. Physiol.292(4),H1675–H1684 (2007).Crossref, Medline, CAS, Google Scholar
- 85 Halestrap AP, Clarke SJ, Khaliulin I. The role of mitochondria in protection of the heart by preconditioning. Biochim. Biophys. Acta1767(8),1007–1031 (2007).Crossref, Medline, CAS, Google Scholar
- 86 Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J. Exp. Med.192,1001–1014 (2000).Crossref, Medline, CAS, Google Scholar
- 87 Aon MA, Cortassa S, Marban E, O’Rourke B. Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J. Biol. Chem.278,44735–44744 (2003).Crossref, Medline, CAS, Google Scholar
- 88 Inserte J, Barrabés JA, Hernando V, Garcia-Dorado D. Orphan targets for reperfusion injury. Cardiovasc. Res.83(2),169–178 (2009).Crossref, Medline, CAS, Google Scholar
- 89 Garcia-Dorado D, Theroux P, Duran JM et al. Selective inhibition of the contractile apparatus. A new approach to modification of infarct size, infarct composition, and infarct geometry during coronary artery occlusion and reperfusion. Circulation85,1160–1174 (1992).Crossref, Medline, CAS, Google Scholar
- 90 Sebbag L, Verbinski SG, Reimer KA, Jennings RB. Protection of ischemic myocardium in dogs using intracoronary 2,3-butanedione monoxime (BDM). J. Mol. Cell. Cardiol.35,165–176 (2003).Crossref, Medline, CAS, Google Scholar
- 91 Schlack W, Uebing A, Schafer M et al. Regional contractile blockade at the onset of reperfusion reduces infarct size in the dog heart. Pflugers Arch.428,134–141 (1994).Crossref, Medline, CAS, Google Scholar
- 92 Siegmund B, Klietz T, Schwartz P, Piper HM. Temporary contractile blockade prevents hypercontracture in anoxic-reoxygenated cardiomyocytes. Am. J. Physiol.260,H426–H435 (1991).Medline, CAS, Google Scholar
- 93 Garcia-Dorado D, Inserte J, Ruiz-Meana M et al. Gap junction uncoupler heptanol prevents cell-to-cell progression of hypercontracture and limits necrosis during myocardial reperfusion. Circulation96,3579–3586 (1997).Crossref, Medline, CAS, Google Scholar
- 94 Rodriguez-Sinovas A, Garcia-Dorado D, Ruiz-Meana M, Soler-Soler J. Enhanced effect of gap junction uncouplers on macroscopic electrical properties of reperfused myocardium during myocardial reperfusion. Circulation96,3579–3586 (2004).Google Scholar
- 95 Kokoszka JE, Waymire KG, Levy SE et al. The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature427,461–465 (2004).Crossref, Medline, CAS, Google Scholar
- 96 Rodriguez Enriquez S, He LH, Lemasters JJ. Role of mitochondrial permeability transition pores in mitochondrial autophagy. Int. J. Biochem. Cell. Biol.36,2463–2472 (2004).Crossref, Medline, CAS, Google Scholar
- 97 Crompton M. On the involvement of mitochondrial intermembrane junctional complexes in apoptosis. Curr. Med. Chem.10,1473–1484 (2003).Crossref, Medline, CAS, Google Scholar
- 98 Lemasters JJ, Holmuhamedov E. Voltage-dependent anion channel (VDAC) as mitochondrial governator – thinking outside the box. Biochim. Biophys. Acta1762,1181–1190 (2006).Google Scholar
- 99 Majewski N, Nogueira V, Bhaskar P et al. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol. Cell16,819–830 (2004).Crossref, Medline, CAS, Google Scholar
- 100 Piot C, Croisille P, Staat P et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N. Engl. J. Med.359(5),473–481 (2008).Crossref, Medline, CAS, Google Scholar
- 101 Blachly-Dyson E, Forte M. VDAC channels. IUBMB Life52,113–118 (2001).Crossref, Medline, CAS, Google Scholar
- 102 Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature399,483–487 (1999).Crossref, Medline, CAS, Google Scholar
