We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/fca.12.58

Excess generation of reactive oxygen species (ROS) and cytosolic calcium accumulation play major roles in the initiation of programmed cell death during acute myocardial infarction. Cell death may include necrosis, apoptosis and autophagy, and combinations thereof. During ischemia, calcium handling between the sarcoplasmic reticulum and myofilament is disrupted and calcium is diverted to the mitochondria causing swelling. Reperfusion, while essential for survival, reactivates energy transduction and contractility and causes the release of ROS and additional ionic imbalance. During acute ischemia–reperfusion, the principal death pathways are programmed necrosis and apoptosis through the intrinsic pathway, initiated by the opening of the mitochondrial permeability transition pore and outer mitochondrial membrane permeabilization, respectively. Despite intense investigation, the mechanisms of action and modes of regulation of mitochondrial membrane permeabilization are incompletely understood. Extrinsic apoptosis, necroptosis and autophagy may also contribute to ischemia–reperfusion injury. In this review, the roles of dysregulated calcium and ROS and the contributions of Bcl-2 proteins, as well as mitochondrial morphology in promoting mitochondrial membrane permeability change and the ensuing cell death during myocardial infarction are discussed.

References

  • Adams JM, Cory S. The Bcl-2-regulated apoptosis switch: mechanism and therapeutic potential. Curr. Opin. Immunol.19(5),488–496 (2007).Crossref, Medline, CASGoogle Scholar
  • Konstantinidis K, Whelan RS, Kitsis RN. Mechanisms of cell death in heart disease. Arterioscler. Thromb. Vasc. Biol.32(7),1552–1562 (2012).Crossref, Medline, CASGoogle Scholar
  • Oerlemans MI, Koudstaal S, Chamuleau SA, de Kleijn DP, Doevendans PA, Sluijter JP. Targeting cell death in the reperfused heart: pharmacological approaches for cardioprotection. Int. J. Cardiol. doi:10.1016/j.ijcard.2012.03.055 (2012) (Epub ahead of print).MedlineGoogle Scholar
  • Machado NG, Alves MG, Carvalho RA, Oliveira PJ. Mitochondrial involvement in cardiac apoptosis during ischemia and reperfusion: can we close the box? Cardiovasc. Toxicol.9(4),211–227 (2009).Crossref, MedlineGoogle Scholar
  • Dorn GW 2nd. Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodelling. Cardiovasc. Res.81(3),465–473 (2009).Crossref, Medline, CASGoogle Scholar
  • Hamacher-Brady A, Brady NR, Gottlieb RA. The interplay between pro-death and pro-survival signaling pathways in myocardial ischemia/reperfusion injury: apoptosis meets autophagy. Cardiovasc. Drugs Ther.20(6),445–462 (2006).Crossref, Medline, CASGoogle Scholar
  • Webster KA, Graham RM, Thompson JW et al. Redox stress and the contributions of BH3-only proteins to infarction. Antioxid. Redox. Signal.8(9–10),1667–1676 (2006).Crossref, Medline, CASGoogle Scholar
  • Degterev A, Yuan J. Expansion and evolution of cell death programmes. Nat. Rev. Mol. Cell. Biol.9(5),378–390 (2008).Crossref, Medline, CASGoogle Scholar
  • Jung JE, Kim GS, Chen H et al. Reperfusion and neurovascular dysfunction in stroke: from basic mechanisms to potential strategies for neuroprotection. Mol. Neurobiol.41(2–3),172–179 (2010).Crossref, Medline, CASGoogle Scholar
  • 10  Nieminen AL. Apoptosis and necrosis in health and disease: role of mitochondria. Int. Rev. Cytol.224,29–55 (2003).Crossref, Medline, CASGoogle Scholar
  • 11  Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat. Med.17(7),796–808 (2011).Crossref, Medline, CASGoogle Scholar
  • 12  Baines CP, Kaiser RA, Purcell NH et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature434,658–662 (2005).Crossref, Medline, CASGoogle Scholar
  • 13  Nakagawa T, Shimizu S, Watanabe T et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature434(7033),652–658 (2005).Crossref, Medline, CASGoogle Scholar
  • 14  Halestrap AP. What is the mitochondrial permeability transition pore? J. Mol. Cell. Cardiol.46,821–831 (2009).Crossref, Medline, CASGoogle Scholar
  • 15  Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD. Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat. Cell. Biol.9(5),550–555 (2007).Crossref, Medline, CASGoogle Scholar
  • 16  Gustafsson AB, Gottlieb RA. Bcl-2 family members and apoptosis, taken to heart. Am. J. Physiol. Cell. Physiol.292,C45–C51 (2006).Crossref, MedlineGoogle Scholar
  • 17  Juhaszova M, Zorov DB, Kim SH et al. Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J. Clin. Invest.113(11),1535–1549 (2004).Crossref, Medline, CASGoogle Scholar
  • 18  Hunter DR, Haworth RA, Southard JH. Relationship between configuration, function, and permeability in calcium-treated mitochondria. J. Biol. Chem.1251(16),5069–5077 (1976).CrossrefGoogle Scholar
