We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/fca.11.75

To portray the chronic inflammation in atherosclerosis, leukocytic cell types involved in the immune response to invading pathogens are often the focus. However, atherogenesis is a complex pathological deterioration of the arterial walls, where vascular cell types are participants with regards to deterioration and disease. Since other recent reviews have detailed the role of both the innate and adaptive immune response in atherosclerosis, herein we will summarize the latest developments regarding the association of bacteria with vascular cell types: infections as a risk factor for atherosclerosis; bacterial invasion of vascular cell types; the atherogenic sequelae of bacterial presence such as endothelial activation and blood clotting; and the identification of the species that are able to colonize this niche. The evidence of a polybacterial infectious component of the atheromatous lesions opens the doors for exploration of the new field of vascular infectology and for the study of atherosclerosis microbiome.

Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

References

  • Katz JT, Shannon RP. Bacteria and coronary atheroma: more fingerprints but no smoking gun. Circulation113(7),920–922 (2006).
  • Van Dyke TE, Kornman KS. Inflammation and factors that may regulate inflammatory response. J. Periodontol.79(Suppl. 8),1503–1507 (2008).▪ Review of inflammatory processes underlying chronic diseases.
  • Libby P, Ridker PM, Hansson GK. Inflammation in atherosclerosis: from pathophysiology to practice. J. Am. Coll. Cardiol.54(23),2129–2138 (2009).▪▪ Presents the role of innate and adaptive arms of inflammatory response in atheroma formation and complication.
  • Libby P, Okamoto Y, Rocha VZ, Folco E. Inflammation in atherosclerosis: transition from theory to practice. Circ. J.74(2),213–220 (2010).
  • Gilbert A, Lion, G. Arterites infectieuses experimentales. CR Hebd Sciences Mem. Soc. Biol.41,583–584 (1889).
  • Fabricant CG, Fabricant J, Litrenta MM, Minick CR. Virus-induced atherosclerosis. J. Exp. Med.148(1),335–340 (1978).
  • Ross R. Atherosclerosis – an inflammatory disease. N. Engl. J. Med.340(2),115–126 (1999).
  • Grau AJ, Marquardt L, Lichy C. The effect of infections and vaccinations on stroke risk. Expert Rev. Neurother.6(2),175–183 (2006).
  • Epstein SE, Zhu J, Najafi AH, Burnett MS. Insights into the role of infection in atherogenesis and in plaque rupture. Circulation119(24),3133–3141 (2009).▪▪ Reviews the concept that infections underlie atherogenesis and plaque rupture and of the potential mechanisms of such effects.
  • 10  Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation105(9),1135–1143 (2002).
  • 11  Ridker PM. On evolutionary biology, inflammation, infection, and the causes of atherosclerosis. Circulation105(1),2–4 (2002).
  • 12  Saikku P, Leinonen M, Mattila K et al. Serological evidence of an association of a novel Chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction. Lancet2(8618),983–986 (1988).
  • 13  Espinola-Klein C, Rupprecht HJ, Blankenberg S et al. Impact of infectious burden on extent and long-term prognosis of atherosclerosis. Circulation105(1),15–21 (2002).
  • 14  Frostegard J. Low level natural antibodies against phosphorylcholine: a novel risk marker and potential mechanism in atherosclerosis and cardiovascular disease. Clin. Immunol.134(1),47–54 (2010).
  • 15  Elkind MS. Infectious burden: a new risk factor and treatment target for atherosclerosis. Infect. Disord. Drug Targets10(2),84–90 (2010).
  • 16  Tonetti MS. Periodontitis and risk for atherosclerosis: an update on intervention trials. J. Clin. Periodontol.36(Suppl. 10),15–19 (2009).
  • 17  Kebschull M, Demmer RT, Papapanou PN. “Gum bug, leave my heart alone!” – epidemiologic and mechanistic evidence linking periodontal infections and atherosclerosis. J. Dent. Res.89(9),879–902 (2010).▪ Reviews the knowledge on the impact of periodontal disease to systemic inflammations.