- 103 Vander Heiden MG, Chandel NS, Schumacker PT, Thompson CB. Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol. Cell3,159–167 (1999).Crossref, Medline, CAS, Google Scholar
- 104 Mathupala SP, Ko YH, Pedersen PL. Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene25(34),4777–4786 (2006).Crossref, Medline, CAS, Google Scholar
- 105 Pastorino JG, Hoek JB, Shulga N. Activation of glycogen synthase kinase 3β disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res.65,10545–10554 (2005).Crossref, Medline, CAS, Google Scholar
- 106 Miura T, Miki T. GSK-3β, a therapeutic target for cardiomyocyte protection. Circ. J.73(7),1184–1192 (2009).Crossref, Medline, CAS, Google Scholar
- 107 Chen Z, Chua CC, Ho YS, Hamdy RC, Chua BH. Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. Am. J. Physiol.280,H2313–H2320 (2001).Crossref, CAS, Google Scholar
- 108 Shimizu S, Konishi A, Kodama T, Tsujimoto Y. BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc. Natl Acad. Sci. USA97,3100–3105 (2000).Crossref, Medline, CAS, Google Scholar
- 109 Gustafsson AB, Gottlieb RA. Bcl-2 family members and apoptosis, taken to heart. Am. J. Physiol. Cell Physiol.292,C45–C51 (2006).Crossref, Medline, Google Scholar
- 110 Juhaszova M, Zorov DB, Kim SH et al. Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J. Clin. Invest.113(11),1535–1549 (2004).Crossref, Medline, CAS, Google Scholar
- 111 Ruiz-Meana M, Garcia-Dorado D, Miro-Casas E, Abellan A, Soler-Soler J. Mitochondrial Ca2+ uptake during simulated ischemia does not affect permeability transition pore opening upon simulated reperfusion. Cardiovasc. Res.71,715–724 (2006).Crossref, Medline, CAS, Google Scholar
- 112 Ichas F, Jouaville LS, Mazat JP. Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell89(7),1145–1153 (1997).Crossref, Medline, CAS, Google Scholar
- 113 Petronilli V, Miotto G, Canton M et al. Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys. J.76(2),725–734 (1999).Crossref, Medline, CAS, Google Scholar
- 114 Chipuk JE, Green DR. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell. Biol.18(4),157–164 (2008).Crossref, Medline, CAS, Google Scholar
- 115 Lindsten T, Ross AJ, King A et al. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol. Cell6(6),1389–1399 (2000).Crossref, Medline, CAS, Google Scholar
- 116 Wei MC, Zong WX, Cheng EH et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science292(5517),727–730 (2001).Crossref, Medline, CAS, Google Scholar
- 117 Kinnally KW, Antonsson B. A tale of two mitochondrial channels, MAC and PTP, in apoptosis. Apoptosis12(5),857–868 (2007).Crossref, Medline, CAS, Google Scholar
- 118 Peixoto PM, Ryu SY, Bombrun A, Antonsson B, Kinnally KW. MAC inhibitors suppress mitochondrial apoptosis. Biochem. J.423(3),381–387 (2009).Crossref, Medline, CAS, Google Scholar
- 119 Westphal D, Dewson G, Czabotar PE, Kluck RM. Molecular biology of Bax and Bak activation and action. Biochim. Biophys. Acta1813(4),521–531 (2011).Crossref, Medline, CAS, Google Scholar
- 120 Hom J, Sheu SS. Morphological dynamics of mitochondria – a special emphasis on cardiac muscle cells. J. Mol. Cell. Cardiol.46(6),811–820 (2009).Crossref, Medline, CAS, Google Scholar
- 121 Jourdain A, Martinou JC. Mitochondrial outer-membrane permeabilization and remodelling in apoptosis. Int. J. Biochem. Cell. Biol.41(10),1884–1889 (2009).Crossref, Medline, CAS, Google Scholar