  • 19  Haworth RA, Hunter DR. The Ca2+-induced membrane transition in mitochondria. Nature of the Ca2+ trigger site. Arch. Biochem. Biophys.195(2),460–467 (1979).Crossref, Medline, CASGoogle Scholar
  • 20  Crompton M, Costi A. Kinetic evidence for a heart mitochondrial pore activated by Ca2+ inorganic phosphate and oxidative stress. A potential mechanism for mitochondrial dysfunction during cellular Ca2+ overload. Eur. J. Biochem.178,489–501 (1988).Crossref, Medline, CASGoogle Scholar
  • 21  Nazareth W, Yafei N, Crompton M. Inhibition of anoxia-induced injury in heart myocytes by cyclosporin-A. J. Mol. Cell. Cardiol.23,1351–1354 (1991).Crossref, Medline, CASGoogle Scholar
  • 22  Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell116,205–219 (2004).Crossref, Medline, CASGoogle Scholar
  • 23  Tsujimoto Y, Nakagawa T, Shimizu S. Mitochondrial membrane permeability transition and cell death. Biochim. Biophys. Acta1757,1297–1300 (2006).Crossref, Medline, CASGoogle Scholar
  • 24  Whelan RS, Konstantinidis K, Wei AC et al. Bax regulates primary necrosis through mitochondrial dynamics. Proc. Natl Acad. Sci. USA109,6566–6571 (2012).Crossref, Medline, CASGoogle Scholar
  • 25  Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature399,483–487 (1999).Crossref, Medline, CASGoogle Scholar
  • 26  Shimizu S, Matsuoka Y, Shinohara Y, Yoneda Y, Tsujimoto Y. Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells. J. Cell. Biol.152,237–250 (2001).Crossref, Medline, CASGoogle Scholar
  • 27  Crompton M. On the involvement of mitochondrial intermembrane junctional complexes in apoptosis. Curr. Med. Chem.10,1473–1484 (2003).Crossref, Medline, CASGoogle Scholar
  • 28  Lemasters JJ, Holmuhamedov E. Voltage-dependent anion channel (VDAC) as mitochondrial governator – thinking outside the box. Biochim. Biophys. Acta1762,1181–1190 (2006).Google Scholar
  • 29  Majewski N, Nogueira V, Bhaskar P et al. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol. Cell16,819–830 (2004).Crossref, Medline, CASGoogle Scholar
  • 30  Shoshan-Barmatz V, Israelson A, Brdiczka D, Sheu SS. The voltage-dependent anion channel (VDAC): function in intracellular signaling, cell life and cell death. Curr. Pharm. Design12,2249–2270 (2006).Crossref, Medline, CASGoogle Scholar
  • 31  Zaid H, Abu-Hamad S, Israelson A, Nathan I, Shoshan-Barmatz V. The voltage-dependent anion channel-1 modulates apoptotic cell death. Cell Death Differ.12,751–760 (2005).Crossref, Medline, CASGoogle Scholar
  • 32  Cheng EHY, Sheiko T, Fisher JK, Craigen WJ, Korsmeyer SJ. VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science5632,513–517 (2003).CrossrefGoogle Scholar
  • 33  Kim R, Emi M, Tanabe K, Murakami S, Uchida Y, Arihiro K. Regulation and interplay of apoptotic and non-apoptotic cell death. J. Pathol.208,319–326 (2006).Crossref, Medline, CASGoogle Scholar
  • 34  Rostovtseva TK, Antonsson B, Suzuki M, Youle RJ, Colombini M, Bezrukov SM. Bid, but not Bax, regulates VDAC channels. J. Biol. Chem.279,13575–13583 (2004).Crossref, Medline, CASGoogle Scholar
  • 35  Szabó I, Zoratti M. The giant channel of the inner mitochondrial membrane is inhibited by cyclosporin A. J. Biol. Chem.266(6),3376–3379 (1991).Crossref, Medline, CASGoogle Scholar
  • 36  Kaufmann T, Strasser A, Jost PJ. Fas death receptor signalling: roles of Bid and XIAP. Cell Death Differ.19(1),42–50 (2012).Crossref, Medline, CASGoogle Scholar
  • 37  Jeremias I, Kupatt C, Martin-Villaba A et al. Involvement of CD95/Apo1/Fas in cell death after myocardial ischemia. Circulation102,915–920 (2000).Crossref, Medline, CASGoogle Scholar
  • 38  Lee P, Sata M, Lefer DJ et al. Fas pathway is a critical mediator of cardiac myocyte death and MI during ischemia-reperfusion in vivo. Am. J. Physiol. Heart Circ. Physiol.284,H456–H463 (2003).Crossref, Medline, CASGoogle Scholar
  • 39  Zhao WS, Xu L, Wang LF et al. A 60-s postconditioning protocol by percutaneous coronary intervention inhibits myocardial apoptosis in patients with acute myocardial infarction. Apoptosis14(10),1204–1211 (2009).Crossref, MedlineGoogle Scholar
  • 40  Verhagen AM, Ekert PG, Pakusch M et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell102(1),43–53 (2000).Crossref, Medline, CASGoogle Scholar
  • 41  Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell102(1),33–42 (2000).Crossref, Medline, CASGoogle Scholar
  • 42  Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell8(3),613–621 (2001).Crossref, Medline, CASGoogle Scholar
  • 43  Yang QH, Church-Hajduk R, Ren J, Newton ML, Du C. Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev.17(12),1487–1496 (2003).Crossref, Medline, CASGoogle Scholar
  • 44  Oakes SA, Scorrano L, Opferman JT et al. Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc. Natl Acad. Sci. USA102(1),105–110 (2005).Crossref, Medline, CASGoogle Scholar
