We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Epigenetic mechanisms driving tumor supportive microenvironment differentiation and function: a role in cancer therapy?

    Marvin Sylvestre

    UMR _S 1236, Université de Rennes 1, INSERM, Établissement français du sang (EFS) Bretagne, Rennes, France

    ,
    Karin Tarte

    UMR _S 1236, Université de Rennes 1, INSERM, Établissement français du sang (EFS) Bretagne, Rennes, France

    Laboratoire Suivi Immunologique des Thérapeutiques Innovantes (SITI), Centre Hospitalier Universitaires de Rennes, Rennes, France

    &
    David Roulois

    *Author for correspondence: Tel.: +33 0 2 23 23 46 99;

    E-mail Address: David.roulois@univ-rennes1.fr

    UMR _S 1236, Université de Rennes 1, INSERM, Établissement français du sang (EFS) Bretagne, Rennes, France

    Niches & Epigenetics of Tumors from Cancéropole Grand Ouest, France

    Published Online:https://doi.org/10.2217/epi-2019-0165

    The tumor microenvironment (TME) plays a central role in tumor development and drug resistance. Within TME, the stromal cell subset, called cancer-associated fibroblasts, is a heterogeneous population originating from poorly characterized precursors. Since cancer-associated fibroblasts do not acquire somatic mutations, other mechanisms like epigenetic regulation, could be involved in the development of these cells and in the acquisition of tumor supportive phenotypes. Moreover, such epigenetic modulations have been correlated to the emergence of an immunosuppressive microenvironment facilitating tumor evasion. These findings underline the need to deepen our knowledge on epigenetic mechanisms driving TME development and function, and to understand the impact of epigenetic drugs that could be used in future to target both tumor cells and their TME.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Slack JMW. Conrad Hal Waddington: the last Renaissance biologist? Nat. Rev. Genet. 3, 889–895 (2002) Nature Publishing Group.
    • 2. Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell 128(4), 635–638 (2007).
    • 3. Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17(8), 487–500 (2016).
    • 4. Dzobo K. Epigenomics-guided drug development: recent advances in solving the cancer treatment “jigsaw puzzle”. OMICS 23(2), 70–85 (2019).
    • 5. Esteller M. Epigenetic drugs: more than meets the eye. Epigenetics 12(5), 307–307 (2017).
    • 6. Schübeler D. Function and information content of DNA methylation. Nature 517(7534), 321–326 (2015).
    • 7. Zhou VW, Goren A, Bernstein BE. Charting histone modifications and the functional organization of mammalian genomes. Nat. Rev. Genet. 12(1), 7–18 (2011).
    • 8. Kouzarides T. Chromatin modifications and their function. Cell 128(4), 693–705 (2007).
    • 9. Michalak EM, Burr ML, Bannister AJ, Dawson MA. The roles of DNA, RNA and histone methylation in ageing and cancer. Nat. Rev. Mol. Cell Biol. 150(6), 12–17 (2019).
    • 10. Ambros V. The functions of animal microRNAs. Nature 431(7006), 350–355 (2004).
    • 11. Fernandes JCR, Acuña SM, Aoki JI, Floeter-Winter LM, Muxel SM. Long non-coding RNAs in the regulation of gene expression: physiology and disease. Noncoding RNA 5(1), 17 (2019).
    • 12. Sun Y-C, Wang Y-Y, Ge W, Cheng S-F, Dyce PW, Shen W. Epigenetic regulation during the differentiation of stem cells to germ cells. Oncotarget 8(34), 57836–57844 (2017).
    • 13. V Subramaniam A, Yehya AHS, Cheng WK, Wang X, Oon CE. Epigenetics: the master control of endothelial cell fate in cancer. Life Sci. 232, 116652 (2019).
    • 14. Jambhekar A, Dhall A, Shi Y. Roles and regulation of histone methylation in animal development. Nat. Rev. Mol. Cell Biol. 403, 1–17 (2019).
    • 15. Du H, Che G. Genetic alterations and epigenetic alterations of cancer-associated fibroblasts. Oncol. Lett. 13(1), 3–12 (2017).