  • 18  Demmer RT, Desvarieux M. Periodontal infections and cardiovascular disease: the heart of the matter. J. Am. Dent. Assoc.137(Suppl.),14S–20S; quiz 38S (2006).▪ Reviews the epidemiological link between periodontitis and cardiovascular disease, addressing the confounding of risk factors and the benefits of a convergence of oral and medical care.
  • 19  Zoellner H. Dental infection and vascular disease. Semin. Thromb. Hemost.37(3),181–192 (2011).
  • 20  Desvarieux M, Demmer RT, Rundek T et al. Periodontal microbiota and carotid intima-media thickness: the oral infections and vascular disease epidemiology study (INVEST). Circulation111(5),576–582 (2005).
  • 21  Renvert S, Pettersson T, Ohlsson O, Persson GR. Bacterial profile and burden of periodontal infection in subjects with a diagnosis of acute coronary syndrome. J. Periodontol.77(7),1110–1119 (2006).
  • 22  Engebretson SP, Lamster IB, Elkind MS et al. Radiographic measures of chronic periodontitis and carotid artery plaque. Stroke36(3),561–566 (2005).
  • 23  Nonnenmacher C, Stelzel M, Susin C et al. Periodontal microbiota in patients with coronary artery disease measured by real-time polymerase chain reaction: a case-control study. J. Periodontol.78(9),1724–1730 (2007).
  • 24  Volzke H, Schwahn C, Hummel A et al. Tooth loss is independently associated with the risk of acquired aortic valve sclerosis. Am. Heart J.150(6),1198–1203 (2005).
  • 25  Mattila KJ, Pussinen PJ, Paju S. Dental infections and cardiovascular diseases: a review. J. Periodontol.76(Suppl. 11),2085–2088 (2005).
  • 26  Yamazaki K, Honda T, Domon H et al. Relationship of periodontal infection to serum antibody levels to periodontopathic bacteria and inflammatory markers in periodontitis patients with coronary heart disease. Clin. Exp. Immunol.149(3),445–452 (2007).
  • 27  Pesonen E, El-Segaier M, Persson K et al. Infections as a stimulus for coronary occlusion, obstruction, or acute coronary syndromes. Ther. Adv. Cardiovasc. Dis.3(6),447–454 (2009).
  • 28  Colhoun HM, Slaney JM, Rubens MB, Fuller JH, Sheiham A, Curtis MA. Antibodies to periodontal pathogens and coronary artery calcification in Type 1 diabetic and nondiabetic subjects. J. Periodontal Res.43(1),103–110 (2008).
  • 29  Tew JG, El Shikh ME, El Sayed RM, Schenkein HA. Dendritic cells, antibodies reactive with oxLDL, and inflammation. J. Dent. Res. doi:10.1177/0022034511407338 (2011) (Epub ahead of print).
  • 30  Mustapha IZ, Debrey S, Oladubu M, Ugarte R. Markers of systemic bacterial exposure in periodontal disease and cardiovascular disease risk: a systematic review and meta-analysis. J. Periodontol.78(12),2289–2302 (2007).
  • 31  Jimenez M, Krall EA, Garcia RI, Vokonas PS, Dietrich T. Periodontitis and incidence of cerebrovascular disease in men. Ann. Neurol.66(4),505–512 (2009).
  • 32  Hayashi C, Gudino CV, Gibson FC 3rd, Genco CA. Review: pathogen-induced inflammation at sites distant from oral infection: bacterial persistence and induction of cell-specific innate immune inflammatory pathways. Mol. Oral Microbiol.25(5),305–316 (2010).▪ Analysis of the mechanisms by which oral bacteria can induce and maintain a chronic inflammation at distant sites.
  • 33  Teles R, Wang CY. Mechanisms involved in the association between peridontal diseases and cardiovascular disease. Oral Dis.17(5),450–461 (2011).▪ Overview of the avenues by which periodontal bacteria can induce a chronic vascular inflammation.
  • 34  Iwai T. Periodontal bacteremia and various vascular diseases. J. Periodontal Res.44(6),689–694 (2009).
  • 35  Kinane DF, Riggio MP, Walker KF, MacKenzie D, Shearer B. Bacteraemia following periodontal procedures. J. Clin. Periodontol.32(7),708–713 (2005).
  • 36  Lockhart PB, Brennan MT, Thornhill M et al. Poor oral hygiene as a risk factor for infective endocarditis-related bacteremia. J. Am. Dent. Assoc.140(10),1238–1244 (2009).