  • 45  Bassik MC, Scorrano L, Oakes SA, Pozzan T, Korsmeyer SJ. Phosphorylation of BCL-2 regulates ER Ca2+ homeostasis and apoptosis. EMBO J.23(5),1207–1216 (2004).Crossref, Medline, CASGoogle Scholar
  • 46  Oakes SA, Opferman JT, Pozzan T, Korsmeyer SJ, Scorrano L. Regulation of endoplasmic reticulum Ca2+ dynamics by proapoptotic BCL-2 family members. Biochem. Pharmacol.66(8),1335–1340 (2003).Crossref, Medline, CASGoogle Scholar
  • 47  Scorrano L, Oakes SA, Opferman JT et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science300(5616),135–139 (2003).Crossref, Medline, CASGoogle Scholar
  • 48  Thompson JW, Graham RM, Webster KA. DNase activation by hypoxia-acidosis parallels but is independent of programmed cell death. Life Sci.91(7–8),223–229 (2012).Crossref, Medline, CASGoogle Scholar
  • 49  Ravichandran KS, Lorenz U. Engulfment of apoptotic cells: signals for a good meal. Nat. Rev. Immunol.7(12),964–974 (2007).Crossref, Medline, CASGoogle Scholar
  • 50  Dutta D, Calvani R, Bernabei R, Leeuwenburgh C, Marzetti E. Contribution of impaired mitochondrial autophagy to cardiac aging: mechanisms and therapeutic opportunities. Circ. Res.110(8),1125–1138 (2012).Crossref, Medline, CASGoogle Scholar
  • 51  Verfaillie T, Salazar M, Velasco G, Agostinis P. Linking ER stress to autophagy: potential implications for cancer therapy. Int. J. Cell. Biol.2010,930509 (2010).Crossref, MedlineGoogle Scholar
  • 52  Gustafsson AB, Gottlieb RA. Autophagy in ischemic heart disease. Circ. Res.104(2),150–158 (2009).Crossref, Medline, CASGoogle Scholar
  • 53  Sadoshima J. The role of autophagy during ischemia/reperfusion. Autophagy4(4),402–403 (2008).Crossref, MedlineGoogle Scholar
  • 54  Kubasiak LA, Hernandez OM, Bishopric NH, Webster KA. Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proc. Natl Acad. Sci. USA99(20),12825–12830 (2002).Crossref, Medline, CASGoogle Scholar
  • 55  Webster KA, Graham RM, Bishopric NH. BNip3 and signal-specific programmed death in the heart. J. Mol. Cell. Cardiol.38(1),35–45 (2005).Crossref, Medline, CASGoogle Scholar
  • 56  Diwan A, Krenz M, Syed FM et al. Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. J. Clin. Invest.117(10),2825–2833 (2007).Crossref, Medline, CASGoogle Scholar
  • 57  Groenendyk J, Sreenivasaiah PK, Do HK, Agellon LB, Michalak M. Biology of endoplasmic reticulum stress in the heart. Circ. Res.107(10),1185–1197 (2010).Crossref, Medline, CASGoogle Scholar
  • 58  Giricz Z, Mentzer RM Jr, Gottlieb RA. Autophagy, myocardial protection and the metabolic syndrome. J. Cardiovasc. Pharmacol.60(2),125–132 (2012).Crossref, Medline, CASGoogle Scholar
  • 59  Li Q, Zhou LY, Gao GF, Jiao JQ, Li PF. Mitochondrial network in the heart. Protein Cell3(6),410–418 (2012).Crossref, Medline, CASGoogle Scholar
  • 60  Inserte J, Barrabés JA, Hernando V, Garcia-Dorado D. Orphan targets for reperfusion injury. Cardiovasc. Res.83(2),169–178 (2009).Crossref, Medline, CASGoogle Scholar
  • 61  Pott C, Eckardt L, Goldhaber JI. Triple threat: the Na+/Ca2+ exchanger in the pathophysiology of cardiac arrhythmia, ischemia and heart failure. Curr. Drug Targets12(5),737–747 (2011).Crossref, Medline, CASGoogle Scholar
  • 62  Bers DM. Cardiac excitation contraction coupling. Nature415,198–205 (2002).Crossref, Medline, CASGoogle Scholar
  • 63  Chen-Izu Y, McCulle SL, Ward CW et al. Three-dimensional distribution of ryanodine receptor clusters in cardiac myocytes. Biophys. J.91,1–13 (2006).Crossref, MedlineGoogle Scholar
  • 64  Collins TJ, Lipp P, Berridge MJ, Bootman MD. Mitochondrial Ca(2+) uptake depends on the spatial and temporal profile of cytosolic Ca(2+) signals. J. Biol. Chem.276,26411–26420 (2001).Crossref, Medline, CASGoogle Scholar
  • 65  Jones PP, Bazzazi H, Kargacin GJ, Colyer J. Inhibition of cAMP dependent protein kinase under conditions occurring in the cardiac dyad during a Ca2+ transient. Biophys. J.91,433–443 (2006).Crossref, Medline, CASGoogle Scholar
  • 66  Peskoff A, Post JA, Langer GA. Sarcolemmal calcium binding sites in heart: II. Mathematical model for diffusion of calcium released from the sarcoplasmic reticulum into the dyadic region. J. Membr. Biol.129,59–69 (1992).Crossref, Medline, CASGoogle Scholar
  • 67  Shannon TR, Wang F, Puglisi J, Weber C, Bers DM. A mathematical treatment of integrated Ca dynamics within the ventricular myocyte. Biophys. J.87,3351–3371 (2004).Crossref, Medline, CASGoogle Scholar
  • 68  Weber CR, Piacentino V 3rd, Ginsburg KS, Houser SR, Bers DM. Na(+)-Ca(2+) exchange current and submembrane [Ca(2+)] during the cardiac action potential. Circ. Res.90,182–189 (2002).Crossref, Medline, CASGoogle Scholar
  • 69  Rizzuto R, Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol. Rev.86,369–408 (2006).Crossref, Medline, CASGoogle Scholar
