We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Bridging the gap: R-loop mediated genomic instability and its implications in neurological diseases

    Katherine R Westover

    Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA

    ,
    Peng Jin

    *Author for correspondence:

    E-mail Address: peng.jin@emory.edu

    Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA

    &
    Bing Yao

    **Author for correspondence:

    E-mail Address: bing.yao@emory.edu

    Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA

    Published Online:https://doi.org/10.2217/epi-2023-0379

    R-loops, intricate three-stranded structures formed by RNA–DNA hybrids and an exposed non-template DNA strand, are fundamental to various biological phenomena. They carry out essential and contrasting functions within cellular mechanisms, underlining their critical role in maintaining cellular homeostasis. The specific cellular context that dictates R-loop formation determines their function, particularly emphasizing the necessity for their meticulous genomic regulation. Notably, the aberrant formation or misregulation of R-loops is implicated in numerous neurological disorders. This review focuses on the complex interactions between R-loops and double-strand DNA breaks, exploring how R-loop dysregulation potentially contributes to the pathogenesis of various brain disorders, which could provide novel insights into the molecular mechanisms underpinning neurological disease progression and identify potential therapeutic targets by highlighting these aspects.

    Plane language summary

    R-loops are special structures inside our cells, made when a piece of RNA (a molecule similar to DNA) sticks to DNA, exposing a part of the DNA. These structures play important roles in how our cells work, helping to keep them healthy and functioning properly. However, when these R-loops do not form correctly or are not controlled well by the cell, they can cause problems. This is especially true in the brain, where mistakes in R-loop formation can lead to various neurological disorders, which are conditions that affect the brain and nerves. In our review, we examine how R-loops interact with certain types of DNA damage and how this can lead to brain disorders. We hope that by understanding these interactions better, scientists can find new ways to treat or prevent these conditions.

    Tweetable abstract

    Exploring the role of R-loops in neurological disorders: our review highlights how their dysregulation may contribute to disease progression, offering new insights into molecular mechanisms and potential therapeutic avenues.