    • 16. Liu M, Zhou J, Chen Z, Cheng AS-L. Understanding the epigenetic regulation of tumours and their microenvironments: opportunities and problems for epigenetic therapy. J. Pathol. 241(1), 10–24 (2017). •• Underlines the impact of epigenetic control on the tumor microenvironment and in particular myeloid compartment.
    • 17. Marks DL, Olson RL, Fernandez-Zapico ME. Epigenetic control of the tumor microenvironment. 8(12), 1671–1687 (2016).
    • 18. Pidsley R, Lawrence MG, Zotenko E et al. Enduring epigenetic landmarks define the cancer microenvironment. Genome Res. 28(5), 625–638 (2018).
    • 19. You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 22(1), 9–20 (2012).
    • 20. Boice M, Salloum D, Mourcin F et al. Loss of the HVEM tumor suppressor in lymphoma and restoration by modified CAR-T cells. Cell 167(2), 405–418.e13 (2016).
    • 21. Pasqualucci L. Molecular pathogenesis of germinal center-derived B cell lymphomas. Immunol. Rev. 288(1), 240–261 (2019).
    • 22. Green MR. Chromatin modifying gene mutations in follicular lymphoma. Blood 131(6), 595–604 (2018).
    • 23. Martignoles J-A, Delhommeau F, Hirsch P. Genetic hierarchy of acute myeloid leukemia: from clonal hematopoiesis to molecular residual disease. Int. J. Mol. Sci. 19(12), 3850 (2018).
    • 24. Jones PA, Laird PW. Cancer-epigenetics comes of age. Nat. Genet. 21(2), 163–167 (1999).
    • 25. Jones PA, Baylin SB. The epigenomics of cancer. Cell 128(4), 683–692 (2007).
    • 26. Park W-Y, Hong B-J, Lee J, Choi C, Kim M-Y. H3K27 demethylase JMJD3 Employs the NF-κB and BMP signaling pathways to modulate the tumor microenvironment and promote melanoma progression and metastasis. Cancer Res. 76(1), 161–170 (2016).
    • 27. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3), 309–322 (2012).
    • 28. Hirata E, Sahai E. Tumor microenvironment and differential responses to therapy. Cold Spring Harb. Perspect. Med. 7(7), a026781 (2017).
    • 29. Senthebane DA, Jonker T, Rowe A et al. The role of tumor microenvironment in chemoresistance: 3d extracellular matrices as accomplices. Int. J. Mol. Sci. Page 3850 19(10), 2861 (2018).
    • 30. Senthebane DA, Rowe A, Thomford NE et al. The role of tumor microenvironment in chemoresistance: to survive, keep your enemies closer. Int. J. Mol. Sci. Page 3850. 18(7), 1586 (2017).
    • 31. Guilloton F, Caron G, Ménard C et al. Mesenchymal stromal cells orchestrate follicular lymphoma cell niche through the CCL2-dependent recruitment and polarization of monocytes. Blood 119(11), 2556–2567 (2012).
    • 32. Zhou J, Ding T, Pan W, Zhu LY, Li L, Zheng L. Increased intratumoral regulatory T cells are related to intratumoral macrophages and poor prognosis in hepatocellular carcinoma patients. Int. J. Cancer 125(7), 1640–1648 (2009).
    • 33. Mamrot J, Balachandran S, Steele EJ, Lindley RA. Molecular model linking Th2 polarized M2 tumour-associated macrophages with deaminase-mediated cancer progression mutation signatures. Scand. J. Immunol. 89(5), e12760 (2019).
    • 34. Wang D, Yang L, Yue D et al. Macrophage-derived CCL22 promotes an immunosuppressive tumor microenvironment via IL-8 in malignant pleural effusion. Cancer Lett. 452, 244–253 (2019).
    • 35. Mariathasan S, Turley SJ, Nickles D et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554(7693), 544–548 (2018).
    • 36. Kather JN, Suarez-Carmona M, Charoentong P et al. Topography of cancer-associated immune cells in human solid tumors. Elife 7, 16878 (2018).
    • 37. Terranova-Barberio M, Thomas S, Munster PN. Epigenetic modifiers in immunotherapy: a focus on checkpoint inhibitors. Immunotherapy 8(6), 705–719 (2016).
    • 38. Jones PA, Ohtani H, Chakravarthy A, De Carvalho DD. Epigenetic therapy in immune-oncology. Nat. Rev. Cancer 22, 1 (2019).