  • 70  Lee JA, Allen DG. Mechanisms of acute ischemic contractile failure of the heart. Role of intracellular calcium. J. Clin. Invest.88(2),361–367 (1991).Crossref, Medline, CASGoogle Scholar
  • 71  Arnaudeau S, Kelley WL, Walsh JV Jr, Demaurex N. Mitochondria recycle Ca(2þ) to the endoplasmic reticulum and prevent the depletion of neighboring endoplasmic reticulum regions. J. Biol. Chem.276,29430–29439 (2001).Crossref, Medline, CASGoogle Scholar
  • 72  Cox DA, Matlib MA. A role for the mitochondrial Na(+)-Ca2+ exchanger in the regulation of oxidative phosphorylation in isolated heart mitochondria. J. Biol. Chem.268,938–947 (1993).Crossref, Medline, CASGoogle Scholar
  • 73  Territo PR, French SA, Balaban RS. Simulation of cardiac work transitions, in vitro: effects of simultaneous Ca2+ and ATPase additions on isolated porcine heart mitochondria. Cell Calcium30,19–27 (2001).Crossref, Medline, CASGoogle Scholar
  • 74  Maack C, O’Rourke B. Excitation-contraction coupling and mitochondrial energetics. Basic Res. Cardiol.102(5),369–392 (2007).Crossref, Medline, CASGoogle Scholar
  • 75  Kirichok Y, Krapivinsky G, Clapham DE. The mitochondrial calcium uniporter is a highly selective ion channel. Nature427,360–364 (2004).Crossref, Medline, CASGoogle Scholar
  • 76  Maak C, O’Rourke B. Excitation-contraction coupling and mitochondrial bioenergetics. Basic Res. Cardiol.102,369–392 (2007).Crossref, MedlineGoogle Scholar
  • 77  Maack C, Cortassa S, Aon MA, Ganesan AN, Liu T, O’Rourke B. Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation- contraction coupling and impairs energetic adaptation in cardiac myocytes. Circ. Res.99,172–182 (2006).Crossref, Medline, CASGoogle Scholar
  • 78  Skulachev VP. Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem. Sci.26(1),23–29 (2001).Crossref, Medline, CASGoogle Scholar
  • 79  Szabadkai G, Simoni AM, Chami M, Wieckowski MR, Youle RJ, Rizzuto R. Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol. Cell16(1),59–68 (2004).Crossref, Medline, CASGoogle Scholar
  • 80  Turrens JF. Mitochondrial formation of reactive oxygen species. J. Physiol.552,335–344 (2003).Crossref, Medline, CASGoogle Scholar
  • 81  Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE. Mitochondria and reactive oxygen species. Free Radic. Biol. Med.47(4),333–343 (2009).Crossref, Medline, CASGoogle Scholar
  • 82  Orrenius S, Gogvadze V, Zhivotovsky B. Mitochondrial oxidative stress: implications for cell death. Annu. Rev. Pharmacol. Toxicol.47,143–183 (2007).Crossref, Medline, CASGoogle Scholar
  • 83  Dougherty CJ, Kubasiak LA, Frazier DP et al. Mitochondrial signals initiate the activation of c-Jun N-terminal kinase (JNK) by hypoxia-reoxygenation. FASEB J.18(10),1060–1070 (2004).Crossref, Medline, CASGoogle Scholar
  • 84  Frazier DP, Wilson A, Dougherty CJ et al. PKC-α and TAK-1 are intermediates in the activation of c-Jun NH2-terminal kinase by hypoxia-reoxygenation. Am. J. Physiol. Heart Circ. Physiol.292(4),H1675–H1684 (2007).Crossref, Medline, CASGoogle Scholar
  • 85  Halestrap AP, Clarke SJ, Khaliulin I. The role of mitochondria in protection of the heart by preconditioning. Biochim. Biophys. Acta1767(8),1007–1031 (2007).Crossref, Medline, CASGoogle Scholar
  • 86  Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J. Exp. Med.192,1001–1014 (2000).Crossref, Medline, CASGoogle Scholar
  • 87  Aon MA, Cortassa S, Marban E, O’Rourke B. Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J. Biol. Chem.278,44735–44744 (2003).Crossref, Medline, CASGoogle Scholar
  • 88  Inserte J, Barrabés JA, Hernando V, Garcia-Dorado D. Orphan targets for reperfusion injury. Cardiovasc. Res.83(2),169–178 (2009).Crossref, Medline, CASGoogle Scholar
  • 89  Garcia-Dorado D, Theroux P, Duran JM et al. Selective inhibition of the contractile apparatus. A new approach to modification of infarct size, infarct composition, and infarct geometry during coronary artery occlusion and reperfusion. Circulation85,1160–1174 (1992).Crossref, Medline, CASGoogle Scholar
  • 90  Sebbag L, Verbinski SG, Reimer KA, Jennings RB. Protection of ischemic myocardium in dogs using intracoronary 2,3-butanedione monoxime (BDM). J. Mol. Cell. Cardiol.35,165–176 (2003).Crossref, Medline, CASGoogle Scholar
  • 91  Schlack W, Uebing A, Schafer M et al. Regional contractile blockade at the onset of reperfusion reduces infarct size in the dog heart. Pflugers Arch.428,134–141 (1994).Crossref, Medline, CASGoogle Scholar
  • 92  Siegmund B, Klietz T, Schwartz P, Piper HM. Temporary contractile blockade prevents hypercontracture in anoxic-reoxygenated cardiomyocytes. Am. J. Physiol.260,H426–H435 (1991).Medline, CASGoogle Scholar