  • 37  Libby P. Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr. Rev.65(12 Pt 2),S140–S146 (2007).
  • 38  Andrew P, Montenero AS. Is there a link between atrial fibrillation and certain bacterial infections? J. Cardiovasc. Med. (Hagerstown)8(12),990–996 (2007).
  • 39  Campbell LA, Kuo CC. Chlamydia pneumoniae – an infectious risk factor for atherosclerosis? Nat. Rev. Microbiol.2(1),23–32 (2004).
  • 40  Vainas T, Stassen FR, Schurink GW et al. Secondary prevention of atherosclerosis through Chlamydia pneumoniae eradication (SPACE Trial): a randomized clinical trial in patients with peripheral arterial disease. Eur. J. Vasc. Endovasc. Surg.29(4),403–411 (2005).
  • 41  Nicolle L. Chlamydia pneumoniae and atherosclerosis: the end? Can. J. Infect. Dis. Med. Microbiol.16(5),267–268 (2005).▪ Analysis of the consequences of the failed antibiotic clinical trials.
  • 42  Joensen JB, Juul S, Henneberg E, Thomsen G, Ostergaard L, Lindholt JS. Can long-term antibiotic treatment prevent progression of peripheral arterial occlusive disease? A large, randomized, double-blinded, placebo-controlled trial. Atherosclerosis196(2),937–942 (2008).
  • 43  Harskamp RE, van Ginkel MW. Acute respiratory tract infections: a potential trigger for the acute coronary syndrome. Ann. Med.40(2),121–128 (2008).
  • 44  Elkind MSV, Ramakrishnan P, Moon YP et al. Infectious burden and risk of stroke: the northern Manhattan study. Arch. Neurol.67(1),33–38 (2010).▪ Presentation of the concept of ‘infectious burden’, associated with the risk of stroke and carotid atherosclerosis.
  • 45  Elkind MS, Luna JM, Moon YP et al. Infectious burden and carotid plaque thickness: the northern Manhattan study. Stroke41(3),e117–e122 (2010).
  • 46  Monack DM, Mueller A, Falkow S. Persistent bacterial infections: the interface of the pathogen and the host immune system. Nat. Rev. Microbiol.2(9),747–765 (2004).
  • 47  Tufariello JM, Chan J, Flynn JL. Latent tuberculosis: mechanisms of host and bacillus that contribute to persistent infection. Lancet Infect. Dis.3(9),578–590 (2003).
  • 48  Kozarov E, Sweier D, Shelburne C, Progulske-Fox A, Lopatin D. Detection of bacterial DNA in atheromatous plaques by quantitative PCR. Microbes Infect.8(3),687–693 (2006).
  • 49  Ott SJ, El Mokhtari NE, Musfeldt M et al. Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation113(7),929–937 (2006).
  • 50  Lewis K. Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol.5(1),48–56 (2007).
  • 51  Lidar M, Lipschitz N, Langevitz P, Shoenfeld Y. The infectious etiology of vasculitis. Autoimmunity42(5),432–438 (2009).
  • 52  Zeituni AE, Carrion J, Cutler CW. Porphyromonas gingivalis-dendritic cell interactions: consequences for coronary artery disease. J. Oral Microbiol.2, doi:10.3402/jom.v2i0.5782 (2010).▪ Important experimental paper supporting the notion that bacteria from focal periodontal lesion may exploit phagocytic cells to gain access to systemic circulation.
  • 53  Pollreisz A, Huang Y, Roth GA et al. Enhanced monocyte migration and proinflammatory cytokine production by Porphyromonas gingivalis infection. J. Periodontal Res.45(2),239–245 (2010).
  • 54  Chavakis T, Wiechmann K, Preissner KT, Herrmann M. Staphylococcus aureus interactions with the endothelium: the role of bacterial ‘secretable expanded repertoire adhesive molecules’ (SERAM) in disturbing host defense systems. Thromb. Haemost.94(2),278–285 (2005).
  • 55  Nobbs AH, Lamont RJ, Jenkinson HF. Streptococcus adherence and colonization. Microbiol. Mol. Biol. Rev.73(3),407–450, Table of Contents (2009).