    Papers of special note have been highlighted as: • of interest

    References

    • 1. Thomas M, White RL, Davis RW. Hybridization of RNA to double-stranded DNA: formation of R-loops. Proc. Natl Acad. Sci. USA 73(7), 2294–2298 (1976).
    • 2. Drolet M, Bi X LF. Hypernegative supercoiling of the DNA template during transcription elongation in vitro. J. Bio. Chem. 269, 2068–2074 (1994).
    • 3. Sanz LA, Hartono SR, Lim YW et al. Prevalent, dynamic, and conserved R-loop structures associate with specific epigenomic signatures in mammals. Mol. Cell 63(1), 167–178 (2016).
    • 4. Wahba L, Costantino L, Tan FJ, Zimmer A, Koshland D. S1-DRIP-seq identifies high expression and polyA tracts as major contributors to R-loop formation. Genes Develop. 30(11), 1327–1338 (2016).
    • 5. Sabino JC, De Almeida MR, Abreu PL et al. Epigenetic reprogramming by TET enzymes impacts co-transcriptional R-loops. eLife 11, e69476 (2022).
    • 6. Esther Marchena-Cruz LPC, Jay Bhandari, Sónia Silva et al. Andrés Aguilera DDX47, MeCP2, and other functionally heterogeneous factors protect cells from harmful R loops. Cell Rep. 42(3), 112148 (2023).
    • 7. Arab K, Karaulanov E, Musheev M et al. GADD45A binds R-loops and recruits TET1 to CpG island promoters. Nat. Genet. 51(2), 217–223 (2019).
    • 8. Ginno PA, Lim YW, Lott PL, Korf I, Chédin F. GC skew at the 5′ and 3′ ends of human genes links R-loop formation to epigenetic regulation and transcription termination. Genome Res. 23(10), 1590–1600 (2013).
    • 9. Shafiq S, Chen C, Yang J et al. DNA topoisomerase 1 prevents R-loop accumulation to modulate auxin-regulated root development in rice. Mol. Plant 10(6), 821–833 (2017).
    • 10. Chedin F BC. Emerging roles for R-loop structures in the management of topological stress. J. Biol. Chem. 295(14), 4684–4695 (2020).
    • 11. Stolz R, Sulthana S, Hartono SR, Malig M, Benham CJ, Chedin F. Interplay between DNA sequence and negative superhelicity drives R-loop structures. Proc. Natl Acad. Sci. USA 116(13), 6260–6269 (2019).
    • 12. Roy D, Zhang Z, Lu Z, Hsieh C-L, Lieber MR. Competition between the RNA transcript and the nontemplate DNA strand during R-loop formation in vitro: a nick can serve as a strong R-loop initiation site. Mol. Cell. Biol. 30(1), 146–159 (2010).
    • 13. Cerritelli SM, Crouch RJ. Ribonuclease H: the enzymes in eukaryotes. FEBS J. 276(6), 1494–1505 (2009).
    • 14. Lockhart A, Pires VB, Bento F et al. RNase H1 and H2 are differentially regulated to process RNA-DNA hybrids. Cell Reports 29(9), 2890–2900.e2895 (2019).
    • 15. Zimmer AD, Koshland D. Differential roles of the RNases H in preventing chromosome instability. Proc. Natl Acad. Sci. USA 113(43), 12220–12225 (2016).
    • 16. Zhao H, Hartono SR, De Vera KMF et al. Senataxin and RNase H2 act redundantly to suppress genome instability during class switch recombination. eLife 11, e78917 (2022).
    • 17. Kannan A, Cuartas J, Gangwani P, Branzei D, Gangwani L. Mutation in senataxin alters the mechanism of R-loop resolution in amyotrophic lateral sclerosis 4. Brain 145(9), 3072-3094 doi:10.1093/brain/awab464 (2022).
    • 18. Andrisani O, Liu Q, Kehn P et al. Biological functions of DEAD/DEAH-box RNA helicases in health and disease. Nat. Immunol. 23(3), 354–357 (2022).
    • 19. Wahba L GS, Koshland D. The homologous recombination machinery modulates the formation of RNA-DNA hybrids and associated chromosome instability. 2, e00505 (2013).
    • 20. Pavri R. R loops in the regulation of antibody gene diversification. Genes 8(6), 154 (2017).
    • 21. Chaudhuri J, Tian M, Khuong C, Chua K, Pinaud E, Alt FW. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422(6933), 726–730 (2003).
    • 22. Szczelkun MD, Tikhomirova MS, Sinkunas T et al. Direct observation of R-loop formation by single RNA-guided Cas9 and cascade effector complexes. Proc. Natl Acad. Sci. USA 111(27), 9798–9803 (2014).
    • 23. Grunseich C WI, Watts JA, Burdick JT et al. Senataxin mutation reveals how R-loops promote transcription by blocking DNA methylation at gene promoters. Mol. Cell 69(3), 426–437 (2018).
    • 24. Skourti-Stathaki K, Kamieniarz-Gdula K, Proudfoot NJ. R-loops induce repressive chromatin marks over mammalian gene terminators. Nature 516(7531), 436–439 (2014).