  • 93  Garcia-Dorado D, Inserte J, Ruiz-Meana M et al. Gap junction uncoupler heptanol prevents cell-to-cell progression of hypercontracture and limits necrosis during myocardial reperfusion. Circulation96,3579–3586 (1997).Crossref, Medline, CASGoogle Scholar
  • 94  Rodriguez-Sinovas A, Garcia-Dorado D, Ruiz-Meana M, Soler-Soler J. Enhanced effect of gap junction uncouplers on macroscopic electrical properties of reperfused myocardium during myocardial reperfusion. Circulation96,3579–3586 (2004).Google Scholar
  • 95  Kokoszka JE, Waymire KG, Levy SE et al. The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature427,461–465 (2004).Crossref, Medline, CASGoogle Scholar
  • 96  Rodriguez Enriquez S, He LH, Lemasters JJ. Role of mitochondrial permeability transition pores in mitochondrial autophagy. Int. J. Biochem. Cell. Biol.36,2463–2472 (2004).Crossref, Medline, CASGoogle Scholar
  • 97  Crompton M. On the involvement of mitochondrial intermembrane junctional complexes in apoptosis. Curr. Med. Chem.10,1473–1484 (2003).Crossref, Medline, CASGoogle Scholar
  • 98  Lemasters JJ, Holmuhamedov E. Voltage-dependent anion channel (VDAC) as mitochondrial governator – thinking outside the box. Biochim. Biophys. Acta1762,1181–1190 (2006).Google Scholar
  • 99  Majewski N, Nogueira V, Bhaskar P et al. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol. Cell16,819–830 (2004).Crossref, Medline, CASGoogle Scholar
  • 100  Piot C, Croisille P, Staat P et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N. Engl. J. Med.359(5),473–481 (2008).Crossref, Medline, CASGoogle Scholar
  • 101  Blachly-Dyson E, Forte M. VDAC channels. IUBMB Life52,113–118 (2001).Crossref, Medline, CASGoogle Scholar
  • 102  Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature399,483–487 (1999).Crossref, Medline, CASGoogle Scholar
  • 103  Vander Heiden MG, Chandel NS, Schumacker PT, Thompson CB. Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol. Cell3,159–167 (1999).Crossref, Medline, CASGoogle Scholar
  • 104  Mathupala SP, Ko YH, Pedersen PL. Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene25(34),4777–4786 (2006).Crossref, Medline, CASGoogle Scholar
  • 105  Pastorino JG, Hoek JB, Shulga N. Activation of glycogen synthase kinase 3β disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res.65,10545–10554 (2005).Crossref, Medline, CASGoogle Scholar
  • 106  Miura T, Miki T. GSK-3β, a therapeutic target for cardiomyocyte protection. Circ. J.73(7),1184–1192 (2009).Crossref, Medline, CASGoogle Scholar
  • 107  Chen Z, Chua CC, Ho YS, Hamdy RC, Chua BH. Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. Am. J. Physiol.280,H2313–H2320 (2001).Crossref, CASGoogle Scholar
  • 108  Shimizu S, Konishi A, Kodama T, Tsujimoto Y. BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc. Natl Acad. Sci. USA97,3100–3105 (2000).Crossref, Medline, CASGoogle Scholar
  • 109  Gustafsson AB, Gottlieb RA. Bcl-2 family members and apoptosis, taken to heart. Am. J. Physiol. Cell Physiol.292,C45–C51 (2006).Crossref, MedlineGoogle Scholar
  • 110  Juhaszova M, Zorov DB, Kim SH et al. Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J. Clin. Invest.113(11),1535–1549 (2004).Crossref, Medline, CASGoogle Scholar
  • 111  Ruiz-Meana M, Garcia-Dorado D, Miro-Casas E, Abellan A, Soler-Soler J. Mitochondrial Ca2+ uptake during simulated ischemia does not affect permeability transition pore opening upon simulated reperfusion. Cardiovasc. Res.71,715–724 (2006).Crossref, Medline, CASGoogle Scholar
  • 112  Ichas F, Jouaville LS, Mazat JP. Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell89(7),1145–1153 (1997).Crossref, Medline, CASGoogle Scholar
  • 113  Petronilli V, Miotto G, Canton M et al. Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys. J.76(2),725–734 (1999).Crossref, Medline, CASGoogle Scholar
  • 114  Chipuk JE, Green DR. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell. Biol.18(4),157–164 (2008).Crossref, Medline, CASGoogle Scholar
  • 115  Lindsten T, Ross AJ, King A et al. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol. Cell6(6),1389–1399 (2000).Crossref, Medline, CASGoogle Scholar
  • 116  Wei MC, Zong WX, Cheng EH et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science292(5517),727–730 (2001).Crossref, Medline, CASGoogle Scholar
  • 117  Kinnally KW, Antonsson B. A tale of two mitochondrial channels, MAC and PTP, in apoptosis. Apoptosis12(5),857–868 (2007).Crossref, Medline, CASGoogle Scholar
  • 118  Peixoto PM, Ryu SY, Bombrun A, Antonsson B, Kinnally KW. MAC inhibitors suppress mitochondrial apoptosis. Biochem. J.423(3),381–387 (2009).Crossref, Medline, CASGoogle Scholar
  • 119  Westphal D, Dewson G, Czabotar PE, Kluck RM. Molecular biology of Bax and Bak activation and action. Biochim. Biophys. Acta1813(4),521–531 (2011).Crossref, Medline, CASGoogle Scholar