  • 56  Amano A. Bacterial adhesins to host components in periodontitis. Periodontol. 200052(1),12–37 (2010).
  • 57  Tribble GD, Lamont RJ. Bacterial invasion of epithelial cells and spreading in periodontal tissue. Periodontol. 200052(1),68–83 (2010).
  • 58  Deshpande RG, Khan MB, Genco CA. Invasion of aortic and heart endothelial cells by Porphyromonas gingivalis. Infect. Immun.66(11),5337–5343 (1998).
  • 59  Dorn BR, Dunn WA Jr, Progulske-Fox A. Invasion of human coronary artery cells by periodontal pathogens. Infect. Immun.67(11),5792–5798 (1999).
  • 60  Dorn BR, Dunn WA Jr, Progulske-Fox A. Porphyromonas gingivalis traffics to autophagosomes in human coronary artery endothelial cells. Infect. Immun.69(9),5698–5708 (2001).
  • 61  Roth GA, Ankersmit HJ, Brown VB, Papapanou PN, Schmidt AM, Lalla E. Porphyromonas gingivalis infection and cell death in human aortic endothelial cells. FEMS Microbiol. Lett.272(1),106–113 (2007).
  • 62  Li L, Michel R, Cohen J, DeCarlo A, Kozarov E. Intracellular survival and vascular cell-to-cell transmission of Porphyromonas gingivalis. BMC Microbiol.8,26–36 (2008).
  • 63  Abranches J, Zeng L, Belanger M et al. Invasion of human coronary artery endothelial cells by Streptococcus mutans OMZ175. Oral Microbiol. Immunol.24(2),141–145 (2009).
  • 64  Nakano K, Inaba H, Nomura R et al. Detection of cariogenic Streptococcus mutans in extirpated heart valve and atheromatous plaque specimens. J. Clin. Microbiol.44(9),3313–3317 (2006).
  • 65  Chi F, Jong TD, Wang L et al. Vimentin-mediated signalling is required for IbeA+E. coli K1 invasion of human brain microvascular endothelial cells. Biochem. J.427(1),79–90 (2010).
  • 66  Rodrigues PH, Belanger M, Dunn W Jr, Progulske-Fox A. Porphyromonas gingivalis and the autophagic pathway: an innate immune interaction? Front. Biosci.13,178–187 (2008).
  • 67  Huang J, Brumell JH. Autophagy in immunity against intracellular bacteria. Curr. Top Microbiol. Immunol.335,189–215 (2009).
  • 68  Jo EK. Innate immunity to mycobacteria: vitamin D and autophagy. Cell. Microbiol.12(8),1026–1035 (2010).
  • 69  Vazquez CL, Colombo MI. Beclin 1 modulates the antiapoptotic activity of Bcl-2: insights from a pathogen infection system. Autophagy6(1),177–178 (2010).
  • 70  Levine B, Deretic V. Unveiling the roles of autophagy in innate and adaptive immunity. Nat. Rev. Immunol.7(10),767–777 (2007).
  • 71  Yilmaz O, Verbeke P, Lamont RJ, Ojcius DM. Intercellular spreading of Porphyromonas gingivalis infection in primary gingival epithelial cells. Infect. Immun.74(1),703–710 (2006).
  • 72  Stassen FR, Vainas T, Bruggeman CA. Infection and atherosclerosis. An alternative view on an outdated hypothesis. Pharmacol. Rep.60(1),85–92 (2008).
  • 73  Niu J, Kolattukudy PE. Role of MCP-1 in cardiovascular disease: molecular mechanisms and clinical implications. Clin. Sci. (London)117(3),95–109 (2009).
  • 74  Hajishengallis G, Tapping RI, Harokopakis E et al. Differential interactions of fimbriae and lipopolysaccharide from Porphyromonas gingivalis with the Toll-like receptor 2-centred pattern recognition apparatus. Cell. Microbiol.8(10),1557–1570 (2006).▪ Comprehensive study on the receptor-mediated mechanism of bacteria-activated cell signaling.
  • 75  Khlgatian M, Nassar H, Chou HH, Gibson FC 3rd, Genco CA. Fimbria-dependent activation of cell adhesion molecule expression in Porphyromonas gingivalis-infected endothelial cells. Infect. Immun.70(1),257–267 (2002).