    • 39. Toor SM, Sasidharan Nair V, Decock J, Elkord E. Immune checkpoints in the tumor microenvironment. Semin. Cancer Biol. 19 (2019). S1044-579X(19)30123-3
    • 40. Costa A, Scholer-Dahirel A, Mechta-Grigoriou F. The role of reactive oxygen species and metabolism on cancer cells and their microenvironment. Semin. Cancer Biol. 25, 23–32 (2014).
    • 41. Monteran L, Erez N. The dark side of fibroblasts: cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment. Front. Immunol. 10, 1835 (2019).
    • 42. Givel A-M, Kieffer Y, Scholer-Dahirel A et al. miR200-regulated CXCL12β promotes fibroblast heterogeneity and immunosuppression in ovarian cancers. Nat. Commun. 9(1), 1056 (2018). • Shows cancer-associated fibroblasts (CAFs) heterogeneity in breast cancers and the impact of a miR, miR-141/200a, on the immunosuppressive properties of CAFs with CXCL12b secretion.
    • 43. Costa A, Kieffer Y, Scholer-Dahirel A et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell 33(3), 463–479.e10 (2018).
    • 44. Chakravarthy A, Khan L, Bensler NP, Bose P, De Carvalho DD. TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure. Nat. Commun. 9(1), 4692 (2018).
    • 45. Madar S, Goldstein I, Rotter V. “Cancer associated fibroblasts” – more than meets the eye. Trends Mol. Med. 19(8), 447–453 (2013).
    • 46. Chang JE, Turley SJ. Stromal infrastructure of the lymph node and coordination of immunity. Trends Immunol. 36(1), 30–39 (2015).
    • 47. Colbeck EJ, Ager A, Gallimore A, Jones GW. Tertiary lymphoid structures in cancer: drivers of antitumor immunity, immunosuppression, or bystander sentinels in disease? Front. Immunol. 8, 867 (2017).
    • 48. Bindea G, Mlecnik B, Tosolini M et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39(4), 782–795 (2013).
    • 49. Riedel A, Shorthouse D, Haas L, Hall BA, Shields J. Tumor-induced stromal reprogramming drives lymph node transformation. Nat. Immunol. 17(9), 1118–1127 (2016). •• This transcriptomic study during tumorigenesis shows a conversion of stromal cells populations in CAFs-like cells in mice models.
    • 50. Pandey S, Mourcin F, Marchand T et al. IL-4/CXCL12 loop is a key regulator of lymphoid stroma function in follicular lymphoma. Blood 129(18), 2507–2518 (2017).
    • 51. Grégoire M, Guilloton F, Pangault C et al. Neutrophils trigger a NF-κB dependent polarization of tumor-supportive stromal cells in germinal center B-cell lymphomas. Oncotarget 6(18), 16471–16487 (2015).
    • 52. Mathot P, Grandin M, Devailly G et al. DNA methylation signal has a major role in the response of human breast cancer cells to the microenvironment. Oncogenesis 6(10), e390 (2017).
    • 53. Le Jiang, Gonda TA, Gamble MV et al. Global Hypomethylation of genomic DNA in cancer-associated myofibroblasts. Cancer Res. 68(23), 9900–9908 (2008).
    • 54. Ling E, Ringel A, Sigal-Batikoff I et al. Human colorectal cancer stage-dependent global DNA hypomethylation of cancer-associated fibroblasts. Anticancer Res. 36(9), 4503–4507 (2016).
    • 55. Vizoso M, Puig M, Carmona FJ et al. Aberrant DNA methylation in non-small cell lung cancer-associated fibroblasts. Carcinogenesis 36(12), 1453–1463 (2015).
    • 56. Zeisberg EM, Zeisberg M. The role of promoter hypermethylation in fibroblast activation and fibrogenesis. J. Pathol. 229(2), 264–273 (2013).
    • 57. Albrengues J, Bertero T, Grasset E et al. Epigenetic switch drives the conversion of fibroblasts into proinvasive cancer-associated fibroblasts. Nat. Commun. 6(1), 10204 (2015). • Demonstrates the role of local hypermethylation in CAFs phenotype in breast cancers.
    • 58. Bechtel W, McGoohan S, Zeisberg EM et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat. Med. 16(5), 544–550 (2010).