  • 120  Hom J, Sheu SS. Morphological dynamics of mitochondria – a special emphasis on cardiac muscle cells. J. Mol. Cell. Cardiol.46(6),811–820 (2009).Crossref, Medline, CASGoogle Scholar
  • 121  Jourdain A, Martinou JC. Mitochondrial outer-membrane permeabilization and remodelling in apoptosis. Int. J. Biochem. Cell. Biol.41(10),1884–1889 (2009).Crossref, Medline, CASGoogle Scholar
  • 122  Yamaguchi R, Lartigue L. Opa1-mediated cristae opening is Bax/Bak and BH3 dependent, required for apoptosis, and independent of Bak oligomerization. Mol. Cell31(4),557–569 (2008).Crossref, Medline, CASGoogle Scholar
  • 123  Whelan RS, Konstantinidis K, Wei AC et al. Bax regulates primary necrosis through mitochondrial dynamics. Proc. Natl Acad. Sci. USA109(17),6566–6571 (2012).Crossref, Medline, CASGoogle Scholar
  • 124  Guo L, Pietkiewicz D, Pavlov EV et al. Effects of cytochrome c on the mitochondrial apoptosis-induced channel MAC. Am. J. Physiol.286,C1109–C1117 (2004).Crossref, CASGoogle Scholar
  • 125  Tissier R, Berdeaux A, Ghaleh B et al. Making the heart resistant to infarction: how can we further decrease infarct size? Front. Biosci.13,284–301 (2008).Crossref, Medline, CASGoogle Scholar
  • 126  Skyschally A, Schulz R, Heusch G. Pathophysiology of myocardial infarction: protection by ischemic pre- and postconditioning. Herz33(2),88–100 (2008).Crossref, MedlineGoogle Scholar
  • 127  Zidar N, Jera J, Maja J, Dusan S. Caspases in myocardial infarction. Adv. Clin. Chem.44,1–33 (2007).Crossref, Medline, CASGoogle Scholar
  • 128  Churchill EN, Mochly-Rosen D. The roles of PKCδ and ε isoenzymes in the regulation of myocardial ischaemia/reperfusion injury. Biochem. Soc. Trans.35(Pt 5),1040–1042 (2007).Crossref, Medline, CASGoogle Scholar
  • 129  Palaniyandi SS, Sun L, Ferreira JC, Mochly-Rosen D. Protein kinase C in heart failure: a therapeutic target? Cardiovasc. Res.82(2),229–239 (2009).Crossref, Medline, CASGoogle Scholar
  • 130  Gustafsson AB, Tsai JG, Logue SE, Crow MT, Gottlieb RA. Apoptosis repressor with caspase recruitment domain protects against cell death by interfering with Bax activation. J. Biol. Chem.279(20),21233–21238 (2004).Crossref, Medline, CASGoogle Scholar
  • 131  Nam YJ, Mani K, Ashton AW et al. Inhibition of both the extrinsic and intrinsic death pathways through nonhomotypic death-fold interactions. Mol. Cell15(6),901–912 (2004).Crossref, Medline, CASGoogle Scholar
  • 132  Liu HR, Gao E, Hu A et al. Role of Omi/HtrA2 in apoptotic cell death after myocardial ischemia and reperfusion. Circulation111(1),90–96 (2005).Crossref, Medline, CASGoogle Scholar
  • 133  Bhuiyan MS, Fukunaga K. Activation of HtrA2, a mitochondrial serine protease mediates apoptosis: current knowledge on HtrA2 mediated myocardial ischemia/reperfusion injury. Cardiovasc. Ther.26(3),224–232 (2008).Crossref, Medline, CASGoogle Scholar
  • 134  Chua CC, Gao J, Ho YS et al. Overexpression of IAP-2 attenuates apoptosis and protects against myocardial ischemia/reperfusion injury in transgenic mice. Biochim. Biophys. Acta1773(4),577–583 (2007).Crossref, Medline, CASGoogle Scholar
  • 135  Roubille F, Combes S, Leal-Sanchez J et al. Myocardial expression of a dominant-negative form of Daxx decreases infarct size and attenuates apoptosis in an in vivo mouse model of ischemia/reperfusion injury. Circulation116(23),2709–2717 (2007).Crossref, MedlineGoogle Scholar
  • 136  Hochhauser E, Cheporko Y, Yasovich N et al. Bax deficiency reduces infarct size and improves long-term function after myocardial infarction. Cell. Biochem. Biophys.47(1),11–20 (2007).Crossref, Medline, CASGoogle Scholar
  • 137  Imahashi K, Schneider MD, Steenbergen C, Murphy E. Transgenic expression of Bcl-2 modulates energy metabolism, prevents cytosolic acidification during ischemia, and reduces ischemia/reperfusion injury. Circ. Res.95(7),734–741 (2004).Crossref, Medline, CASGoogle Scholar
  • 138  Wei J, Wang W, Chopra I et al. c-Jun N-terminal kinase (JNK-1) confers protection against brief but not extended ischemia during acute myocardial infarction. J. Biol. Chem.286(16),13995–14006 (2011).Crossref, Medline, CASGoogle Scholar
  • 139  Freude B, Masters TN, Robiczek F et al. Apoptosis is initiated by myocardial ischaemia and executed during reperfusion. J. Mol. Cell. Cardiol.32,197–208 (2000).Crossref, Medline, CASGoogle Scholar
  • 140  Van Cruchten S, Van der Broeck W. Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anat. Histol. Embryol.31,214–223 (2002).Crossref, Medline, CASGoogle Scholar
  • 141  Scarabelli TM, Stephanou A, Rayment N. Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischaemia/reperfusion injury. Circulation104,253–256 (2001).Crossref, Medline, CASGoogle Scholar