  • 76  Takahashi Y, Davey M, Yumoto H, Gibson FC 3rd, Genco CA. Fimbria-dependent activation of proinflammatory molecules in Porphyromonas gingivalis infected human aortic endothelial cells. Cell. Microbiol.8(5),738–757 (2006).
  • 77  Chou HH, Yumoto H, Davey M et al. Porphyromonas gingivalis fimbria-dependent activation of inflammatory genes in human aortic endothelial cells. Infect. Immun.73(9),5367–5378 (2005).
  • 78  Martinet W, Schrijvers DM, De Meyer GR. Necrotic cell death in atherosclerosis. Basic Res. Cardiol. (2011).
  • 79  Kozarov E, Li L, Michel R, Rodriguez R, DeCarlo AA. Differential activity of P. gingivalis-secreted proteins toward polarized human endothelial cells. J. Dental Res.82(Special Issue B),B180 (2003).
  • 80  Roth GA, Aumayr K, Giacona MB, Papapanou PN, Schmidt AM, Lalla E. Porphyromonas gingivalis infection and prothrombotic effects in human aortic smooth muscle cells. Thromb. Res.123(5),780–784 (2009).▪ Demonstrates prothrombotic effects of smooth muscle cell-associated periodontal bacteria.
  • 81  Wada K, Kamisaki Y. Roles of oral bacteria in cardiovascular diseases – from molecular mechanisms to clinical cases: involvement of Porphyromonas gingivalis in the development of human aortic aneurysm. J. Pharmacol. Sci.113(2),115–119 (2010).
  • 82  Herzberg MC, Nobbs A, Tao L et al. Oral streptococci and cardiovascular disease: searching for the platelet aggregation-associated protein gene and mechanisms of Streptococcus sanguis-induced thrombosis. J. Periodontol.76(Suppl. 11),2101–2105 (2005).
  • 83  Brevetti G, Giugliano G, Brevetti L, Hiatt WR. Inflammation in peripheral artery disease. Circulation122(18),1862–1875 (2010).
  • 84  Sato Y, Kishi J, Suzuki K, Nakamura H, Hayakawa T. Sonic extracts from a bacterium related to periapical disease activate gelatinase A and inactivate tissue inhibitor of metalloproteinases TIMP-1 and TIMP-2. Int. Endod. J.42(12),1104–1111 (2009).
  • 85  Guan SM, Shu L, Fu SM, Liu B, Xu XL, Wu JZ. Prevotella intermedia upregulates MMP-1 and MMP-8 expression in human periodontal ligament cells. FEMS Microbiol. Lett.299(2),214–222 (2009).
  • 86  Graves DT, Fine D, Teng YT, Van Dyke TE, Hajishengallis G. The use of rodent models to investigate host-bacteria interactions related to periodontal diseases. J. Clin. Periodontol.35(2),89–105 (2008).
  • 87  Gibson FC 3rd, Hong C, Chou HH et al. Innate immune recognition of invasive bacteria accelerates atherosclerosis in apolipoprotein E-deficient mice. Circulation109(22),2801–2806 (2004).
  • 88  Amar S, Wu SC, Madan M. Is Porphyromonas gingivalis cell invasion required for atherogenesis? Pharmacotherapeutic implications. J. Immunol.182(3),1584–1592 (2009).▪ Rare animal model study at the intersection of immunology and pharmacology suggesting that drug regimens could be useful for treatment of atherosclerosis.
  • 89  Dewhirst FE, Chen T, Izard J et al. The human oral microbiome. J. Bacteriol.192(19),5002–5017 (2010).▪ Most comprehensive description to date of the human oral microbiome.
  • 90  Parahitiyawa NB, Scully C, Leung WK, Yam WC, Jin LJ, Samaranayake LP. Exploring the oral bacterial flora: current status and future directions. Oral Dis.16(2),136–145 (2010).
  • 91  Beck JD, Offenbacher S. Relationships among clinical measures of periodontal disease and their associations with systemic markers. Ann. Periodontol.7(1),79–89 (2002).