- 122 Yamaguchi R, Lartigue L. Opa1-mediated cristae opening is Bax/Bak and BH3 dependent, required for apoptosis, and independent of Bak oligomerization. Mol. Cell31(4),557–569 (2008).Crossref, Medline, CAS, Google Scholar
- 123 Whelan RS, Konstantinidis K, Wei AC et al. Bax regulates primary necrosis through mitochondrial dynamics. Proc. Natl Acad. Sci. USA109(17),6566–6571 (2012).Crossref, Medline, CAS, Google Scholar
- 124 Guo L, Pietkiewicz D, Pavlov EV et al. Effects of cytochrome c on the mitochondrial apoptosis-induced channel MAC. Am. J. Physiol.286,C1109–C1117 (2004).Crossref, CAS, Google Scholar
- 125 Tissier R, Berdeaux A, Ghaleh B et al. Making the heart resistant to infarction: how can we further decrease infarct size? Front. Biosci.13,284–301 (2008).Crossref, Medline, CAS, Google Scholar
- 126 Skyschally A, Schulz R, Heusch G. Pathophysiology of myocardial infarction: protection by ischemic pre- and postconditioning. Herz33(2),88–100 (2008).Crossref, Medline, Google Scholar
- 127 Zidar N, Jera J, Maja J, Dusan S. Caspases in myocardial infarction. Adv. Clin. Chem.44,1–33 (2007).Crossref, Medline, CAS, Google Scholar
- 128 Churchill EN, Mochly-Rosen D. The roles of PKCδ and ε isoenzymes in the regulation of myocardial ischaemia/reperfusion injury. Biochem. Soc. Trans.35(Pt 5),1040–1042 (2007).Crossref, Medline, CAS, Google Scholar
- 129 Palaniyandi SS, Sun L, Ferreira JC, Mochly-Rosen D. Protein kinase C in heart failure: a therapeutic target? Cardiovasc. Res.82(2),229–239 (2009).Crossref, Medline, CAS, Google Scholar
- 130 Gustafsson AB, Tsai JG, Logue SE, Crow MT, Gottlieb RA. Apoptosis repressor with caspase recruitment domain protects against cell death by interfering with Bax activation. J. Biol. Chem.279(20),21233–21238 (2004).Crossref, Medline, CAS, Google Scholar
- 131 Nam YJ, Mani K, Ashton AW et al. Inhibition of both the extrinsic and intrinsic death pathways through nonhomotypic death-fold interactions. Mol. Cell15(6),901–912 (2004).Crossref, Medline, CAS, Google Scholar
- 132 Liu HR, Gao E, Hu A et al. Role of Omi/HtrA2 in apoptotic cell death after myocardial ischemia and reperfusion. Circulation111(1),90–96 (2005).Crossref, Medline, CAS, Google Scholar
- 133 Bhuiyan MS, Fukunaga K. Activation of HtrA2, a mitochondrial serine protease mediates apoptosis: current knowledge on HtrA2 mediated myocardial ischemia/reperfusion injury. Cardiovasc. Ther.26(3),224–232 (2008).Crossref, Medline, CAS, Google Scholar
- 134 Chua CC, Gao J, Ho YS et al. Overexpression of IAP-2 attenuates apoptosis and protects against myocardial ischemia/reperfusion injury in transgenic mice. Biochim. Biophys. Acta1773(4),577–583 (2007).Crossref, Medline, CAS, Google Scholar
- 135 Roubille F, Combes S, Leal-Sanchez J et al. Myocardial expression of a dominant-negative form of Daxx decreases infarct size and attenuates apoptosis in an in vivo mouse model of ischemia/reperfusion injury. Circulation116(23),2709–2717 (2007).Crossref, Medline, Google Scholar
- 136 Hochhauser E, Cheporko Y, Yasovich N et al. Bax deficiency reduces infarct size and improves long-term function after myocardial infarction. Cell. Biochem. Biophys.47(1),11–20 (2007).Crossref, Medline, CAS, Google Scholar
- 137 Imahashi K, Schneider MD, Steenbergen C, Murphy E. Transgenic expression of Bcl-2 modulates energy metabolism, prevents cytosolic acidification during ischemia, and reduces ischemia/reperfusion injury. Circ. Res.95(7),734–741 (2004).Crossref, Medline, CAS, Google Scholar