    • 59. Mishra R, Haldar S, Placencio V et al. Stromal epigenetic alterations drive metabolic and neuroendocrine prostate cancer reprogramming. J. Clin. Invest. 128(10), 4472–4484 (2018).
    • 60. Al-Kharashi LA, Al-Mohanna FH, Tulbah A, Aboussekhra A. The DNA methyl-transferase protein DNMT1 enhances tumor-promoting properties of breast stromal fibroblasts. Oncotarget 9(2), 2329–2343 (2018).
    • 61. Li A, Chen P, Leng Y, Kang J. Histone deacetylase 6 regulates the immunosuppressive properties of cancer-associated fibroblasts in breast cancer through the STAT3-COX2-dependent pathway. Oncogene 37(45), 5952–5966 (2018).
    • 62. Garcia-Gomez A, Rodríguez-Ubreva J, Ballestar E. Epigenetic interplay between immune, stromal and cancer cells in the tumor microenvironment. Clin. Immunol. 196, 64–71 (2018).
    • 63. Kim DJ, Dunleavey JM, Xiao L et al. Suppression of TGFβ-mediated conversion of endothelial cells and fibroblasts into cancer associated (myo)fibroblasts via HDAC inhibition. Br. J. Cancer 118(10), 1359–1368 (2018).
    • 64. Kumar V, Donthireddy L, Marvel D et al. Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell 32(5), 654–668.e5 (2017).
    • 65. Kim DE, Procopio M-G, Ghosh S et al. Convergent roles of ATF3 and CSL in chromatin control of cancer-associated fibroblast activation. J. Exp. Med. 214(8), 2349–2368 (2017).
    • 66. Maeda M, Takeshima H, Iida N et al. Cancer cell niche factors secreted from cancer-associated fibroblast by loss of H3K27me3. Gut gutjnl–2018–317645 (2019).
    • 67. Zong Y, Huang J, Sankarasharma D et al. Stromal epigenetic dysregulation is sufficient to initiate mouse prostate cancer via paracrine Wnt signaling. Proc. Natl Acad. Sci. USA 109(50), E3395–3404 (2012).
    • 68. Xu L, Deng Q, Pan Y et al. Cancer-associated fibroblasts enhance the migration ability of ovarian cancer cells by increasing EZH2 expression. Int. J. Mol. Med. 33(1), 91–96 (2014).
    • 69. Kaukonen R, Mai A, Georgiadou M et al. Normal stroma suppresses cancer cell proliferation via mechanosensitive regulation of JMJD1a-mediated transcription. Nat. Commun. 7(1), 12237 (2016).
    • 70. Schoepp M, Ströse AJ, Haier J. Dysregulation of miRNA expression in cancer associated fibroblasts (CAFs) and its consequences on the tumor microenvironment. Cancers (Basel) 9(6), 54 (2017).
    • 71. Musumeci M, Coppola V, Addario A et al. Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene 30(41), 4231–4242 (2011).
    • 72. Josson S, Gururajan M, Sung SY et al. Stromal fibroblast-derived miR-409 promotes epithelial-to-mesenchymal transition and prostate tumorigenesis. Oncogene 34(21), 2690–2699 (2015).
    • 73. Batista L, Bourachot B, Mateescu B, Reyal F, Mechta-Grigoriou F. Regulation of miR-200c/141 expression by intergenic DNA-looping and transcriptional read-through. Nat. Commun. 7(1), 8959 (2016).
    • 74. Togashi Y, Shitara K, Nishikawa H. Regulatory T cells in cancer immunosuppression – implications for anticancer therapy. Nat. Rev. Clin. Oncol. 16, 356–371 (2019).
    • 75. Safari E, Ghorghanlu S, Ahmadi-Khiavi H, Mehranfar S, Rezaei R, Motallebnezhad M. Myeloid-derived suppressor cells and tumor: current knowledge and future perspectives. J. Cell. Physiol. 117(1), 7021 (2018).
    • 76. Zhang C, Wang S, Liu Y, Yang C. Epigenetics in myeloid derived suppressor cells: a sheathed sword towards cancer. Oncotarget 7(35), 57452–57463 (2016).
    • 77. Heine A, Held SAE, Schulte-Schrepping J et al. Generation and functional characterization of MDSC-like cells. Oncoimmunology 6(4), e1295203 (2017).
    • 78. Lal G, Zhang N, van der Touw W et al. Epigenetic Regulation of Foxp3 Expression in Regulatory T Cells by DNA Methylation. J. Immunol. 182(1), 259–273 (2009).
    • 79. Rodríguez-Ubreva J, Català-Moll F, Obermajer N et al. Prostaglandin E2 leads to the acquisition of DNMT3A-dependent tolerogenic functions in human myeloid-derived suppressor cells. Cell Rep. 21(1), 154–167 (2017).