  • 92  Haraszthy VI, Zambon JJ, Trevisan M, Zeid M, Genco RJ. Identification of periodontal pathogens in atheromatous plaques. J. Periodontol.71(10),1554–1560. (2000).
  • 93  Bahrani-Mougeot FK, Paster BJ, Coleman S et al. Molecular analysis of oral and respiratory bacterial species associated with ventilator-associated pneumonia. J. Clin. Microbiol.45(5),1588–1593 (2007).
  • 94  Cole JR, Chai B, Farris RJ et al. The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res.35(Database issue),D169–D172 (2007).
  • 95  Padilla C, Lobos O, Hubert E et al. Periodontal pathogens in atheromatous plaques isolated from patients with chronic periodontitis. J. Periodontal Res.41(4),350–353 (2006).
  • 96  Koren O, Spor A, Felin J et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc. Natl Acad. Sci. USA108(Suppl. 1),4592–4598 (2011).
  • 97  Ford PJ, Gemmell E, Chan A et al. Inflammation, heat shock proteins and periodontal pathogens in atherosclerosis: an immunohistologic study. Oral Microbiol. Immunol.21(4),206–211 (2006).
  • 98  Fiehn NE, Larsen T, Christiansen N, Holmstrup P, Schroeder TV. Identification of periodontal pathogens in atherosclerotic vessels. J. Periodontol.76(5),731–736 (2005).
  • 99  Kozarov E, Dorn B, Shelburne C, Dunn W, Progulske-Fox A. Human atherosclerotic plaque contains viable invasive Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans. Arterioscler. Thromb. Vasc. Biol.25(3),e17–e18 (2005).
  • 100  Kusner DJ. Mechanisms of mycobacterial persistence in tuberculosis. Clin. Immunol.114(3),239–247 (2005).
  • 101  Steinert M, Emody L, Amann R, Hacker J. Resuscitation of viable but nonculturable Legionella pneumophila Philadelphia JR32 by Acanthamoeba castellanii. Appl. Environ. Microbiol.63(5),2047–2053 (1997).
  • 102  Schoedon G, Goldenberger D, Forrer R et al. Deactivation of macrophages with interleukin-4 is the key to the isolation of Tropheryma whippelii. J. Infect. Dis.176(3),672–677 (1997).
  • 103  Rafferty B, Jönsson D, Kalachikov S et al. Impact of monocytic cells on recovery of uncultivable bacteria from atherosclerotic lesions. J. Intern. Med.270(3),273–280 (2011).
  • 104  Fujii R, Saito Y, Tokura Y, Nakagawa KI, Okuda K, Ishihara K. Characterization of bacterial flora in persistent apical periodontitis lesions. Oral Microbiol. Immunol.24(6),502–505 (2009).
  • 105  Debelian GJ, Olsen I, Tronstad L. Anaerobic bacteremia and fungemia in patients undergoing endodontic therapy: an overview. Ann. Periodontol.3(1),281–287 (1998).
  • 106  Caplan DJ, Pankow JS, Cai J, Offenbacher S, Beck JD. The relationship between self-reported history of endodontic therapy and coronary heart disease in the Atherosclerosis Risk in Communities Study. J. Am. Dent. Assoc.140(8),1004–1012 (2009).
  • 107  Nataloni M, Pergolini M, Rescigno G, Mocchegiani R. Prosthetic valve endocarditis. J. Cardiovasc. Med. (Hagerstown)11(12),869–883 (2010).
  • 108  Rafferty B, Dolgilevich S, Kalachikov S et al. Cultivation of Enterobacter hormaechei from human atherosclerotic tissue. J. Atheroscler. Thromb.18(1),72–81 (2011).
  • 109  D’Aiuto F, Parkar M, Nibali L, Suvan J, Lessem J, Tonetti MS. Periodontal infections cause changes in traditional and novel cardiovascular risk factors: results from a randomized controlled clinical trial. Am. Heart J.151(5),977–984 (2006).
  • 110  Tonetti MS, D’Aiuto F, Nibali L et al. Treatment of periodontitis and endothelial function. N. Engl. J. Med.356(9),911–920 (2007).
  • 111  Seinost G, Wimmer G, Skerget M et al. Periodontal treatment improves endothelial dysfunction in patients with severe periodontitis. Am. Heart J.149(6),1050–1054 (2005).