    • 25. Chen PB, Chen HV, Acharya D, Rando OJ, Fazzio TG. R loops regulate promoter-proximal chromatin architecture and cellular differentiation. Nat. Struct. Mol. Biol. 22(12), 999–1007 (2015).
    • 26. Costantino L, Koshland D. Genome-wide map of R-loop-induced damage reveals how a subset of R-loops contributes to genomic instability. Mol. Cell 71(4), 487–497.e483 (2018).
    • 27. Yasuhara T, Kato R, Hagiwara Y et al. Human Rad52 promotes XPG-mediated R-loop processing to initiate transcription-associated homologous recombination repair. Cell 175(2), 558–570 e511 (2018).
    • 28. Skourti-Stathaki K, Proudfoot NJ. A double-edged sword: r loops as threats to genome integrity and powerful regulators of gene expression. Gen. Develop. 28(13), 1384–1396 (2014).
    • 29. Prado F, Aguilera A. Impairment of replication fork progression mediates RNA polII transcription-associated recombination. EMBO J. 24(6), 1267–1276 (2005).
    • 30. Huertas P, Aguilera A. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol. Cell 12(3), 711–721 (2003).
    • 31. Hamperl S, Bocek MJ, Saldivar JC, Swigut T, Cimprich KA. Transcription-Replication Conflict Orientation Modulates R-Loop Levels and Activates Distinct DNA Damage Responses. Cell 170(4), 774–786.e719 (2017). • Explores the role of R-loops in transcription-replication collisions and provides insight into a mechanistic basis for why dysregulation of R-loops leads to genomic instability.
    • 32. Lindahl T. Instability and decay of the primary structure of DNA. Nature 362(6422), 709–715 (1993).
    • 33. Zhang X, Chiang H-C, Wang Y et al. Attenuation of RNA polymerase II pausing mitigates BRCA1-associated R-loop accumulation and tumorigenesis. Nat. Commun. 8(1), 15908 (2017).
    • 34. Gómez-González B, Aguilera A. Activation-induced cytidine deaminase action is strongly stimulated by mutations of the THO complex. Proc. Natl Acad. Sci. USA 104(20), 8409–8414 (2007).
    • 35. Freudenreich CH. R-loops: targets for nuclease cleavage and repeat instability. Curr. Genet. 64(4), 789–794 (2018).
    • 36. Muniesa-Vargas A, Theil AF, Ribeiro-Silva C, Vermeulen W, Lans H. XPG: a multitasking genome caretaker. Cell. Mol. Life Sci. 79(3), 166 (2022).
    • 37. Li TT, Vasquez KM. Multi-faceted roles of ERCC1-XPF nuclease in processing non-B DNA structures. DNA 2(4), 231–247 (2022).
    • 38. Sollier J, Stork CT, García-Rubio ML, Paulsen RD, Aguilera A, Cimprich KA. Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol. Cell 56(6), 777–785 (2014).
    • 39. Cannan WJ, Pederson DS. Mechanisms and consequences of double-strand DNA break formation in chromatin. J. Cell. Physiol. 231(1), 3–14 (2016).
    • 40. Scott SP, Pandita TK. The cellular control of DNA double-strand breaks. J. Cell. Biochem. 99(6), 1463–1475 (2006).
    • 41. Dutta D, Shatalin K, Epshtein V, Max, Nudler E. Linking RNA polymerase backtracking to genome instability in E. coli. Cell 146(4), 533–543 (2011).
    • 42. Zatreanu D, Han Z, Mitter R et al. Elongation factor TFIIS prevents transcription stress and R-loop accumulation to maintain genome stability. Mol. Cell 76(1), 57–69.e59 (2019).
    • 43. Lang KS, Hall AN, Merrikh CN et al. Replication-transcription conflicts generate R-loops that orchestrate bacterial stress survival and pathogenesis. Cell 170(4), 787–799.e718 (2017).
    • 44. Pomerantz RT, O'donnell M. What happens when replication and transcription complexes collide? Cell Cycle 9(13), 2537–2543 (2010).
    • 45. Ozdemir AY, Rusanov T, Kent T, Siddique LA, Pomerantz RT. Polymerase θ-helicase efficiently unwinds DNA and RNA-DNA hybrids. J. Biol. Chem. 293(14), 5259–5269 (2018).
    • 46. Aguilera A, García-Muse T. R loops: from transcription byproducts to threats to genome stability. Mol. Cell 46(2), 115–124 (2012).
    • 47. Cohen S, Puget N, Lin Y-L et al. Senataxin resolves RNA:DNA hybrids forming at DNA double-strand breaks to prevent translocations. Nat. Commun. 9(1), 533 (2018).
    • 48. Lu W-T, Hawley BR, Skalka GL et al. Drosha drives the formation of DNA:RNA hybrids around DNA break sites to facilitate DNA repair. Nat. Commun. 9(1), 532 (2018).
    • 49. Chapman TM Jr, Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell 47(4), 497–510 (2012).
    • 50. Mazina OM, Somarowthu S, Kadyrova LY et al. Replication protein A binds RNA and promotes R-loop formation. J. Biol. Chem. 295(41), 14203–14213 (2020).