- 138 Wei J, Wang W, Chopra I et al. c-Jun N-terminal kinase (JNK-1) confers protection against brief but not extended ischemia during acute myocardial infarction. J. Biol. Chem.286(16),13995–14006 (2011).Crossref, Medline, CAS, Google Scholar
- 139 Freude B, Masters TN, Robiczek F et al. Apoptosis is initiated by myocardial ischaemia and executed during reperfusion. J. Mol. Cell. Cardiol.32,197–208 (2000).Crossref, Medline, CAS, Google Scholar
- 140 Van Cruchten S, Van der Broeck W. Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anat. Histol. Embryol.31,214–223 (2002).Crossref, Medline, CAS, Google Scholar
- 141 Scarabelli TM, Stephanou A, Rayment N. Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischaemia/reperfusion injury. Circulation104,253–256 (2001).Crossref, Medline, CAS, Google Scholar
- 142 Dumont EA, Hofstra L, van Heerde WL et al. Cardiomyocyte death induced by myocardial ischemia and reperfusion measurement with recombinant human annexin-V in a mouse model. Circulation102,1564–1568 (2000).Crossref, Medline, CAS, Google Scholar
- 143 Dumont EA, Reutelingsperger CP, Smits JF et al. Real-time imaging of apoptotic cell-membrane changes at the single-cell level in the beating murine heart. Nat. Med.7,1352–1355 (2001).Crossref, Medline, CAS, Google Scholar
- 144 Hofstra L, Liem IH, Dumont EA et al. Visualisation of cell death in vivo in patients with acute myocardial infarction. Lancet356,209–212 (2000).Crossref, Medline, CAS, Google Scholar
- 145 Nutt LK, Gogvadze V, Uthaisang W, Mirnikjoo B, McConkey DJ, Orrenius S. Indirect effects of Bax and Bak initiate the mitochondrial alterations that lead to cytochrome c release during arsenic trioxide-induced apoptosis. Cancer Biol. Ther.4,459–467 (2005).Crossref, Medline, CAS, Google Scholar
- 146 Zheng Y, Shi Y, Tian C et al. Essential role of the voltage-dependent anion channel (VDAC) in mitochondrial permeability transition pore opening and cytochrome c release induced by arsenic trioxide. Oncogene23,1239–1247 (2004).Crossref, Medline, CAS, Google Scholar
- 147 Przygodzki T, Sokal A, Bryszewska M. Calcium ionophore A23187 action on cardiac myocytes is accompanied by enhanced production of reactive oxygen species. Biochim. Biophys. Acta1740,481–488 (2005).Crossref, Medline, CAS, Google Scholar
- 148 Lax A, Soler F, Fernandez-Belda F. Cytoplasmic Ca2+ signals and cellular death by apoptosis in myocardiac H9c2 cells. Biochim. Biophys. Acta1736,937–947 (2006).Crossref, Google Scholar
- 149 Wei MC, Zon WX, Cheng EHY et al. Proapoptotic Bax and Bak; a requisite gateway to mitochondrial dysfunction and death. Science292,727–730 (2001).Crossref, Medline, CAS, Google Scholar
- 150 Capano M, Crompton M. Bax translocates to mitochondria of heart cells during simulated ischaemia: involvement of AMP-activated and p38 mitogen-activated protein kinases. Biochem. J.395,57–64 (2006).Crossref, Medline, CAS, Google Scholar
- 151 Lundberg KC, Szweda LI. Initiation of mitochondrial-mediated apoptosis during cardiac reperfusion. Arch. Biochem. Biophys.432,50–57 (2004).Crossref, Medline, CAS, Google Scholar
- 152 Huang J, Nakamura K, Ito Y et al. Bcl-xL gene transfer inhibits Bax translocation and prolongs cardiac cold preservation time in rats. Circulation112,76–83 (2005).Crossref, Medline, CAS, Google Scholar
- 153 Nutt LK, Pataer A, Pahler J et al. Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. J. Biol. Chem.277,9219–9225 (2002).Crossref, Medline, CAS, Google Scholar