    • 80. Sido JM, Yang X, Nagarkatti PS, Nagarkatti M. Δ9-Tetrahydrocannabinol-mediated epigenetic modifications elicit myeloid-derived suppressor cell activation via STAT3/S100A8. J. Leukoc. Biol. 97(4), 677–688 (2015).
    • 81. Sido JM, Nagarkatti PS, Nagarkatti M. Δ9-Tetrahydrocannabinol attenuates allogeneic host-versus-graft response and delays skin graft rejection through activation of cannabinoid receptor 1 and induction of myeloid-derived suppressor cells. J. Leukoc. Biol. 98(3), 435–447 (2015).
    • 82. Sahakian E, Powers JJ, Chen J et al. Histone deacetylase 11: a novel epigenetic regulator of myeloid derived suppressor cell expansion and function. Mol. Immunol. 63(2), 579–585 (2015).
    • 83. Youn J-I, Kumar V, Collazo M et al. Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nat. Immunol. 14(3), 211–220 (2013).
    • 84. Redd PS, Ibrahim ML, Klement JD et al. SETD1B Activates iNOS Expression in Myeloid-Derived Suppressor Cells. Cancer Res. 77(11), 2834–2843 (2017).
    • 85. Peng D, Kryczek I, Nagarsheth N et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527(7577), 249–253 (2015). • The epigenetic silencing of EZH2 and DNA methylation in TH1 cells allow re-expression of CXCL9 and CXCL10 and reduce tumor immunosuppression.
    • 86. Nagarsheth N, Peng D, Kryczek I et al. PRC2 epigenetically silences Th1-Type chemokines to suppress effector T-Cell trafficking in colon cancer. Cancer Res. 76(2), 275–282 (2016).
    • 87. Guo X, Qiu W, Wang J et al. Glioma exosomes mediate the expansion and function of myeloid-derived suppressor cells through microRNA-29a/Hbp1 and microRNA-92a/Prkar1a pathways. Int. J. Cancer 144, 3111–3126 ijc.32052 (2018).
    • 88. Guo X, Qiu W, Liu Q et al. Immunosuppressive effects of hypoxia-induced glioma exosomes through myeloid-derived suppressor cells via the miR-10a/ Rora and miR-21/ Pten Pathways. Oncogene 37(31), 4239–4259 (2018).
    • 89. Huber V, Vallacchi V, Fleming V et al. Tumor-derived microRNAs induce myeloid suppressor cells and predict immunotherapy resistance in melanoma. J. Clin. Invest. 128(12), 5505–5516 (2018).
    • 90. Zhou J, Li X, Wu X et al. Exosomes released from tumor-associated macrophages transfer miRNAs that induce a Treg/Th17 cell imbalance in epithelial ovarian cancer. Cancer Immunol. Res. 6(12), 1578–1592 (2018).
    • 91. Yoo CB, Jones PA. Epigenetic therapy of cancer: past, present and future. Nat. Rev. Drug Discov. 5(1), 37–50 (2006).
    • 92. Gherardini L, Sharma A, Capobianco E, Cinti C. Targeting cancer with Epi-drugs: a precision medicine perspective. Curr. Pharm. Biotechnol. 17(10), 856–865 (2016).
    • 93. Roulois D, Loo Yau H, Singhania R et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162(5), 961–973 (2015). •• Demonstrates the decreasing of colorectal cancers cells proliferation by DNA-demethylating agents which induce a viral mimicry response.
    • 94. Chiappinelli KB, Strissel PL, Desrichard A et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162(5), 974–986 (2015).
    • 95. Goswami S, Apostolou I, Zhang J et al. Modulation of EZH2 expression in T cells improves efficacy of anti-CTLA-4 therapy. J. Clin. Invest. 128(9), 3813–3818 (2018).
    • 96. Stone ML, Chiappinelli KB, Li H et al. Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. Proc. Natl Acad. Sci. USA 114(51), E10981–E10990 (2017).
    • 97. Christmas BJ, Rafie CI, Hopkins AC et al. Entinostat converts immune-resistant breast and pancreatic cancers into checkpoint-responsive tumors by reprogramming tumor-infiltrating MDSCs. Cancer Immunol. Res. 6(12), 1561–1577 (2018).
    • 98. Briere D, Sudhakar N, Woods DM et al. The class I/IV HDAC inhibitor mocetinostat increases tumor antigen presentation, decreases immune suppressive cell types and augments checkpoint inhibitor therapy. Cancer Immunol. Immunother. 67(3), 381–392 (2018).