    • 51. Plate I, Hallwyl SCL, Shi I et al. Interaction with RPA is necessary for Rad52 repair center formation and for its mediator activity. J. Biol. Chem. 283(43), 29077–29085 (2008).
    • 52. Mortensen UH, Bendixen C, Sunjevaric I, Rothstein R. DNA strand annealing is promoted by the yeast Rad52 protein. Proc. Natl Acad. Sci. USA 93(20), 10729–10734 (1996).
    • 53. Haber JE. DNA repair: the search for homology. BioEssays 40(5), 1700229 (2018).
    • 54. Teng Y, Yadav T, Duan M et al. ROS-induced R loops trigger a transcription-coupled but BRCA1/2-independent homologous recombination pathway through CSB. Nat. Commun. 9(1), 4115 (2018). • Examines how R-loops promote homologous recombination in response to DNA damage.
    • 55. Nogueira A, Fernandes M, Catarino R, Medeiros R. RAD52 functions in homologous recombination and its importance on genomic integrity maintenance and cancer therapy. Cancers 11(11), 1622 (2019).
    • 56. Xia P LY, Chen J, Cheng Z. Cell cycle proteins as key regulators of postmitotic cell death. Yale J. Biol. Med. 92, 641–650 (2019).
    • 57. Rink C, Khanna S. Significance of brain tissue oxygenation and the arachidonic acid cascade in stroke. Antioxid. Redox Signal. 14(10), 1889–1903 (2011).
    • 58. Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metabol. 21(10), 1133–1145 (2001).
    • 59. Tubbs A, Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. Cell 168(4), 644–656 (2017).
    • 60. Cristini A, Ricci G, Britton S et al. Dual processing of R-loops and topoisomerase I induces transcription-dependent DNA double-strand breaks. Cell Rep. 28(12), 3167–3181 e3166 (2019).
    • 61. Jauregui-Lozano J, Escobedo S, Easton A, Nadia, Weake VM, Hall H. Proper control of R-loop homeostasis is required for maintenance of gene expression and neuronal function during aging. Aging Cell 21(2), e13554 (2022).
    • 62. Muralimanoharan S, Shamby R, Stansbury N et al. Aberrant R-loop-induced replication stress in MED12-mutant uterine fibroids. Scient. Reports 12(1) (2022).
    • 63. Madabhushi R, Gao F, Andreas et al. Activity-induced DNA breaks govern the expression of neuronal early-response genes. Cell 161(7), 1592–1605 (2015).
    • 64. Stott RT, Kritsky O, Tsai L-H. Profiling DNA break sites and transcriptional changes in response to contextual fear learning. PLoS One 16(7), e0249691 (2021).
    • 65. Suberbielle E, Sanchez PE, Kravitz AV et al. Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nat. Neurosci. 16(5), 613–621 (2013).
    • 66. Reid Da RP, Schlachetzki JCM, Nitulescu II et al. Incorporation of a nucleoside analog maps genome repair sites in postmitotic human neurons. Science 372(6537), 91–94 (2021).
    • 67. Elsakrmy N, Cui H. R-loops and R-loop-binding proteins in cancer progression and drug resistance. Int. J. Mol. Sci. 24(8), 7064 (2023).
    • 68. Richard P, Manley JL. R loops and links to human disease. J. Mol. Biol. 429(21), 3168–3180 (2017).
    • 69. Kanagaraj R, Mitter R, Kantidakis T et al. Integrated genome and transcriptome analyses reveal the mechanism of genome instability in ataxia with oculomotor apraxia 2. Proc. Natl Acad. Sci. USA 119(4), e2114314119 (2022).
    • 70. Ber IL BN, Rivaud-Pechoux S, Guimaraes J et al. Frequency and phenotypic spectrum of ataxia with oculomotor apraxia 2: a clinical and genetic study in 18 patients. Brain 127(4), 759–767 (2004).
    • 71. Davis AJ, Chen BPC, Chen DJ. DNA-PK: a dynamic enzyme in a versatile DSB repair pathway. DNA Repair 17, 21–29 (2014).
    • 72. Rass U, Ahel I, West SC. Defective DNA repair and neurodegenerative disease. Cell 130(6), 991–1004 (2007).
    • 73. Gangwani L, Mikrut M, Theroux S, Sharma M, Davis RJ. Spinal muscular atrophy disrupts the interaction of ZPR1 with the SMN protein. Nat. Cell Biol. 3(4), 376–383 (2001).
    • 74. Airoldi G, Guidarelli A, Cantoni O et al. Characterization of two novel SETX mutations in AOA2 patients reveals aspects of the pathophysiological role of senataxin. Neurogenetics 11(1), 91–100 (2010).
    • 75. Golla U, Singh V, Azad GK et al. Sen1p contributes to genomic integrity by regulating expression of ribonucleotide reductase 1 (RNR1) in Saccharomyces cerevisiae. PLoS One 8(5), e64798 (2013).
    • 76. Yüce Ö, West SC. Senataxin, defective in the neurodegenerative disorder ataxia with oculomotor apraxia 2, lies at the interface of transcription and the DNA damage response. Mol. Cell. Biol. 33(2), 406–417 (2013).