- 154 Nutt LK, Chandra J, Pataer A et al. Bax-mediated Ca2+ mobilization promotes cytochrome c release during apoptosis. J. Biol. Chem.277,20301–20308 (2002).Crossref, Medline, CAS, Google Scholar
- 155 Hetz C, Vitte PA, Bombrun A et al. Bax channel inhibitors prevent mitochondrion-mediated apoptosis and protect neurons in a model of global brain ischemia. J. Biol. Chem.280,42960–42970 (2005).Crossref, Medline, CAS, Google Scholar
- 156 Takahashi M, Tanonaka K, Yoshida H et al. Possible involvement of calpain activation in pathogenesis of chronic heart failure after acute myocardial infarction. J. Cardiovasc. Pharacol.47,413–421 (2006).Medline, CAS, Google Scholar
- 157 Wencker D, Chandra M, Nguyen K et al. A mechanistic role for cardiac myocyte apoptosis in heart failure. J. Clin. Invest.111,1497–1404 (2003).Crossref, Medline, CAS, Google Scholar
- 158 Saez ME, Ramirez-Lorca R, Moron FJ, Ruiz A. The therapeutic potential of the calpain family: new aspects. Drug Discov. Today11,917–923 (2006).Crossref, Medline, CAS, Google Scholar
- 159 Engel T, Plesnila N, Prehn JH, Henshall DC. In vivo contributions of BH3-only proteins to neuronal death following seizures, ischemia, and traumatic brain injury. J. Cereb. Blood Flow Metab.31(5),1196–1210 (2011).Crossref, Medline, CAS, Google Scholar
- 160 Chen M, Won DJ, Krajewski S, Gottlieb RA. Calpain and mitochondria in ischemia reperfusion injury. J. Biol. Chem.277,29282–29286 (2002).Google Scholar
- 161 Saez ME, Ramirez-Lorca R, Moron FJ, Ruiz A. The therapeutic potential of the calpain family: new aspects. Drug Discov. Today11,917–923 (2006).Crossref, Medline, CAS, Google Scholar
- 162 Willis SN, Adams JM. Life in the balance: how BH3-only proteins induce apoptosis. Curr. Opin. Cell. Biol.17,617–625 (2005).Crossref, Medline, CAS, Google Scholar
- 163 Matsui T, Rosenzweig A. Convergent signal transduction pathways controlling cardiomyocyte survival and function: the role of PI 3-kinase and Akt. J. Mol. Cell. Cardiol.38,63–71 (2005).Crossref, Medline, CAS, Google Scholar
- 164 Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C. PI3K/Akt and apoptosis: size matters. Oncogene22,8983–8998 (2003).Crossref, Medline, CAS, Google Scholar
- 165 Webster KA. Aktion in the nucleus. Circ. Res.94,856–859 (2004).Crossref, Medline, CAS, Google Scholar
- 166 Yamashita K, Kajstura J, Discher DJ, Wasserlauf BJ, Anversa P, Webster KA. Reperfusion-activated Akt kinase prevents apoptosis in transgenic mouse hearts overexpressing insulin-like growth factor-1. Circ. Res.88,609–614 (2001).Crossref, Medline, CAS, Google Scholar
- 167 Murriel CL, Churchill E, Inagaki K, Szweda LI, Mochly-Rosen D. Protein kinase Cδ activation induces apoptosis in response to cardiac ischemia and reperfusion damage: a mechanism involving BAD and the mitochondria. J. Biol. Chem.279,47985–47991 (2004).Crossref, Medline, CAS, Google Scholar
- 168 The Direct Inhibition of ƒ-Protein Kinase C Enzyme to Limit Total Infarct Size in Acute Myocardial Infarction (DELTA MI) Investigators. Intracoronary KAI-9803 as an adjunct to primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction. Circulation117,886–896 (2008).Crossref, Medline, Google Scholar
- 169 Metzler B, Xu Q, Mayr M. Circulation118(letter) (2008).Crossref, Google Scholar
- 170 Graham RM, Frazier D, Thompson JW et al. A unique pathway of cardiac myocyte death caused by hypoxia-acidosis. J. Exp. Biol.207,3189–3200 (2004).Crossref, Medline, CAS, Google Scholar
