We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

SGLT2 inhibitors protect cardiomyocytes from myocardial infarction: a direct mechanism?

    Jian Zhang

    Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China

    ,
    Feng Zhang

    Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China

    &
    Junbo Ge

    *Author for correspondence: Tel.: +86 198 2141 3785;

    E-mail Address: jbge@zs-hospital.sh.cn

    Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China

    Published Online:https://doi.org/10.2217/fca-2022-0058

    SGLT2 inhibitors have been developed as a novel class of glucose-lowering drugs affecting reabsorption of glucose and metabolic processes. They have been recently identified to be remarkably favorable in treating cardiovascular diseases, especially heart failure. Preclinical experiments have shown that SGLT2 inhibitors could hinder the progression of myocardial infarction and alleviate cardiac remodeling by mechanisms of metabolism influence, autophagy induction, inflammation attenuation and fibrosis reduction. Here we summarize the direct mechanism of SGLT2 inhibitors on myocardial infarction and investigate whether it could be applied to the clinic in improving cardiac function and healing after myocardial infarction.

    Plain language summary

    Inhibitors of the protein SGLT2, including empagliflozin and dapagliflozin, are some of the most efficient glucose-lowering drugs used for the treatment of diabetes. In recent years, researchers and clinicians have found that SGLT2 inhibitors could also be applied in the treatment of some cardiovascular diseases. Every year, a number of people, especially the elderly and disabled, experience the pain of myocardial infarction (‘heart attack’). Preclinical experiments have shown that SGLT2 inhibitors could hinder the progression of myocardial infarction. Some clinical trials have shown the same result. Hence, in the near future, SGLT2 inhibitors promise to be used as effective drugs in treating myocardial infarction.