    • 77. Sollier J, Cimprich KA. Breaking bad: r-loops and genome integrity. Trends Cell Biol. 25(9), 514–522 (2015).
    • 78. Aguilera A, Gómez-González B. DNA–RNA hybrids: the risks of DNA breakage during transcription. Nat. Struct. Mol. Biol. 24(5), 439–443 (2017).
    • 79. Talbot K, Davies KE. Spinal muscular atrophy. Semin. Neurol. 21(02), 189–198 (2001).
    • 80. Roberts DF, Chavez J, Court SDM. The genetic component in child mortality. Arch. Dis. Child. 45(239), 33–38 (1970).
    • 81. Jangi M, Fleet C, Cullen P et al. SMN deficiency in severe models of spinal muscular atrophy causes widespread intron retention and DNA damage. Proc. Natl Acad. Sci. USA 114(12), E2347–E2356 (2017).
    • 82. Takizawa Y, Qing Y, Takaku M et al. GEMIN2 promotes accumulation of RAD51 at double-strand breaks in homologous recombination. Nucleic Acids Res. 38(15), 5059–5074 (2010).
    • 83. Takaku M, Tsujita T, Horikoshi N et al. Purification of the human SMN–GEMIN2 complex and assessment of its stimulation of RAD51-mediated DNA recombination reactions. Biochemistry 50(32), 6797–6805 (2011).
    • 84. Velma V, Carrero ZI, Cosman AM, Hebert MD. Coilin interacts with Ku proteins and inhibits in vitro non-homologous DNA end joining. FEBS Lett. 584(23), 4735–4739 (2010).
    • 85. Kannan A, Bhatia K, Branzei D, Gangwani L. Combined deficiency of Senataxin and DNA-PKcs causes DNA damage accumulation and neurodegeneration in spinal muscular atrophy. Nucleic Acids Res. 46(16), 8326–8346 (2018).
    • 86. Skourti-Stathaki K, Nicholas, Gromak N. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol. Cell 42(6), 794–805 (2011).
    • 87. Rothblum-Oviatt C, Wright J, Lefton-Greif MA, Mcgrath-Morrow SA, Crawford TO, Lederman HM. Ataxia telangiectasia: a review. Orphanet J. Rare Dis. 11(1), 159 (2016).
    • 88. Sandoval N. Characterization of ATM gene mutations in 66 ataxia telangiectasia families. Hum. Mol. Genet. 8(1), 69–79 (1999).
    • 89. Lai J, Demirbas D, Kim J et al. ATM-deficiency-induced microglial activation promotes neurodegeneration in ataxia-telangiectasia. Cell Reports 43(1), 113622 (2024).
    • 90. Zhang C, Chen L, Peng D et al. METTL3 and N6-methyladenosine promote homologous recombination-mediated repair of DSBs by modulating DNA-RNA hybrid accumulation. Mol. Cell 79(3), 425–442 e427 (2020). • Suggests an interesting potential mechanism to regulate R-loops through the phosphorylation of a methyltransferase, METTL3, by ATM impacting R-loop stability.
    • 91. Yang X, Liu QL, Xu W et al. m(6)A promotes R-loop formation to facilitate transcription termination. Cell Res. 29(12), 1035–1038 (2019).
    • 92. Sreedharan J, Blair IP, Tripathi VB et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319(5870), 1668–1672 (2008).
    • 93. Su XW, Broach JR, Connor JR, Gerhard GS, Simmons Z. Genetic heterogeneity of amyotrophic lateral sclerosis: implications for clinical practice and research. Muscl. Nerve 49(6), 786–803 (2014).
    • 94. Onichtchouk D, Chen Y-G, Dosch R et al. Silencing of TGF-β signalling by the pseudoreceptor BAMBI. Nature 401(6752), 480–485 (1999).
    • 95. Suk TR, Rousseaux MWC. The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Mol. Neurodegen. 15(1), 45 (2020).
    • 96. Wood M, Quinet A, Lin Y-L et al. TDP-43 dysfunction results in R-loop accumulation and DNA replication defects. J. Cell Sci. 133(20), jcs244129 (2020).
    • 97. Budini M, Romano V, Quadri Z, Buratti E, Baralle FE. TDP-43 loss of cellular function through aggregation requires additional structural determinants beyond its C-terminal Q/N prion-like domain. Hum. Mol. Genet. 24(1), 9–20 (2015).
    • 98. Neumann M, Sampathu DM, Kwong LK et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).
    • 99. Ayala YM, Zago P, D'ambrogio A et al. Structural determinants of the cellular localization and shuttling of TDP-43. J. Cell Sci. 121(22), 3778–3785 (2008).
    • 100. Mitra J, Guerrero EN, Hegde PM et al. Motor neuron disease-associated loss of nuclear TDP-43 is linked to DNA double-strand break repair defects. Proc. Natl Acad. Sci. USA 116(10), 4696–4705 (2019).
    • 101. Dejesus-Hernandez M, Ian, Bradley et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72(2), 245–256 (2011).
    • 102. Rendton AE, Majounie E, Waite A et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72(2), 257–268 (2011).