- 171 Hamacher-Brady A, Brady NR, Gottlieb RA, Gustafsson AB. Autophagy as a protective response to Bnip3-mediated apoptotic signaling in the heart. Autophagy2(4),307–309 (2006).Crossref, Medline, CAS, Google Scholar
- 172 Shaw J, Kirshenbaum LA. Molecular regulation of autophagy and apoptosis during ischemic and non-ischemic cardiomyopathy. Autophagy4(4),427–434 (2008).Crossref, Medline, CAS, Google Scholar
- 173 Burton TR, Gibson SB. The role of Bcl-2 family member BNIP3 in cell death and disease: NIPping at the heels of cell death. Cell Death Differ.16(4),515–523 (2009).Crossref, Medline, CAS, Google Scholar
- 174 Ray R, Chen G, Vande Velde C et al. BNIP3 heterodimerizes with Bcl-2/Bcl-X(L) and induces cell death independent of a Bcl-2 homology 3 (BH3) domain at both mitochondrial and nonmitochondrial sites. J. Biol. Chem.275(2),1439–1448 (2000).Crossref, Medline, CAS, Google Scholar
- 175 Hamacher-Brady A, Brady NR, Logue SE et al. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ.14(1),146–157 (2007).Crossref, Medline, CAS, Google Scholar
- 176 Ray R, Chen G, Vande Velde C et al. BNIP3 heterodimerizes with Bcl-2/Bcl-X(L) and induces cell death independent of a Bcl-2 homology 3 (BH3) domain at both mitochondrial and nonmitochondrial sites. J. Biol. Chem.275(2),1439–1448 (2000).Crossref, Medline, CAS, Google Scholar
- 177 Chaanine AH, Jeong D, Liang L et al. JNK modulates FOXO3a for the expression of the mitochondrial death and mitophagy marker BNIP3 in pathological hypertrophy and in heart failure. Cell Death Dis.3,265 (2012).Crossref, Medline, CAS, Google Scholar
- 178 Shibue T, Suzuki S, Okamoto H et al. Differential contribution of Puma and Noxa in dual regulation of p53-mediated apoptotic pathways. EMBO J.25,4952–4962 (2006).Crossref, Medline, CAS, Google Scholar
- 179 Yu J, Zhang L. No PUMA, no death: implications for p53-dependent apoptosis. Cancer Cell4,248–249 (2003).Crossref, Medline, CAS, Google Scholar
- 180 Erlacher M, Michalak EM, Kelly PN et al. BH3-only proteins Puma and Bim are rate-limiting for γ-radiation- and glucocorticoid-induced apoptosis of lymphoid cells in vivo. Blood106,4131–4138 (2005).Crossref, Medline, CAS, Google Scholar
- 181 Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J. Clin. Invest.115,2656–2664 (2005).Crossref, Medline, CAS, Google Scholar
- 182 Kim JY, Ahn HJ, Ryu JH, Suk K, Park JH. BH3-only protein Noxa is a mediator of hypoxic cell death induced by hypoxia-inducible factor 1α. J. Exp. Med.199,113–124 (2004).Crossref, Medline, CAS, Google Scholar
- 183 Reimertz C, Kogel D, Rami A, Chittenden T, Prehn JH. Gene expression during ER stress-induced apoptosis in neurons: induction of the BH3-only protein Bbc3/PUMA and activation of the mitochondrial apoptosis pathway. J. Cell. Biol.162,587–597 (2003).Crossref, Medline, CAS, Google Scholar
- 184 Toth A, Jeffers JR, Nickson P et al. Targeted deletion of puma attenuates cardiomyocyte death and improves cardiac function during ischemia/reperfusion. Am. J. Physiol. Heart Circ. Physiol.291(1),H52–H60 (2006).Crossref, Medline, CAS, Google Scholar
- 185 Qian L, Van Laake LW, Huang Y, Liu S, Wendland MF, Srivastava D. MiR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. J. Exp. Med.14,208(3), 549–560 (2011).Google Scholar
- 186 Bolli R, Chugh AR, D’Amario D et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO), initial results of a randomised Phase 1 trial. Lancet378(9806),1847–1857(2011).Crossref, Medline, Google Scholar