    • 99. Yamamoto K, Tateishi K, Kudo Y et al. Stromal remodeling by the BET bromodomain inhibitor JQ1 suppresses the progression of human pancreatic cancer. Oncotarget 7(38), 61469–61484 (2016).
    • 100. Issa J-PJ, Kantarjian HM. Targeting DNA methylation. Clin. Cancer Res. 15(12), 3938–3946 (2009).
    • 101. Zhao H, Ning S, Nolley R et al. The immunomodulatory anticancer agent, RRx-001, induces an interferon response through epigenetic induction of viral mimicry. Clin. Epigenetics 9(1), 4 (2017).
    • 102. Ghoneim HE, Fan Y, Moustaki A et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T Cell rejuvenation. Cell 170(1), 142–157.e19 (2017).
    • 103. Terracina KP, Graham LJ, Payne KK et al. DNA methyltransferase inhibition increases efficacy of adoptive cellular immunotherapy of murine breast cancer. Cancer Immunol. Immunother. 65(9), 1061–1073 (2016).
    • 104. Mikyšková R, Indrová M, Vlková V et al. DNA demethylating agent 5-azacytidine inhibits myeloid-derived suppressor cells induced by tumor growth and cyclophosphamide treatment. J. Leukoc. Biol. 95(5), 743–753 (2014).
    • 105. Sala L, Franco-Valls H, Stanisavljevic J et al. Abrogation of myofibroblast activities in metastasis and fibrosis by methyltransferase inhibition. Int. J. Cancer 19, 1423 (2019).
    • 106. Lee S, Kim H-S, Roh K-H et al. DNA methyltransferase inhibition accelerates the immunomodulation and migration of human mesenchymal stem cells. Sci. Rep. 5, 8020 (2015).
    • 107. Huang S, Wang Z, Zhou J et al. EZH2 inhibitor GSK126 suppresses anti-tumor immunity by driving production of myeloid-derived suppressor cells. Cancer Res. 79, 2009–2020 (2019).
    • 108. Rosborough BR, Castellaneta A, Natarajan S, Thomson AW, Turnquist HR. Histone deacetylase inhibition facilitates GM-CSF-mediated expansion of myeloid-derived suppressor cells in vitro and in vivo. J. Leukoc. Biol. 91(5), 701–709 (2012).
    • 109. Reddy P. Editorial: HDAC inhibition begets more MDSCs. J. Leukoc. Biol. 91(5), 679–681 (2012).
    • 110. Tao R, de Zoeten EF, Ozkaynak E et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat. Med. 13(11), 1299–1307 (2007).
    • 111. Doñas C, Fritz M, Manríquez V et al. Trichostatin A promotes the generation and suppressive functions of regulatory T cells. Clin. Dev. Immunol. 2013(67), 679804–679808 (2013).
    • 112. Akimova T, Ge G, Golovina T et al. Histone/protein deacetylase inhibitors increase suppressive functions of human FOXP3+ Tregs. Clin. Immunol. 136(3), 348–363 (2010).
    • 113. Nguyen AH, Elliott IA, Wu N et al. Histone deacetylase inhibitors provoke a tumor supportive phenotype in pancreatic cancer associated fibroblasts. Oncotarget 8(12), 19074–19088 (2017).
    • 114. Pazolli E, Alspach E, Milczarek A, Prior J, Piwnica-Worms D, Stewart SA. Chromatin remodeling underlies the senescence-associated secretory phenotype of tumor stromal fibroblasts that supports cancer progression. Cancer Res. 72(9), 2251–2261 (2012).
    • 115. Cramer SA, Adjei IM, Labhasetwar V. Advancements in the delivery of epigenetic drugs. Expert Opin. Drug Deliv. 12(9), 1501–1512 (2015).
    • 116. Zhu Y, Yu F, Tan Y, Yuan H, Hu F. Strategies of targeting pathological stroma for enhanced antitumor therapies. Pharmacol. Res. 148, 104401 (2019).
    • 117. Schwartzman O, Tanay A. Single-cell epigenomics: techniques and emerging applications. Nat. Rev. Genet. 16(12), 716–726 (2015).
    • 118. Lee D-S, Luo C, Zhou J et al. Simultaneous profiling of 3D genome structure and DNA methylation in single human cells. Nat. Methods 62(10), 1–8 (2019).
    • 119. Kelsey G, Stegle O, Reik W. Single-cell epigenomics: recording the past and predicting the future. Science 358(6359), 69–75 (2017).