    • 103. Devenney E, Hornberger M, Irish M et al. Frontotemporal dementia associated with the C9ORF72 mutation. JAMA Neurol. 71(3), 331 (2014).
    • 104. Rutherford NJ, Heckman MG, Dejesus-Hernandez M et al. Length of normal alleles of C9ORF72 GGGGCC repeat do not influence disease phenotype. Neurobiol. Aging 33(12), 2950.e2955–2950.e2957 (2012).
    • 105. Hubers A, Marroquin N, Schmoll B et al. Polymerase chain reaction and Southern blot-based analysis of the C9orf72 hexanucleotide repeat in different motor neuron diseases. Neurobiol. Aging 35(5), 1214 (2014).
    • 106. Walker C, Herranz-Martin S, Karyka E et al. C9orf72 expansion disrupts ATM-mediated chromosomal break repair. Nat. Neurosci. 20(9), 1225–1235 (2017).
    • 107. Van Mossevelde S, van der Zee J, Cruts M, Van Broeckhoven C. Relationship between C9orf72 repeat size and clinical phenotype. Curr. Opin. Genet. Dev. 44, 117–124 (2017).
    • 108. Zhang Y-J, Gendron TF, Grima JC et al. C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins. Nat. Neurosci. 19(5), 668–677 (2016).
    • 109. Haeusler AR, Donnelly CJ, Periz G et al. C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 507(7491), 195–200 (2014).
    • 110. Farg MA, Konopka A, Soo KY, Ito D, Atkin JD. The DNA damage response (DDR) is induced by the C9orf72 repeat expansion in amyotrophic lateral sclerosis. Hum. Mol. Genet. 26(15), 2882–2896 (2017).
    • 111. Jennifer, Sarah, Zhang C et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146(2), 247–261 (2011).
    • 112. Ashley CT Jr, Wilkinson KD, Reines D, Warren ST. FMR1 protein: conserved RNP family domains and selective RNA binding. Science 262(5133), 563–566 (1993).
    • 113. Tassone F, Beilina A, Carosi C et al. Elevated FMR1 mRNA in premutation carriers is due to increased transcription. RNA 13, 555–562 (2007).
    • 114. Gerhardt J, Tomishima MJ, Zaninovic N et al. The DNA replication program is altered at the FMR1 locus in fragile X embryonic stem cells. Mol. Cell 53(1), 19–31 (2014).
    • 115. Kononenko AV, Ebersole T, Vasquez KM, Mirkin SM. Mechanisms of genetic instability caused by (CGG)n repeats in an experimental mammalian system. Nat. Struct. Mol. Biol. 25, 669–676 (2018).
    • 116. Chakraborty A, Jenjaroenpun P, Li J et al. Replication stress induces global chromosome breakage in the fragile X genome. Cell Rep. 32(12), 108179 (2020).
    • 117. Lee H-G, Imaichi S, Kraeutler E et al. Site-specific R-loops induce CGG repeat contraction and fragile X gene reactivation. Cell 186(12), 2593–2609 (2023).
    • 118. Liu XS, Wu H, Krzisch M et al. Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene. Cell 172(5), 979–992.e976 (2018).
    • 119. Rousseau F, Rouillard P, Morel Ml, Khandjian EW, Morgan K. Prevalence of carriers of premutation-size alleles of the FMRI gene–and implications for the population genetics of the fragile X syndrome. Am. J. Hum. Genet. 57(5), 1006–1018 (1995).
    • 120. Hagerman RJ, Leehey M, Heinrichs W et al. Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology 57(1), 127–130 (2001).
    • 121. Tassone F, Hagerman RJ, Taylor AK, Gane LW, Godfrey TE, Hagerman PJ. Elevated levels of FMR1 mRNA in carrier males: a new mechanism of involvement in the Fragile-X syndrome. Am. J. Hum. Genet. 66(1), 6–15 (2000).
    • 122. Tassone F. Intranuclear inclusions in neural cells with premutation alleles in fragile X associated tremor/ataxia syndrome. J. Med. Genet. 41(4), e43–e43 (2004).
    • 123. Hagerman RJ, Hagerman P. Fragile X-associated tremor/ataxia syndrome — features, mechanisms and management. Nat. Rev. Neurol. 12(7), 403–412 (2016).
    • 124. Todd PK, Oh SY, Krans A et al. CGG repeat-associated translation mediates neurodegeneration in Fragile X tremor ataxia syndrome. Neuron 78(3), 440–455 (2013).
    • 125. Oh SY, He F, Krans A et al. RAN translation at CGG repeats induces ubiquitin proteasome system impairment in models of fragile X-associated tremor ataxia syndrome. Hum. Mol. Genet. 24(15), 4317–4326 (2015).
    • 126. Buijsen RA, Sellier C, Severijnen L-aW et al. FMRpolyG-positive inclusions in CNS and non-CNS organs of a fragile X premutation carrier with fragile X-associated tremor/ataxia syndrome. Acta Neuropathol. Commun. 2(1), 162 (2014).
    • 127. Ross-Inta C, Omanska-Klusek A, Wong S et al. Evidence of mitochondrial dysfunction in fragile X-associated tremor/ataxia syndrome. Biochem. J. 429(3), 545–552 (2010).