    Papers of special note have been highlighted as: • of interest

    References

    • 1. Roger VL. Epidemiology of heart failure. Circ. Res. 113(6), 646–659 (2013).
    • 2. Lambert JM, Lopez EF, Lindsey ML. Macrophage roles following myocardial infarction. Int. J. Cardiol. 130(2), 147–158 (2008).
    • 3. Gorgojo-Martínez JJ. New glucose-lowering drugs for reducing cardiovascular risk in patients with type 2 diabetes mellitus. Hipertens. Riesgo Vasc. 36(3), 145–161 (2019).
    • 4. Zelniker TA, Braunwald E. Mechanisms of cardiorenal effects of sodium-glucose cotransporter 2 inhibitors: JACC state-of-the-art review. J. Am. Coll. Cardiol. 75(4), 422–434 (2020).
    • 5. Santos-Gallego CG, Requena-Ibanez JA, San Antonio R et al. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics. J. Am. Coll. Cardiol. 73(15), 1931–1944 (2019).
    • 6. Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic. Biol. Med. 104, 298–310 (2017).
    • 7. Ahmed AS, Mona MM, Abdel-Kareem MA, Elsisy RA. SGLT2 inhibitor empagliflozin monotherapy alleviates renal oxidative stress in albino Wistar diabetic rats after myocardial infarction induction. Biomed. Pharmacother. 139, 111624 (2021).
    • 8. Lim VG, Bell RM, Arjun S, Kolatsi-Joannou M, Long DA, Yellon DM. SGLT2 inhibitor, canagliflozin, attenuates myocardial infarction in the diabetic and nondiabetic heart. JACC Basic Transl. Sci. 4(1), 15–26 (2019). • SGLT2 inhibitors alleviate the death of cardiomyocytes in myocardial infarction.
    • 9. Yurista SR, Silljé HHW, Oberdorf-Maass SU et al. Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction. Eur. J. Heart Fail. 21(7), 862–873 (2019).
    • 10. Kondo H, Akoumianakis I, Badi I et al. Effects of canagliflozin on human myocardial redox signalling: clinical implications. Eur. Heart J. 42(48), 4947–4960 (2021).
    • 11. Onishi A, Fu Y, Patel R et al. A role for tubular Na+/H+ exchanger NHE3 in the natriuretic effect of the SGLT2 inhibitor empagliflozin. Am. J. Physiol.-Renal Physiol. 319(4), F712–F728 (2020).
    • 12. Wallenius K, Kroon T, Hagstedt T et al. The SGLT2 inhibitor dapagliflozin promotes systemic FFA mobilization, enhances hepatic β-oxidation, and induces ketosis. J. Lipid Res.. 63(3), 100176 (2022).
    • 13. Yu Y-W, Que J-Q, Liu S et al. Sodium-Glucose Co-transporter-2 Inhibitor of Dapagliflozin Attenuates Myocardial Ischemia/Reperfusion Injury by Limiting NLRP3 Inflammasome Activation and Modulating Autophagy. Front. Cardiovasc. Med. 8, 768214 (2022).
    • 14. Jiang K, Xu Y, Wang D et al. Cardioprotective mechanism of SGLT2 inhibitor against myocardial infarction is through reduction of autosis. Protein Cell 13(5), 336–359 (2022). • Link between SGLT2 inhibitor and autophagy.
    • 15. Uthman L, Nederlof R, Eerbeek O et al. Delayed ischaemic contracture onset by empagliflozin associates with NHE1 inhibition and is dependent on insulin in isolated mouse hearts. Cardiovasc. Res. 115(10), 1533–1545 (2019).
    • 16. Nikolaou PE, Efentakis P, Abu Qourah F et al. Chronic empagliflozin treatment reduces myocardial infarct size in nondiabetic mice through STAT-3-mediated protection on microvascular endothelial cells and reduction of oxidative stress. Antioxid. Redox Signal. 34(7), 551–571 (2021).
    • 17. Furtado RHM, Bonaca MP, Raz I et al. Dapagliflozin and cardiovascular outcomes in patients with type 2 diabetes mellitus and previous myocardial infarction. Circulation 139(22), 2516–2527 (2019).
    • 18. Shimizu W, Kubota Y, Hoshika Y et al. Effects of empagliflozin versus placebo on cardiac sympathetic activity in acute myocardial infarction patients with type 2 diabetes mellitus: the EMBODY trial. Cardiovasc. Diabetol. 19(1), 148 (2020). • Clinical trials associated with SGLT2 inhibitors in myocardial infarction.
    • 19. Paolisso P, Bergamaschi L, Santulli G et al. Infarct size, inflammatory burden, and admission hyperglycemia in diabetic patients with acute myocardial infarction treated with SGLT2-inhibitors: a multicenter international registry. Cardiovasc. Diabetol. 21(1), 77 (2022).
    • 20. Dambrova M, Zuurbier CJ, Borutaite V, Liepinsh E, Makrecka-Kuka M. Energy substrate metabolism and mitochondrial oxidative stress in cardiac ischemia/reperfusion injury. Free Radic Biol Med. 165,24–37 (2021).
    • 21. Zuurbier CJ, Bertrand L, Beauloye CR et al. Cardiac metabolism as a driver and therapeutic target of myocardial infarction. J. Cell. Mol. Med. 24(11), 5937–5954 (2020).
    • 22. Marton A, Kaneko T, Kovalik JP et al. Organ protection by SGLT2 inhibitors: role of metabolic energy and water conservation. Nat. Rev. Nephrol. 17(1), 65–77 (2021).
    • 23. Inagaki N, Goda M, Yokota S, Maruyama N, Iijima H. Safety and efficacy of canagliflozin in Japanese patients with type 2 diabetes mellitus: post hoc subgroup analyses according to body mass index in a 52-week open-label study. Expert Opin. Pharmacother. 16(11), 1577–1591 (2015).
    • 24. Lommi J, Kupari M, Koskinen P et al. Blood ketone bodies in congestive heart failure. J. Am. Coll. Cardiol. 28(3), 665–672 (1996).
    • 25. Ferrannini E, Baldi S, Frascerra S et al. Shift to fatty substrate utilization in response to sodium–glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes 65(5), 1190–1195 (2016).
    • 26. Yurista SR, Chong CR, Badimon JJ, Kelly DP, De Boer RA, Westenbrink BD. Therapeutic potential of ketone bodies for patients with cardiovascular disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 77(13), 1660–1669 (2021).
    • 27. Lindsay RT, Dieckmann S, Krzyzanska D et al. β-hydroxybutyrate accumulates in the rat heart during low-flow ischaemia with implications for functional recovery. ELife 10, e71270 (2021).
    • 28. Ferrannini E, Mark M, Mayoux E. CV Protection in the EMPA-REG OUTCOME trial: a ‘thrifty substrate’ hypothesis. Diabetes Care 39(7), 1108–1114 (2016).
    • 29. Kolb H, Kempf K, Röhling M, Lenzen-Schulte M, Schloot NC, Martin S. Ketone bodies: from enemy to friend and guardian angel. BMC Med. 19(1), 313 (2021).
    • 30. Halestrap AP. The SLC16 gene family – structure, role and regulation in health and disease. Mol. Aspects Med. 34(2–3), 337–349 (2013).
    • 31. Puchalska P, Crawford PA. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 25(2), 262–284 (2017). • The role of ketone bodies in cardiovascular diseases.
    • 32. Uchihashi M, Hoshino A, Okawa Y et al. Cardiac-specific Bdh1 overexpression ameliorates oxidative stress and cardiac remodeling in pressure overload-induced heart failure. Circ. Heart Fail. 10(12), e004417 (2017).
    • 33. Song Y, Huang C, Sin et al. Attenuation of adverse postinfarction left ventricular remodeling with empagliflozin enhances mitochondria-linked cellular energetics and mitochondrial biogenesis. Int. J. Mol. Sci. 23(1), 437 (2021).
    • 34. Mizuno M, Kuno A, Yano T et al. Empagliflozin normalizes the size and number of mitochondria and prevents reduction in mitochondrial size after myocardial infarction in diabetic hearts. Physiol. Rep. 6(12), e13741 (2018).
    • 35. Moellmann J, Klinkhammer BM, Droste P et al. Empagliflozin improves left ventricular diastolic function of db/db mice. Biochim. Biophys. Acta Mol. Basis Dis. 1866(8), 165807 (2020).
    • 36. Baker HE, Kiel AM, Luebbe ST et al. Inhibition of sodium–glucose cotransporter-2 preserves cardiac function during regional myocardial ischemia independent of alterations in myocardial substrate utilization. Basic Res. Cardiol. 114(3), 25 (2019).
    • 37. Abdurrachim D, Teo XQ, Woo CC et al. Empagliflozin reduces myocardial ketone utilization while preserving glucose utilization in diabetic hypertensive heart disease: a hyperpolarized 13C magnetic resonance spectroscopy study. Diabetes Obes. Metab. 21(2), 357–365 (2019).
    • 38. Lopaschuk GD, Verma S. Empagliflozin’s fuel hypothesis: not so soon. Cell Metab. 24(2), 200–202 (2016).
    • 39. Zhang H, Uthman L, Bakker D et al. Empagliflozin decreases lactate generation in an NHE-1 dependent fashion and increases α-ketoglutarate synthesis from palmitate in type II diabetic mouse hearts. Front. Cardiovasc. Med. 7, 592233 (2020). • SGLT2 inhibitors affect the metabolism of the heart.
    • 40. Kuang M, Febbraio M, Wagg C, Lopaschuk GD, Dyck JR. Fatty acid translocase/CD36 deficiency does not energetically or functionally compromise hearts before or after ischemia. Circulation 109(12), 1550–1557 (2004).
    • 41. Dyck JR, Lopaschuk GD. Malonyl CoA control of fatty acid oxidation in the ischemic heart. J. Mol. Cell. Cardiol. 34(9), 1099–1109 (2002).
    • 42. Schlaepfer IR, Joshi M. CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential. Endocrinology 161(2), bqz046 (2020).
    • 43. Basu D, Huggins LA, Scerbo D et al. Mechanism of increased LDL (low-density lipoprotein) and decreased triglycerides with SGLT2 (sodium–glucose cotransporter 2) inhibition. Arterioscler. Thromb. Vasc. Biol. 38(9), 2207–2216 (2018).
    • 44. Mcgarry JD, Brown NF. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur. J. Biochem. 244(1), 1–14 (1997).
    • 45. Mcgarry JD, Takabayashi Y, Foster DW. The role of malonyl-CoA in the coordination of fatty acid synthesis and oxidation in isolated rat hepatocytes. J. Biol. Chem. 253(22), 8294–8300 (1978).
    • 46. Awan MM, Saggerson ED. Malonyl-CoA metabolism in cardiac myocytes and its relevance to the control of fatty acid oxidation. Biochem. J. 295 (Pt 1), 61–66 (1993).
    • 47. Li L, Li Q, Huang W et al. Dapagliflozin alleviates hepatic steatosis by restoring autophagy via the AMPK-mTOR pathway. Front. Pharmacol. 12, 589273 (2021).
    • 48. Trang NN, Chung CC, Lee TW et al. Empagliflozin and liraglutide differentially modulate cardiac metabolism in diabetic cardiomyopathy in rats. Int. J. Mol. Sci. 22(3), 1177 (2021).
    • 49. Pepino MY, Kuda O, Samovski D, Abumrad NA. Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. Annu Rev Nutr. 34,281–303 (2014).
    • 50. Goodwin GW, Taegtmeyer H. Regulation of fatty acid oxidation of the heart by MCD and ACC during contractile stimulation. Am J Physiol. 277(4), E772–E777 (1999).
    • 51. Maréchal L, Laviolette M, Rodrigue-Way A et al. The CD36-PPARγ pathway in metabolic disorders. Int J Mol Sci. 19(5), 1529 (2018).
    • 52. Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr. Rev. 24(1), 78–90 (2003).
    • 53. Finck BN, Lehman JJ, Leone TC et al. The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J. Clin. Invest. 109(1), 121–130 (2002).
    • 54. Shao Q, Meng L, Lee S et al. Empagliflozin, a sodium glucose co-transporter-2 inhibitor, alleviates atrial remodeling and improves mitochondrial function in high-fat diet/streptozotocin-induced diabetic rats. Cardiovasc. Diabetol. 18(1), 165 (2019).
    • 55. Wei D, Liao L, Wang H, Zhang W, Wang T, Xu Z. Canagliflozin ameliorates obesity by improving mitochondrial function and fatty acid oxidation via PPARα in vivo and in vitro. Life Sci. 247, 117414 (2020).
    • 56. Neinast MD, Jang C, Hui S et al. Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metab. 29(2), 417–429.e414 (2019).
    • 57. Sag CM, Wagner S, Maier LS. Role of oxidants on calcium and sodium movement in healthy and diseased cardiac myocytes. Free Radic. Biol. Med. 63, 338–349 (2013).
    • 58. Uthman L, Baartscheer A, Bleijlevens B et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation. Diabetologia 61(3), 722–726 (2018).
    • 59. Baartscheer A, Schumacher CA, Wüst RC et al. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia 60(3), 568–573 (2017).
    • 60. Philippaert K, Kalyaanamoorthy S, Fatehi M et al. Cardiac late sodium channel current is a molecular target for the sodium/glucose cotransporter 2 inhibitor empagliflozin. Circulation 143(22), 2188–2204 (2021).
    • 61. Packer M. Autophagy stimulation and intracellular sodium reduction as mediators of the cardioprotective effect of sodium-glucose cotransporter 2 inhibitors. Eur J. Heart Fail. 22(4), 618–628 (2020).