  • 112  Papapanou PN, Sedaghatfar MH, Demmer RT et al. Periodontal therapy alters gene expression of peripheral blood monocytes. J. Clin. Periodontol.34(9),736–747 (2007).
  • 113  Lalla E, Kaplan S, Yang J, Roth GA, Papapanou PN, Greenberg S. Effects of periodontal therapy on serum C-reactive proteins, E-selectin, and tumor necrosis factor-alpha secretion by peripheral blood-derived macrophages in diabetes. A pilot study. J. Periodontal Res.42(3),274–282 (2007).
  • 114  Piconi S, Trabattoni D, Luraghi C et al. Treatment of periodontal disease results in improvements in endothelial dysfunction and reduction of the carotid intima-media thickness. FASEB J.23(4),1196–1204 (2009).
  • 115  Paju S, Pussinen PJ, Sinisalo J et al. Clarithromycin reduces recurrent cardiovascular events in subjects without periodontitis. Atherosclerosis188(2),412–419 (2006).
  • 116  Paju S, Sinisalo J, Pussinen PJ, Valtonen V, Nieminen MS. Is periodontal infection behind the failure of antibiotics to prevent coronary events? Atherosclerosis193(1),193–195 (2007).
  • 117  Scannapieco FA, Dasanayake AP, Chhun N. Does periodontal therapy reduce the risk for systemic diseases? Dent. Clin. North Am.54(1),163–181 (2010).
  • 118  Rimbara E, Fischbach LA, Graham DY. Optimal therapy for Helicobacter pylori infections. Nat. Rev. Gastroenterol. Hepatol.8(2),79–88 (2011).
  • 119  Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet1(8390),1311–1315 (1984).
  • 120  Eskelinen EL, Saftig P. Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochim. Biophys. Acta1793(4),664–673 (2009).
  • 121  Lerena MC, Vazquez CL, Colombo MI. Bacterial pathogens and the autophagic response. Cell. Microbiol.12(1),10–18 (2010).
  • 122  Travassos LH, Carneiro LA, Ramjeet M et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol.11(1),55–62 (2010).
  • 123  Liu PT, Stenger S, Li H et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science311(5768),1770–1773 (2006).
  • 124  Yuk JM, Shin DM, Lee HM et al. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe6(3),231–243 (2009).
  • 125  Foster LJ, Chan QW. Lipid raft proteomics: more than just detergent-resistant membranes. Subcell. Biochem.43,35–47 (2007).
  • 126  Seveau S, Pizarro-Cerda J, Cossart P. Molecular mechanisms exploited by Listeria monocytogenes during host cell invasion. Microbes Infect.9(10),1167–1175 (2007).
  • 127  Zaas DW, Duncan M, Rae Wright J, Abraham SN. The role of lipid rafts in the pathogenesis of bacterial infections. Biochim. Biophys. Acta1746(3),305–313 (2005).
  • 128  Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature473(7347),317–325 (2011).
  • 129  Tufariello JM, Chan J, Flynn JL. Latent tuberculosis: mechanisms of host and bacillus that contribute to persistent infection. Lancet Infect. Dis.3(9),578–590 (2003).
  • 130  Domingue GJ Sr, Woody HB. Bacterial persistence and expression of disease. Clin. Microbiol. Rev.10(2),320–344 (1997).
  • 131  Garduno RA, Garduno E, Hiltz M, Hoffman PS. Intracellular growth of Legionella pneumophila gives rise to a differentiated form dissimilar to stationary-phase forms. Infect. Immun.70(11),6273–6283 (2002).
  • 132  Lin MY, Ottenhoff TH. Host–pathogen interactions in latent Mycobacterium tuberculosis infection: identification of new targets for tuberculosis intervention. Endocr. Metab. Immune Disord. Drug Targets8(1),15–29 (2008).
  • 133  Lin MY, Geluk A, Smith SG et al. Lack of immune responses to Mycobacterium tuberculosis DosR regulon proteins following Mycobacterium bovis BCG vaccination. Infect. Immun.75(7),3523–3530 (2007).
  • 201  American Heart Association. www.americanheart.org
  • 202  Ribosomal Database Project. http://rdp.cme.msu.edu/index.jsp