    • 128. Napoli E, Ross-Inta C, Wong S et al. Altered zinc transport disrupts mitochondrial protein processing/import in fragile X-associated tremor/ataxia syndrome. Hum. Mol. Genet. 20(15), 3079–3092 (2011).
    • 129. Neil AJ, Liang MU, Khristich AN, Shah KA, Mirkin SM. RNA–DNA hybrids promote the expansion of Friedreich's ataxia (GAA)n repeats via break-induced replication. Nucl. Acids Res. 46(7), 3487–3497 (2018).
    • 130. Tsai C-L, Barondeau DP. Human frataxin is an allosteric switch that activates the Fe-S cluster biosynthetic complex. Biochemistry 49(43), 9132–9139 (2010).
    • 131. Debrosse C, Nanga RPR, Wilson N et al. Muscle oxidative phosphorylation quantitation using creatine chemical exchange saturation transfer (CrCEST) MRI in mitochondrial disorders. JCI Insight 1(18), e88207 (2016).
    • 132. Lodi R, Hart PE, Rajagopalan B et al. Antioxidant treatment improves in vivo cardiac and skeletal muscle bioenergetics in patients with Friedreich's ataxia. Ann. Neurol. 49(5), 590–596 (2001).
    • 133. Chiang S, Huang MLH, Park KC, Richardson DR. Antioxidant defense mechanisms and its dysfunctional regulation in the mitochondrial disease, Friedreich's ataxia. Free Radic. Biol. Med. 159, 177–188 (2020).
    • 134. Wilson RB, Lynch DR, Farmer JM, Brooks DG, Fischbeck KH. Increased serum transferrin receptor concentrations in Friedreich ataxia. Ann. Neurol. 47(5), 659–661 (2000).
    • 135. Wilson RB, Lynch DR, Fischbeck KH. Normal serum iron and ferritin concentrations in patients with Friedreich's ataxia. Ann. Neurol. 44(1), 132–134 (1998).
    • 136. Haugen AC, Di Prospero NA, Parker JS et al. Altered gene expression and DNA damage in peripheral blood cells from Friedreich's ataxia patients: cellular model of pathology. PLoS Genet. 6(1), e1000812 (2010).
    • 137. Karthikeyan G, Lewis LK, Resnick MA. The mitochondrial protein frataxin prevents nuclear damage. Hum. Mol. Genet. 11, 1351–1362 (2002).
    • 138. Chamberlain S, Lewis PD. Studies of cellular hypersensitivity to ionising radiation in Friedreich's ataxia. J. Neurol. Neurosurg. Psych. 45(12), 1136–1138 (1982).
    • 139. Khonsari H, Schneider M, Al-Mahdawi S et al. Lentivirus-meditated frataxin gene delivery reverses genome instability in Friedreich ataxia patient and mouse model fibroblasts. Gene Ther. 23(12), 846–856 (2016).
    • 140. Matsuoka S, Ballif BA, Smogorzewska A et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316(5828), 1160–1166 (2007).
    • 141. Welty S, Teng Y, Liang Z et al. RAD52 is required for RNA-templated recombination repair in post-mitotic neurons. J. Biol. Chem. 293(4), 1353–1362 (2018).
    • 142. Groh M, Lufino MMP, Wade-Martins R, Gromak N. R-loops associated with triplet repeat expansions promote gene silencing in Friedreich ataxia and Fragile X syndrome. PLoS Genet. 10(5), e1004318 (2014). • Explores a molecular link between R-loops and repressive chromatin marks, providing a potential mechanism for R-loop regulation of gene expression.
    • 143. Parajuli S, Teasley DC, Murali B, Jackson J, Vindigni A, Stewart SA. Human ribonuclease H1 resolves R-loops and thereby enables progression of the DNA replication fork. J. Biol. Chem. 292(37), 15216–15224 (2017).
    • 144. Cristini A, Tellier M, Constantinescu F et al. RNase H2, mutated in Aicardi-Goutières syndrome, resolves co-transcriptional R-loops to prevent DNA breaks and inflammation. Nat. Commun. 13(1), 2961 (2022).
    • 145. Moreira M-C, Klur S, Watanabe M et al. Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nat. Genet. 36(3), 225–227 (2004).
    • 146. Chen Y-Z, Bennett CL, Huynh HM et al. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am. J. Hum. Genet. 74(6), 1128–1135 (2004).
    • 147. Kawahara Y, Mieda-Sato A. TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proc. Natl Acad. Sci. USA 109(9), 3347–3352 (2012).
    • 148. Cairns NJ, Neumann M, Bigio EH et al. TDP-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. Am. J. Pathol. 171(1), 227–240 (2007).
    • 149. Meneses A, Koga S, O'leary J, Dickson DW, Bu G, Zhao N. TDP-43 pathology in Alzheimer's disease. Mol. Neurodegen. 16(1), 84 (2021).
    • 150. Chiang Hc ZX, Li J, Zhao X et al. BRCA1-associated R-loop affects transcription and differentiation in breast luminal epithelial cells. Nucleic Acids Res. 47(10), 5086–5099 (2019).
