We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Predictive biomarkers in bladder cancer

    Marwan Alkassis

    Department of Urology, Hôtel Dieu de France, Université Saint Joseph, Beirut, Lebanon

    ,
    Hampig R Kourie

    *Author for correspondence:

    E-mail Address: hampig.kourie@hotmail.com

    Department of Hematology-Oncology, Hôtel Dieu de France, Université Saint Josephe, Beirut, Lebanon

    ,
    Julien Sarkis

    Department of Urology, Hôtel Dieu de France, Université Saint Joseph, Beirut, Lebanon

    &
    Elie Nemr

    Department of Urology, Hôtel Dieu de France, Université Saint Joseph, Beirut, Lebanon

    Published Online:https://doi.org/10.2217/bmm-2020-0575
    Free first page

    References

    • 1. SEER. Cancer of the urinary bladder - cancer stat facts. SEER. https://seer.cancer.gov/statfacts/html/urinb.html
    • 2. Hall MC, Chang SS, Dalbagni G et al. Guideline for the management of nonmuscle invasive bladder cancer (stages Ta, T1, and Tis): 2007 update. J. Urol. 178(6), 2314–2330 (2007).
    • 3. Stein JP, Lieskovsky G, Cote R et al. Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients. J. Clin. Oncol. 19(3), 666–675 (2001).
    • 4. Bellmunt J, Petrylak DP. New therapeutic challenges in advanced bladder cancer. Semin. Oncol. 39(5), 598–607 (2012).
    • 5. Patel VG, Oh WK, Galsky MD.Treatment of muscle-invasive and advanced bladder cancer in 2020. CA: A Cancer J. Clin. 70(5), 315–423 (2020).
    • 6. Rosenberg JE, Hoffman-Censits J, Powles T et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, Phase II trial. Lancet 387(10031), 1909–1920 (2016).
    • 7. Sharma P, Callahan MK, Bono P et al. Nivolumab monotherapy in recurrent metastatic urothelial carcinoma (CheckMate 032): a multicentre, open-label, two-stage, multi-arm, Phase I/II trial. Lancet Oncol. 17(11), 1590–1598 (2016).
    • 8. Bellmunt J, de Wit R, Vaughn DJ et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N. Engl. J. Med. 376(11), 1015–1026 (2017).
    • 9. Patel MR, Ellerton J, Infante JR et al. Avelumab in metastatic urothelial carcinoma after platinum failure (JAVELIN Solid Tumor): pooled results from two expansion cohorts of an open-label, Phase I trial. Lancet Oncol. 19(1), 51–64 (2018).
    • 10. Apolo AB, Infante JR, Balmanoukian A et al. Avelumab, an anti-programmed death-ligand 1 antibody, in patients with refractory metastatic urothelial carcinoma: results from a multicenter, Phase Ib study. J. Clin. Oncol. 35(19), 2117–2124 (2017).
    • 11. Powles T, O'Donnell PH, Massard C et al. Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: updated results from a Phase I/II open-label study. JAMA Oncol. 3(9), e172411 (2017).
    • 12. Arlene O, Radtke S, Necchi A et al. First results from the primary analysis population of the Phase II study of erdafitinib (ERDA; JNJ-42756493) in patients (pts) with metastatic or unresectable urothelial carcinoma (mUC) and FGFR alterations (FGFRalt). J. Clin. Oncol 36(15), 4503 (2018).
    • 13. Arora S, Velichinskii R, Lesh RW et al. Existing and emerging biomarkers for immune checkpoint immunotherapy in solid tumors. Adv. Ther. 36(10), 2638–2678 (2019).
    • 14. Cagney DN, Sul J, Huang RY, Ligon KL, Wen PY, Alexander BM. The FDA NIH Biomarkers, EndpointS, and other Tools (BEST) resource in neuro-oncology. Neuro-oncology 20(9), 1162–1172 (2018).
    • 15. Yi M, Jiao D, Xu H et al. Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol. Cancer. 17(1), 129 (2018).
    • 16. Davis AA, Patel VG. The role of PD-L1 expression as a predictive biomarker: an analysis of all US Food and Drug Administration (FDA) approvals of immune checkpoint inhibitors. J. Immunother. Cancer. 7(1), 278 (2019).
    • 17. Massard C, Gordon MS, Sharma S et al. Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J. Clin. Oncol. 34(26), 3119–3125 (2016).
    • 18. Suzman DL, Agrawal S, Ning Y et al. FDA approval summary: atezolizumab or pembrolizumab for the treatment of patients with advanced urothelial carcinoma ineligible for cisplatin-containing chemotherapy. Oncologist. 24(4), 563–569 (2019).
    • 19. Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat. Rev. Cancer. 10(2), 116–129 (2010).
    • 20. Robertson AG, Kim J, Al-Ahmadie H et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell 171(3), 540–556.e25 (2017).
    • 21. Pietzak EJ, Bagrodia A, Cha EK et al. Next-generation sequencing of nonmuscle invasive bladder cancer reveals potential biomarkers and rational therapeutic targets. Eur. Urol. 72(6), 952–959 (2017).
    • 22. Tomlinson DC, Baldo O, Harnden P, Knowles MA. FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer. J. Pathol. 213(1), 91–98 (2007).