  • 142  Dumont EA, Hofstra L, van Heerde WL et al. Cardiomyocyte death induced by myocardial ischemia and reperfusion measurement with recombinant human annexin-V in a mouse model. Circulation102,1564–1568 (2000).Crossref, Medline, CASGoogle Scholar
  • 143  Dumont EA, Reutelingsperger CP, Smits JF et al. Real-time imaging of apoptotic cell-membrane changes at the single-cell level in the beating murine heart. Nat. Med.7,1352–1355 (2001).Crossref, Medline, CASGoogle Scholar
  • 144  Hofstra L, Liem IH, Dumont EA et al. Visualisation of cell death in vivo in patients with acute myocardial infarction. Lancet356,209–212 (2000).Crossref, Medline, CASGoogle Scholar
  • 145  Nutt LK, Gogvadze V, Uthaisang W, Mirnikjoo B, McConkey DJ, Orrenius S. Indirect effects of Bax and Bak initiate the mitochondrial alterations that lead to cytochrome c release during arsenic trioxide-induced apoptosis. Cancer Biol. Ther.4,459–467 (2005).Crossref, Medline, CASGoogle Scholar
  • 146  Zheng Y, Shi Y, Tian C et al. Essential role of the voltage-dependent anion channel (VDAC) in mitochondrial permeability transition pore opening and cytochrome c release induced by arsenic trioxide. Oncogene23,1239–1247 (2004).Crossref, Medline, CASGoogle Scholar
  • 147  Przygodzki T, Sokal A, Bryszewska M. Calcium ionophore A23187 action on cardiac myocytes is accompanied by enhanced production of reactive oxygen species. Biochim. Biophys. Acta1740,481–488 (2005).Crossref, Medline, CASGoogle Scholar
  • 148  Lax A, Soler F, Fernandez-Belda F. Cytoplasmic Ca2+ signals and cellular death by apoptosis in myocardiac H9c2 cells. Biochim. Biophys. Acta1736,937–947 (2006).CrossrefGoogle Scholar
  • 149  Wei MC, Zon WX, Cheng EHY et al. Proapoptotic Bax and Bak; a requisite gateway to mitochondrial dysfunction and death. Science292,727–730 (2001).Crossref, Medline, CASGoogle Scholar
  • 150  Capano M, Crompton M. Bax translocates to mitochondria of heart cells during simulated ischaemia: involvement of AMP-activated and p38 mitogen-activated protein kinases. Biochem. J.395,57–64 (2006).Crossref, Medline, CASGoogle Scholar
  • 151  Lundberg KC, Szweda LI. Initiation of mitochondrial-mediated apoptosis during cardiac reperfusion. Arch. Biochem. Biophys.432,50–57 (2004).Crossref, Medline, CASGoogle Scholar
  • 152  Huang J, Nakamura K, Ito Y et al. Bcl-xL gene transfer inhibits Bax translocation and prolongs cardiac cold preservation time in rats. Circulation112,76–83 (2005).Crossref, Medline, CASGoogle Scholar
  • 153  Nutt LK, Pataer A, Pahler J et al. Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. J. Biol. Chem.277,9219–9225 (2002).Crossref, Medline, CASGoogle Scholar
  • 154  Nutt LK, Chandra J, Pataer A et al. Bax-mediated Ca2+ mobilization promotes cytochrome c release during apoptosis. J. Biol. Chem.277,20301–20308 (2002).Crossref, Medline, CASGoogle Scholar
  • 155  Hetz C, Vitte PA, Bombrun A et al. Bax channel inhibitors prevent mitochondrion-mediated apoptosis and protect neurons in a model of global brain ischemia. J. Biol. Chem.280,42960–42970 (2005).Crossref, Medline, CASGoogle Scholar
  • 156  Takahashi M, Tanonaka K, Yoshida H et al. Possible involvement of calpain activation in pathogenesis of chronic heart failure after acute myocardial infarction. J. Cardiovasc. Pharacol.47,413–421 (2006).Medline, CASGoogle Scholar
  • 157  Wencker D, Chandra M, Nguyen K et al. A mechanistic role for cardiac myocyte apoptosis in heart failure. J. Clin. Invest.111,1497–1404 (2003).Crossref, Medline, CASGoogle Scholar
  • 158  Saez ME, Ramirez-Lorca R, Moron FJ, Ruiz A. The therapeutic potential of the calpain family: new aspects. Drug Discov. Today11,917–923 (2006).Crossref, Medline, CASGoogle Scholar
  • 159  Engel T, Plesnila N, Prehn JH, Henshall DC. In vivo contributions of BH3-only proteins to neuronal death following seizures, ischemia, and traumatic brain injury. J. Cereb. Blood Flow Metab.31(5),1196–1210 (2011).Crossref, Medline, CASGoogle Scholar
  • 160  Chen M, Won DJ, Krajewski S, Gottlieb RA. Calpain and mitochondria in ischemia reperfusion injury. J. Biol. Chem.277,29282–29286 (2002).Google Scholar
  • 161  Saez ME, Ramirez-Lorca R, Moron FJ, Ruiz A. The therapeutic potential of the calpain family: new aspects. Drug Discov. Today11,917–923 (2006).Crossref, Medline, CASGoogle Scholar
  • 162  Willis SN, Adams JM. Life in the balance: how BH3-only proteins induce apoptosis. Curr. Opin. Cell. Biol.17,617–625 (2005).Crossref, Medline, CASGoogle Scholar
  • 163  Matsui T, Rosenzweig A. Convergent signal transduction pathways controlling cardiomyocyte survival and function: the role of PI 3-kinase and Akt. J. Mol. Cell. Cardiol.38,63–71 (2005).Crossref, Medline, CASGoogle Scholar
  • 164  Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C. PI3K/Akt and apoptosis: size matters. Oncogene22,8983–8998 (2003).Crossref, Medline, CASGoogle Scholar