    • 62. Zhai P, Galeotti J, Liu et al. An angiotensin II type 1 receptor mutant lacking epidermal growth factor receptor transactivation does not induce angiotensin II-mediated cardiac hypertrophy. Circ. Res. 99(5), 528–536 (2006).
    • 63. Goldberg MA, Dunning SP, Bunn HF. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242(4884), 1412–1415 (1988).
    • 64. Camberos-Luna L, Gerónimo-Olvera C, Montiel T, Rincon-Heredia R, Massieu L. The ketone body, β-hydroxybutyrate stimulates the autophagic flux and prevents neuronal death induced by glucose deprivation in cortical cultured neurons. Neurochem. Res. 41(3), 600–609 (2016).
    • 65. Sayour AA, Korkmaz-Icöz S, Loganathan S et al. Acute canagliflozin treatment protects against in vivo myocardial ischemia–reperfusion injury in non-diabetic male rats and enhances endothelium-dependent vasorelaxation. J. Transl. Med. 17(1), 127 (2019).
    • 66. Hawley SA, Ford RJ, Smith BK et al. The Na+/glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes 65(9), 2784–2794 (2016).
    • 67. Umino H, Hasegawa K, Minakuchi H et al. High basolateral glucose increases sodium-glucose cotransporter 2 and reduces sirtuin-1 in renal tubules through glucose transporter-2 detection. Sci. Rep. 8(1), 6791 (2018).
    • 68. Kim S, Jo CH, Kim GH. Effects of empagliflozin on nondiabetic salt-sensitive hypertension in uninephrectomized rats. Hypertens. Res. 42(12), 1905–1915 (2019).
    • 69. Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13(4), 251–262 (2012).
    • 70. Pillai VB, Sundaresan NR, Gupta MP. Regulation of Akt signaling by sirtuins: its implication in cardiac hypertrophy and aging. Circ. Res. 114(2), 368–378 (2014).
    • 71. Wang L, Quan N, Sun W et al. Cardiomyocyte-specific deletion of Sirt1 gene sensitizes myocardium to ischaemia and reperfusion injury. Cardiovasc. Res. 114(6), 805–821 (2018).
    • 72. Luo G, Jian Z, Zhu Y et al. Sirt1 promotes autophagy and inhibits apoptosis to protect cardiomyocytes from hypoxic stress. Int. J. Mol. Med. 43(5), 2033–2043 (2019).
    • 73. Semenza GL. Regulation of metabolism by hypoxia-inducible factor 1. Cold Spring Harb. Symp. Quant. Biol. 76, 347–353 (2011).
    • 74. Kim JW, Lee YJ, You YH et al. Effect of sodium–glucose cotransporter 2 inhibitor, empagliflozin, and α-glucosidase inhibitor, voglibose, on hepatic steatosis in an animal model of type 2 diabetes. J. Cell. Biochem. doi:10.1002/jcb.28141 (.2018) (Epub ahead of print).
    • 75. Lv B, Hua T, Li F et al. Hypoxia-inducible factor 1 α protects mesenchymal stem cells against oxygen-glucose deprivation-induced injury via autophagy induction and PI3K/AKT/mTOR signaling pathway. Am. J. Transl. Res. 9(5), 2492–2499 (2017).
    • 76. Lee YH, Kim SH, Kang JM et al. Empagliflozin attenuates diabetic tubulopathy by improving mitochondrial fragmentation and autophagy. Am. J. Physiol. Renal Physiol. 317(4), F767–f780 (2019).
    • 77. Korbut AI, Taskaeva IS, Bgatova NP et al. SGLT2 inhibitor empagliflozin and DPP4 inhibitor linagliptin reactivate glomerular autophagy in db/db mice, a model of type 2 diabetes. Int. J. Mol. Sci. 21(8), 2987 (2020).
    • 78. Ren C, Sun K, Zhang Y et al. Sodium–glucose cotransporter-2 inhibitor empagliflozin ameliorates sunitinib-induced cardiac dysfunction via regulation of AMPK-mTOR signaling pathway-mediated autophagy. Front. Pharmacol. 12, 664181 (2021).
    • 79. Yu YW, Que JQ, Liu S et al. Sodium–glucose co-transporter-2 inhibitor of dapagliflozin attenuates myocardial ischemia/reperfusion injury by limiting NLRP3 inflammasome activation and modulating autophagy. Front. Cardiovasc. Med. 8, 768214 (2021).
    • 80. Xu C, Wang W, Zhong J et al. Canagliflozin exerts anti-inflammatory effects by inhibiting intracellular glucose metabolism and promoting autophagy in immune cells. Biochem. Pharmacol. 152, 45–59 (2018).
    • 81. Liu Y, Wu M, Xu J, Xu B, Kang L. Empagliflozin prevents from early cardiac injury post myocardial infarction in non-diabetic mice. Eur J. Pharm. Sci. 161, 105788 (2021).