    • 23. Milowsky MI, Dittrich C, Durán I et al. Phase II trial of dovitinib in patients with progressive FGFR3-mutated or FGFR3 wild-type advanced urothelial carcinoma. Eur. J. Cancer 50(18), 3145–3152 (2014).
    • 24. Joerger M, Soo R, Cho BC et al. Developmental therapeutics Phase I study of the pan-fibroblast growth factor receptor (FGFR) inhibitor BAY 1163877 with expansion cohorts for subjects based on tumor FGFR mRNA expression levels. Ann. Oncol. 27, vi558 (2016).
    • 25. Soria F, Moschini M, Haitel A et al. The effect of HER2 status on oncological outcomes of patients with invasive bladder cancer. Urol Oncol. 34(12), 533.e1–533.e10 (2016).
    • 26. Bolenz C, Shariat SF, Karakiewicz PI et al. Human epidermal growth factor receptor 2 expression status provides independent prognostic information in patients with urothelial carcinoma of the urinary bladder. BJU Int. 106(8), 1216–1222 (2010).
    • 27. Abdelrahman AE, Rashed HE, Elkady E, Elsebai EA, El-Azony A, Matar I. Fatty acid synthase, Her2/neu, and E2F1 as prognostic markers of progression in non-muscle invasive bladder cancer. Ann. Diagn. Pathol. 39, 42–52 (2019).
    • 28. Kumar S, Prajapati O, Vaiphei K, Parmar KM, Sriharsha AS, Singh SK. Human epidermal growth factor receptor 2/neu overexpression in urothelial carcinoma of the bladder and its prognostic significance: is it worth hype? South Asian J. Cancer 4(3), 115–117 (2015).
    • 29. Wülfing C, Machiels J-PH, Richel DJ et al. A single-arm, multicenter, open-label Phase II study of lapatinib as the second-line treatment of patients with locally advanced or metastatic transitional cell carcinoma. Cancer 115(13), 2881–2890 (2009).
    • 30. Oudard S, Culine S, Vano Y et al. Multicentre randomised Phase II trial of gemcitabine + platinum, with or without trastuzumab, in advanced or metastatic urothelial carcinoma overexpressing Her2. Eur. J. Cancer 51(1), 45–54 (2015).
    • 31. Cerbone L, Sternberg CN, Sengeløv L et al. Results from a Phase I study of lapatinib with gemcitabine and cisplatin in advanced or metastatic bladder cancer: EORTC Trial 30061. Oncology 90(1), 21–28 (2016).
    • 32. Kheder ES, Hong DS. Emerging targeted therapy for tumors with NTRK fusion proteins. Clin. Cancer Res. 24(23), 5807–5814 (2018).
    • 33. Lassen U. How I treat NTRK gene fusion-positive cancers. ESMO Open. 4(Suppl. 2). e000612 (2019 ).
    • 34. Yoshihara K, Wang Q, Torres-Garcia W et al. The landscape and therapeutic relevance of cancer-associated transcript fusions. Oncogene 34(37), 4845–4854 (2015).
    • 35. Drilon A, Laetsch TW, Kummar S et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N. Engl. J. Med. 378(8), 731–739 (2018).
    • 36. Ardini E, Menichincheri M, Banfi P et al. Entrectinib, a Pan-TRK, ROS1, and ALK inhibitor with activity in multiple molecularly defined cancer indications. Mol. Cancer Ther. 15(4), 628–639 (2016).
    • 37. National Cancer Institute. FDA approves entrectinib for tumors with NTRK fusions. (2019) https://www.cancer.gov/news-events/cancer-currents-blog/2019/fda-entrectinib-ntrk-fusion
    • 38. Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 17(12), e542–e551 (2016).
    • 39. Zhu G, Pei L, Li Y, Gou X. EP300 mutation is associated with tumor mutation burden and promotes antitumor immunity in bladder cancer patients. Aging (Albany NY). 12(3), 2132–2141 (2020).
    • 40. Lv J, Zhu Y, Ji A, Zhang Q, Liao G. Mining TCGA database for tumor mutation burden and their clinical significance in bladder cancer. Biosci. Rep. 40(4), BSR20194337 (2020).
    • 41. Wu Z, Wang M, Liu Q et al. Identification of gene expression profiles and immune cell infiltration signatures between low and high tumor mutation burden groups in bladder cancer. Int. J. Med. Sci. 17(1), 89–96 (2020).
    • 42. Lower SS, McGurk MP, Clark AG, Barbash DA. Satellite DNA evolution: old ideas, new approaches. Curr. Opin. Genet. Dev. 49, 70–78 (2018).
    • 43. Zhao P, Li L, Jiang X, Li Q. Mismatch repair deficiency/microsatellite instability-high as a predictor for anti-PD-1/PD-L1 immunotherapy efficacy. J. Hematol. Oncol. 12(1), 54 (2019).
    • 44. Chalmers ZR, Connelly CF, Fabrizio D et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 9(1), 34 (2017).
    • 45. Giedl J, Schneckenpointner R, Filbeck T et al. Low frequency of HNPCC-associated microsatellite instability and aberrant MMR protein expression in early-onset bladder cancer. Am. J. Clin. Pathol. 142(5), 634–639 (2014).
    • 46. Sanguedolce F, Cormio A, Massenio P et al. Altered expression of HER-2 and the mismatch repair genes MLH1 and MSH2 predicts the outcome of T1 high-grade bladder cancer. J. Cancer Res. Clin. Oncol. 144(4), 637–644 (2018).
    • 47. Mouw KW, Goldberg MS, Konstantinopoulos PA, D'Andrea AD. DNA damage and repair biomarkers of immunotherapy response. