We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Prognostic value of triglyceride/glucose index in patients with ST-segment elevation myocardial infarction

    Flora Özkalaycı

    *Author for correspondence: Tel.: +90 216 524 1300;

    E-mail Address: florataniel@yahoo.com

    Department of Cardiology, Hisar Intercontinental Hospital, İstanbul, Turkey

    ,
    Ali Karagöz

    Department of Cardiology, Kartal Kosuyolu Training & Research Hospital, İstanbul, Turkey

    ,
    Can Y Karabay

    Department of Cardiology, University of Health Science Siyami Ersek, Training & Research Hospital, İstanbul, Turkey

    ,
    İbrahim H Tanboga

    Department of Cardiology, Hisar Intercontinental Hospital, İstanbul, Turkey

    Department of Biostatistics & Cardiology, Nişantasi University, School of Medicine, İstanbul, Turkey

    ,
    Erdem Türkyılmaz

    Department of Cardiology, Uşak State Hospital, Turkey

    ,
    Mehmet Saygı

    Department of Cardiology, Hisar Intercontinental Hospital, İstanbul, Turkey

    &
    Vecih Oduncu

    Department of Cardiology, Bahcesehir University, School of Medicine, İstanbul, Turkey

    Published Online:https://doi.org/10.2217/bmm-2021-1055

    Aim: New parameters are emerging to predict prognosis in patients with ST-segment elevation myocardial infarction (STEMI). In this study we aimed to determine and compare the prognostic values of some metabolic indices in terms of predicting long-term mortality in patients with STEMI. Method: A total of 1900 nondiabetic patients who presented with STEMI and underwent percutaneous coronary intervention were included in the study. Multivariable Cox proportional regression analysis was used to determine and compare the predictive performance of triglyceride–glucose (TyG) index, triglyceride–high-density lipoprotein ratio (Ty/HDL) and admission glucose. Results: In multivariable Cox regression analysis, the model based on TyG index had better predictive performance than the Ty/HDL and admission blood glucose. Conclusion: The TyG index is more informative than Ty/HDL and admission glucose level to predict long-term all-cause mortality.

    References

    • 1. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053), 1459–1544 (2016).
    • 2. Roth GA, Abate D, Abate KH. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392(10159), 1736–1788 (2018).
    • 3. Akyea RK, Leonardi-Bee J, Asselbergs FW et al. Predicting major adverse cardiovascular events for secondary prevention: protocol for a systematic review and meta-analysis of risk prediction models. BMJ Open 10, e034564 (2020).
    • 4. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 14(2), 88–98 (2018).
    • 5. Laakso M, Kuusisto J. Insulin resistance and hyperglycaemia in cardiovascular disease development. Nat. Rev. Endocrinol. 10(5), 293 (2014).
    • 6. De Rosa S, Arcidiacono B, Chiefari E, Brunetti A, Indolfi C, Foti DP. Type 2 diabetes mellitus and cardiovascular disease: genetic and epigenetic links. Front. Endocrinol. 9, 2 (2018).
    • 7. Pacifico L, Bonci E, Andreoli G et al. Association of serum triglyceride-to-HDL cholesterol ratio with carotid artery intima-media thickness, insulin resistance and nonalcoholic fatty liver disease in children and adolescents. Nutr. Metab. Cardiovasc. Dis. 24(7), 737–743 (2014).
    • 8. Lamarche B, Després JP, Moorjani S, Cantin B, Dagenais GR, Lupien P-J. Triglycerides and HDL-cholesterol as risk factors for ischemic heart disease. Results from the Quebec cardiovascular study. Atherosclerosis 119(2), 235–245 (1996).
    • 9. Jin JL, Cao YX, Wu LG et al. Triglyceride glucose index for predicting cardiovascular outcomes in patients with coronary artery disease. J. Thorac. Dis. 10(11), 6137–6146 (2018).
    • 10. Wang L, Cong HL, Zhang JX et al. Triglyceride–glucose index predicts adverse cardiovascular events in patients with diabetes and acute coronary syndrome. Cardiovasc Diabetol. 19(1), 80 (2020).
    • 11. Zhang Y, Ding X, Hua B et al. High triglyceride–glucose index associated with adverse cardiovascular outcomes in patients with acute myocardial infarction. Nutrition 30(12), 2351–2362 (2020).
    • 12. Luo E, Wang D, Yan G et al. High triglyceride–glucose index is associated with poor prognosis in patients with acute ST-elevation myocardial infarction after percutaneous coronary intervention. Cardiovasc. Diabetol. 18, 150 (2019).
    • 13. Alavi-Moghaddam M, Parsa-Mahjoob M, Ghodssi-Ghassemabadi R, Bitazar B. Association of admission blood glucose level with major adverse cardiac events in acute coronary syndrome; a cohort study. Arch. Acad. Emerg. Med. 7(1), e26 (2019).
    • 14. Hao ZX, Liu Y, Wang DL et al. Impact of admission glucose on non-diabetic patients with ST-segment elevation myocardial infarction treated with percutaneous coronary intervention: a meta-analysis. Acta Cardiol. Sin. 32(2), 194–204 (2016).
    • 15. Thygesen K, Alpert JS, White HD et al. Universal definition of myocardial infarction. Eur. Heart J. 28(20), 2525–2538 (2007).
    • 16. Scanlon PJ, Faxon DP, Audet AM et al. ACC/AHA guidelines for coronary angiography. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on Coronary Angiography). Developed in collaboration with the Society for Cardiac Angiography and Interventions. J. Am. Coll. Cardiol. 33(6), 1756–1824 (1999).
    • 17. Cheitlin MD, Alpert JS, Armstrong WF et al. ACC/AHA Guidelines for the Clinical Application of Echocardiography. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Clinical Application of Echocardiography). Developed in collaboration with the American Society of Echocardiography. Circulation 95(6), 1686–1744 (1997).
    • 18. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Suppl. 1), S62–9 (2010).
    • 19. Björk M, Melin EO, Frisk T, Thunander M. Admission glucose level was associated with increased short-term mortality and length-of-stay irrespective of diagnosis, treating medical specialty or concomitant laboratory values. Eur. J. Intern. Med. 75, 71–78 (2020).
    • 20. Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab. Syndr. Relat. Disord. 6(4), 299–304 (2008).
    • 21. Gaziano JM, Hennekens CH, O'Donnell CJ, Breslow JL, Buring JE. Fasting triglycerides, high-density lipoprotein, and risk of myocardial infarction. Circulation 96(8), 2520–2525 (1997).
    • 22. Ambinder EP. Electronic health records. J. Oncol. Pract. 1(2), 57–63 (2005).
    • 23. Hadaegh F, Khalili D, Ghasemi A et al. Triglyceride/HDL-cholesterol ratio is an independent predictor for coronary heart disease in a population of Iranian men. Nutr. Metab. Cardiovasc. Dis. 19(6), 401–408 (2008).
    • 24. Vega GL, Barlow CE, Grundy SM, Leonard D, De Fina LF. Triglyceride-to-high-density-lipoprotein-cholesterol ratio is an index of heart disease mortality and of incidence of type 2 diabetes mellitus in men. J. Investig. Med. 62(2), 345–349 (2014).
    • 25. Wang C, Li F, Guo J, Li C, Xu D, Wang B. Insulin resistance, blood glucose and inflammatory cytokine levels are risk factors for cardiovascular events in diabetic patients complicated with coronary heart disease. Exp. Ther. Med. 15(2), 1515–1519 (2018).
    • 26. Tanriverdi Z, Colluoglu T, Dursun H, Kaya D. The relationship between neutrophil-to-lymphocyte ratio and fragmented QRS in acute STEMI patients treated with primary PCI. J. Electrocardiol. 50(6), 876–883 (2017).
    • 27. Wang H, Liu Z, Shao J et al. Immune and inflammation in acute coronary syndrome: molecular mechanisms and therapeutic implications. J. Immunol. Res. 2020, 4904217 (2020).
    • 28. Ong SB, Hernández-Reséndiz S, Crespo-Avilan GE et al. Inflammation following acute myocardial infarction: multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol. Ther. 186, 73–87 (2018).
    • 29. Videbaek J, Christensen NJ, Sterndorff B. Serial determination of plasma catecholamines in myocardial infarction. Circulation 46, 846–855 (1972).
    • 30. McCowen KC, Malhotra A, Bistrian BR. Stress-induced hyperglycemia. Crit. Care Clin. 17, 107–124 (2001).
    • 31. Whicher JT, Westacott CI. The acute phase response. In: Biochemistry of Inflammation. Immunology and Medicine Series (Vol. 18). Whicher JTEvans SW (Eds). Springer, Dordrecht, The Netherlands (1992).
    • 32. Kushner I, Gewurz H, Benson MD. C-reactive protein and acute-phase response. J. Lab. Clin. Med. 97, 739–749 (1981).
    • 33. Behr SR, Patsch JR, Forte T, Bensadoun A. Plasma lipoprotein changes resulting from immunologically blocked lipolysis. J. Lipid Res. 22, 443–451 (1981).
    • 34. Pitt B, Loscalzo J, Yčas J, Raichlen JS. Lipid levels after acute coronary syndromes. J. Am. Coll. Cardiol. 51(15), 1440–1445 (2008).
    • 35. Rosenson RS. Myocardial injury the acute phase response and lipoprotein metabolism. J. Am. Coll. Cardiol. 22(3), 933–940 (1993).
    • 36. Balci B. The modification of serum lipids after acute coronary syndrome and importance in clinical practice. Curr. Cardiol. Rev. 7(4), 272–276 (2011).
    • 37. Laakso M, Kuusisto J. Insulin resistance and hyperglycaemia in cardiovascular disease development. Nat. Rev. Endocrinol. 10(5), 293–302 (2014).
    • 38. Reaven GM, Lerner RL, Stern MP, Farquhar JW. Role of insulin in endogenous hypertriglyceridemia. J. Clin. Invest. 46(11), 1756–1767 (1967).
    • 39. Howard G, O’Leary DH, Zaccaro D et al. Insulin sensitivity and atherosclerosis. The Insulin Resistance Atherosclerosis Study (IRAS) Investigators. Circulation 93(10), 1809–1817 (1996).
    • 40. Laakso M, Sarlund H, Salonen R et al. Asymptomatic atherosclerosis and insulin resistance. Arterioscler. Thromb. 11(4), 1068–1076 (1991).
    • 41. Bressler P, Bailey SR, Matsuda M, DeFronzo RA. Insulin resistance and coronary artery disease. Diabetologia 39(11), 1345–1350 (1996).
    • 42. Sesti G. Pathophysiology of insulin resistance. Best. Pract. Res. Clin. Endocrinol. Metab. 20(4), 665–679 (2006).
    • 43. Stegenga ME, van der Crabben SN, Levi M et al. Hyperglycemia stimulates coagulation, whereas hyperinsulinemia impairs fibrinolysis in healthy humans. Diabetes 55(6), 1807–1812 (2006).
    • 44. Figtree GA, Vernon ST, Hadziosmanovic N et al. Mortality in STEMI patients without standard modifiable risk factors: a sex-disaggregated analysis of SWEDEHEART registry data. Lancet 397(10279), 1085–1094 (2021).