    • 82. Lee H, Yoon Y. Mitochondrial fission and fusion. Biochem. Soc. Trans. 44(6), 1725–1735 (2016).
    • 83. Dorn GW 2nd, Vega RB, Kelly DP. Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev. 29(19), 1981–1991 (2015).
    • 84. Takagi S, Li J, Takagaki Y et al. Ipragliflozin improves mitochondrial abnormalities in renal tubules induced by a high-fat diet. J. Diabetes Investig. 9(5), 1025–1032 (2018).
    • 85. Wang CC, Li Y, Qian XQ et al. Empagliflozin alleviates myocardial I/R injury and cardiomyocyte apoptosis via inhibiting ER stress-induced autophagy and the PERK/ATF4/Beclin1 pathway. J. Drug Target. 30(8), 858–872 (2022).
    • 86. Berry DL, Baehrecke EH. Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131(6), 1137–1148 (2007).
    • 87. Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G. Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 15(2), 81–94 (2014).
    • 88. Xu J, Kitada M, Ogura Y, Liu H, Koya D. Dapagliflozin restores impaired autophagy and suppresses inflammation in high glucose-treated HK-2 cells. Cells 10(6), 1457 (2021).
    • 89. Wang CY, Chen CC, Lin MH et al. TLR9 binding to beclin 1 and mitochondrial SIRT3 by a sodium–glucose co-transporter 2 inhibitor protects the heart from doxorubicin toxicity. Biology (Basel) 9(11), 369 (2020). • SGLT2 inhibitors enhance autophagic flux.
    • 90. Han JH, Oh TJ, Lee G et al. The beneficial effects of empagliflozin, an SGLT2 inhibitor, on atherosclerosis in ApoE (-/-) mice fed a western diet. Diabetologia 60(2), 364–376 (2017).
    • 91. Koyani CN, Plastira I, Sourij H et al. Empagliflozin protects heart from inflammation and energy depletion via AMPK activation. Pharmacol. Res. 158, 104870 (2020).
    • 92. Abdollahi E, Keyhanfar F, Delbandi AA, Falak R, Hajimiresmaiel SJ, Shafiei M. Dapagliflozin exerts anti-inflammatory effects via inhibition of LPS-induced TLR-4 overexpression and NF-κB activation in human endothelial cells and differentiated macrophages. Eur. J. Pharmacol. 918, 174715 (2022).
    • 93. Toldo S, Mezzaroma E, Mauro AG, Salloum F, Van Tassell BW, Abbate A. The inflammasome in myocardial injury and cardiac remodeling. Antioxid. Redox Signal. 22(13), 1146–1161 (2015).
    • 94. Mezzaroma E, Toldo S, Farkas D et al. The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc. Natl Acad. Sci. USA 108(49), 19725–19730 (2011).
    • 95. Toldo S, Abbate A. The NLRP3 inflammasome in acute myocardial infarction. Nat. Rev. Cardiol. 15(4), 203–214 (2018).
    • 96. Sun Q, Fan J, Billiar TR, Scott MJ. Inflammasome and autophagy regulation – a two-way street. Mol. Med. 23, 188–195 (2017).
    • 97. Leng W, Wu M, Pan H et al. The SGLT2 inhibitor dapagliflozin attenuates the activity of ROS–NLRP3 inflammasome axis in steatohepatitis with diabetes mellitus. Ann. Transl. Med. 7(18), 429 (2019). • SGLT2 inhibitors influence the formation of NLRP3 inflammasome.
    • 98. Sukhanov S, Higashi Y, Yoshida T et al. The SGLT2 inhibitor empagliflozin attenuates interleukin-17A-induced human aortic smooth muscle cell proliferation and migration by targeting TRAF3IP2/ROS/NLRP3/caspase-1-dependent IL-1β and IL-18 secretion. Cell. Signal. 77, 109825 (2021).
    • 99. Kim SR, Lee SG, Kim SH et al. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat. Commun. 11(1), 2127 (2020).
    • 100. Ye Y, Bajaj M, Yang HC, Perez-Polo JR, Birnbaum Y. SGLT-2 inhibition with dapagliflozin reduces the activation of the NLRP3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further augmentation of the effects with saxagliptin, a DPP4 inhibitor. Cardiovasc. Drugs Ther. 31(2), 119–132 (2017).
    • 101. Li C, Zhang J, Xue M et al. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc. Diabetol. 18(1), 15 (2019).
    • 102. Youm YH, Nguyen KY, Grant RW et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med. 21(3), 263–269 (2015).