  • 165  Webster KA. Aktion in the nucleus. Circ. Res.94,856–859 (2004).Crossref, Medline, CASGoogle Scholar
  • 166  Yamashita K, Kajstura J, Discher DJ, Wasserlauf BJ, Anversa P, Webster KA. Reperfusion-activated Akt kinase prevents apoptosis in transgenic mouse hearts overexpressing insulin-like growth factor-1. Circ. Res.88,609–614 (2001).Crossref, Medline, CASGoogle Scholar
  • 167  Murriel CL, Churchill E, Inagaki K, Szweda LI, Mochly-Rosen D. Protein kinase Cδ activation induces apoptosis in response to cardiac ischemia and reperfusion damage: a mechanism involving BAD and the mitochondria. J. Biol. Chem.279,47985–47991 (2004).Crossref, Medline, CASGoogle Scholar
  • 168  The Direct Inhibition of ƒ-Protein Kinase C Enzyme to Limit Total Infarct Size in Acute Myocardial Infarction (DELTA MI) Investigators. Intracoronary KAI-9803 as an adjunct to primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction. Circulation117,886–896 (2008).Crossref, MedlineGoogle Scholar
  • 169  Metzler B, Xu Q, Mayr M. Circulation118(letter) (2008).CrossrefGoogle Scholar
  • 170  Graham RM, Frazier D, Thompson JW et al. A unique pathway of cardiac myocyte death caused by hypoxia-acidosis. J. Exp. Biol.207,3189–3200 (2004).Crossref, Medline, CASGoogle Scholar
  • 171  Hamacher-Brady A, Brady NR, Gottlieb RA, Gustafsson AB. Autophagy as a protective response to Bnip3-mediated apoptotic signaling in the heart. Autophagy2(4),307–309 (2006).Crossref, Medline, CASGoogle Scholar
  • 172  Shaw J, Kirshenbaum LA. Molecular regulation of autophagy and apoptosis during ischemic and non-ischemic cardiomyopathy. Autophagy4(4),427–434 (2008).Crossref, Medline, CASGoogle Scholar
  • 173  Burton TR, Gibson SB. The role of Bcl-2 family member BNIP3 in cell death and disease: NIPping at the heels of cell death. Cell Death Differ.16(4),515–523 (2009).Crossref, Medline, CASGoogle Scholar
  • 174  Ray R, Chen G, Vande Velde C et al. BNIP3 heterodimerizes with Bcl-2/Bcl-X(L) and induces cell death independent of a Bcl-2 homology 3 (BH3) domain at both mitochondrial and nonmitochondrial sites. J. Biol. Chem.275(2),1439–1448 (2000).Crossref, Medline, CASGoogle Scholar
  • 175  Hamacher-Brady A, Brady NR, Logue SE et al. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ.14(1),146–157 (2007).Crossref, Medline, CASGoogle Scholar
  • 176  Ray R, Chen G, Vande Velde C et al. BNIP3 heterodimerizes with Bcl-2/Bcl-X(L) and induces cell death independent of a Bcl-2 homology 3 (BH3) domain at both mitochondrial and nonmitochondrial sites. J. Biol. Chem.275(2),1439–1448 (2000).Crossref, Medline, CASGoogle Scholar
  • 177  Chaanine AH, Jeong D, Liang L et al. JNK modulates FOXO3a for the expression of the mitochondrial death and mitophagy marker BNIP3 in pathological hypertrophy and in heart failure. Cell Death Dis.3,265 (2012).Crossref, Medline, CASGoogle Scholar
  • 178  Shibue T, Suzuki S, Okamoto H et al. Differential contribution of Puma and Noxa in dual regulation of p53-mediated apoptotic pathways. EMBO J.25,4952–4962 (2006).Crossref, Medline, CASGoogle Scholar
  • 179  Yu J, Zhang L. No PUMA, no death: implications for p53-dependent apoptosis. Cancer Cell4,248–249 (2003).Crossref, Medline, CASGoogle Scholar
  • 180  Erlacher M, Michalak EM, Kelly PN et al. BH3-only proteins Puma and Bim are rate-limiting for γ-radiation- and glucocorticoid-induced apoptosis of lymphoid cells in vivo. Blood106,4131–4138 (2005).Crossref, Medline, CASGoogle Scholar
  • 181  Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J. Clin. Invest.115,2656–2664 (2005).Crossref, Medline, CASGoogle Scholar
  • 182  Kim JY, Ahn HJ, Ryu JH, Suk K, Park JH. BH3-only protein Noxa is a mediator of hypoxic cell death induced by hypoxia-inducible factor 1α. J. Exp. Med.199,113–124 (2004).Crossref, Medline, CASGoogle Scholar
  • 183  Reimertz C, Kogel D, Rami A, Chittenden T, Prehn JH. Gene expression during ER stress-induced apoptosis in neurons: induction of the BH3-only protein Bbc3/PUMA and activation of the mitochondrial apoptosis pathway. J. Cell. Biol.162,587–597 (2003).Crossref, Medline, CASGoogle Scholar
  • 184  Toth A, Jeffers JR, Nickson P et al. Targeted deletion of puma attenuates cardiomyocyte death and improves cardiac function during ischemia/reperfusion. Am. J. Physiol. Heart Circ. Physiol.291(1),H52–H60 (2006).Crossref, Medline, CASGoogle Scholar
  • 185  Qian L, Van Laake LW, Huang Y, Liu S, Wendland MF, Srivastava D. MiR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. J. Exp. Med.14,208(3), 549–560 (2011).Google Scholar
  • 186  Bolli R, Chugh AR, D’Amario D et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO), initial results of a randomised Phase 1 trial. Lancet378(9806),1847–1857(2011).Crossref, MedlineGoogle Scholar