    • 151. Bhatia V, Barroso SI, García-Rubio ML, Tumini E, Herrera-Moyano E, Aguilera A. BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2. Nature 511(7509), 362–365 (2014).
    • 152. Fogel Bl PS. Novel mutations in the senataxin DNA/RNA helicase domain in ataxia with oculomotor apraxia 2. Neurology 67, 2083–2084 (2006).
    • 153. Anheim M MB, Fleury M, Charles P et al. Ataxia with oculomotor apraxia type 2: clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients. Brain 132(10), 2688–2698 (2009).
    • 154. Macleod MJ, Taylor JE, Lunt PW, Mathew CG, Robb SA. Prenatal onset spinal muscular atrophy. Eur. J. Paediatr. Neurol. 3, 65–72 (1999).
    • 155. Crawford To PC. The neurobiology of childhood spinal muscular atrophy. Neurobiol. Dis. 3, 97–110 (1996).
    • 156. Lefebvre S, Bürglen L, Reboullet S et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80(1), 155–165 (1995).
    • 157. Burnett BG, Muñoz E, Tandon A, Kwon DY, Sumner CJ, Fischbeck KH. Regulation of SMN protein stability. Mol. Cell. Biol. 29(5), 1107–1115 (2009).
    • 158. Lefebvre S, Burlet P, Liu Q et al. Correlation between severity and SMN protein level in spinal muscular atrophy. Nat. Genet. 16(3), 265–269 (1997).
    • 159. Campbell L, Potter A, Ignatius J, Dubowitz V, Davies K. Genomic variation and gene conversion in spinal muscular atrophy: implications for disease process and clinical phenotype. Am. J. Hum. Genet. 61, 40–50 (1997).
    • 160. Lakin ND, Weber P, Stankovic T, Rottinghaus ST, Taylor AM, Jackson SP. Analysis of the ATM protein in wildtype and ataxia telangiectasia cells. Oncogene 13(12), 2707–2716 (1996).
    • 161. Takao N, Li Y, Yamamoto K. Protective roles for ATM in cellular response to oxidative streses. 472, 1 (2000).
    • 162. Paull TT. Mechanisms of ATM activation. Annu. Rev. Biochem. 84(1), 711–738 (2015).
    • 163. Lee JH, Paull TT. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308, 551–554 (2005).
    • 164. Bakr A, Oing C, Kocher S et al. Involvement of ATM in homologous recombination after end resection and RAD51 nucleofilament formation. Nucleic Acids Res. 43(6), 3154–3166 (2015).
    • 165. Chiò A, Logroscino G, Hardiman O et al. Prognostic factors in ALS: a critical review. Amyotroph. Lat. Scler. 10(5–6), 310–323 (2009).
    • 166. Tandan R, Bradley WG. Amyotrophic lateral sclerosis: Part 1. Clinical features, pathology, and ethical issues in management. Ann. Neurol. 18(3), 271–280 (1985).
    • 167. Byrne S, Walsh C, Lynch C et al. Rate of familial amyotrophic lateral sclerosis: a systematic review and meta-analysis. J. Neurol. Neurosurg. Psych. 82(6), 623–627 (2011).
    • 168. Spencer PS, Fry RC, Plamer VS, Kisby GE. Western Pacific ALS-PDC: a prototypical neurodegenerative disorder linked to DNA damage and aberrant proteogenesis? Front. Neurol. 3, 180 (2012).
    • 169. Kok JR, Palminha NM, Dos Santos Souza C, El-Khamisy SF, Ferraiuolo L. DNA damage as a mechanism of neurodegeneration in ALS and a contributor to astrocyte toxicity. Cell. Mol. Life Sci. 78(15), 5707–5729 (2021).
    • 170. Rabin BA, Griffin JW, Crain BJ, Scavina M, Chance PF, Cornblath DR. Autosomal dominant juvenile amyotrophic lateral sclerosis. Brain 122, 1539–1550 (1999).
    • 171. Thys RG, Wang Y-H. DNA replication dynamics of the GGGGCC repeat of the C9orf72 gene. J. Biol. Chem. 290(48), 28953–28962 (2015).
    • 172. Pearson CE, Edamura KN, Cleary JD. Repeat instability: mechanisms of dynamic mutations. Nat. Rev. Genet. 6(10), 729–742 (2005).
    • 173. Mcivor EI, Polak U, Napierala M. New insights into repeat instability. RNA Biol. 7(5), 551–558 (2010).
    • 174. Berry-Kravis EM, Harnett MD, Reines SA et al. Inhibition of phosphodiesterase-4D in adults with fragile X syndrome: a randomized, placebo-controlled, Phase II clinical trial. Nat. Med. 27, 862–870 (2021).
    • 175. Loomis EW, Sanz LA, Chedin F, Hagerman PJ. Transcription-associated R-loop formation across the human FMR1 CGG-repeat region. PLoS Genet. 10(4), e1004294 (2014).
    • 176. Saha S, Pommier Y. R-loops, type I topoisomerases and cancer. NAR Cancer 5(1), zcad013 (2023).
    • 177. Powell WT, Coulson RL, Gonzales ML et al. R-loop formation at Snord116 mediates topotecan inhibition of Ube3a-antisense and allele-specific chromatin decondensation. Proc. Natl Acad. Sci. USA 110(34), 13938–13943 (2013).