    • 103. Quagliariello V, De Laurentiis M, Rea D et al. The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin. Cardiovasc. Diabetol. 20(1), 150 (2021). • SGLT2 inhibitors play a anti-inflammatory role in cardiovascular diseases.
    • 104. Lee N, Heo YJ, Choi SE et al. Anti-inflammatory effects of empagliflozin and gemigliptin on LPS-stimulated macrophage via the IKK/NF-κB, MKK7/JNK, and JAK2/STAT1 signalling pathways. J. Immunol. Res. 2021, 9944880 (2021).
    • 105. Matsuzawa-Ishimoto Y, Hwang S, Cadwell K. Autophagy and inflammation. Annu. Rev. Immunol. 36, 73–101 (2018).
    • 106. Gordon S, Plüddemann A. Tissue macrophages: heterogeneity and functions. BMC Biol. 15(1), 53 (2017).
    • 107. Shapouri-Moghaddam A, Mohammadian S, Vazini H et al. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 233(9), 6425–6440 (2018).
    • 108. Xu L, Nagata N, Nagashimada M et al. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice. EBioMedicine 20, 137–149 (2017).
    • 109. Vats D, Mukundan L, Odegaard JI et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab. 4(1), 13–24 (2006).
    • 110. Jha AK, Huang SC, Sergushichev A et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42(3), 419–430 (2015).
    • 111. Ugusman A, Kumar J, Aminuddin A. Endothelial function and dysfunction: impact of sodium–glucose cotransporter 2 inhibitors. Pharmacol. Ther. 224, 107832 (2021).
    • 112. Park SH, Farooq MA, Gaertner S et al. Empagliflozin improved systolic blood pressure, endothelial dysfunction and heart remodeling in the metabolic syndrome ZSF1 rat. Cardiovasc. Diabetol. 19(1), 19 (2020).
    • 113. Correale M, Mazzeo P, Mallardi A et al. Switch to SGLT2 inhibitors and improved endothelial function in diabetic patients with chronic heart failure. Cardiovasc. Drugs Ther. doi:10.1007/s10557-021-07254-3 (2021) (Epub ahead of print).
    • 114. Li H, Shin SE, Seo MS et al. The anti-diabetic drug dapagliflozin induces vasodilation via activation of PKG and Kv channels. Life Sci. 197, 46–55 (2018).
    • 115. Zainordin NA, Hatta S, Mohamed Shah FZ et al. Effects of dapagliflozin on endothelial dysfunction in type 2 diabetes with established ischemic heart disease (EDIFIED). J. Endocr. Soc. 4(1), bvz017 (2020).
    • 116. Fuentes E, Moore-Carrasco R, De Andrade Paes AM, Trostchansky A. Role of platelet activation and oxidative stress in the evolution of myocardial infarction. J. Cardiovasc. Pharmacol. Ther. 24(6), 509–520 (2019).
    • 117. Khemais-Benkhiat S, Belcastro E, Idris-Khodja N et al. Angiotensin II-induced redox-sensitive SGLT1 and 2 expression promotes high glucose-induced endothelial cell senescence. J. Cell. Mol. Med. 24(3), 2109–2122 (2020).
    • 118. Gaspari T, Spizzo I, Liu H et al. Dapagliflozin attenuates human vascular endothelial cell activation and induces vasorelaxation: a potential mechanism for inhibition of atherogenesis. Diab. Vasc. Dis. Res. 15(1), 64–73 (2018).
    • 119. Uthman L, Li X, Baartscheer A et al. Empagliflozin reduces oxidative stress through inhibition of the novel inflammation/NHE/[Na+]c/ROS-pathway in human endothelial cells. Biomed. Pharmacother. 146, 112515 (2022).
    • 120. Kolijn D, Pabel S, Tian Y et al. Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory–oxidative pathways and protein kinase Gα oxidation. Cardiovasc. Res. 117(2), 495–507 (2021).
    • 121. Turner NA, Porter KE. Function and fate of myofibroblasts after myocardial infarction. Fibrogenesis Tissue Repair 6(1), 5 (2013).
    • 122. Frangogiannis NG. The extracellular matrix in myocardial injury, repair, and remodeling. J. Clin. Invest. 127(5), 1600–1612 (2017).
    • 123. Li G, Zhao C, Fang S. SGLT2 promotes cardiac fibrosis following myocardial infarction and is regulated by miR-141. Exp. Ther. Med. 22(1), 715 (2021).
    • 124. Goerg J, Sommerfeld M, Greiner B et al. Low-dose empagliflozin improves systolic heart function after myocardial infarction in rats: regulation of MMP9, NHE1, and SERCA2a. Int. J. Mol. Sci. 22(11), 5437 (2021).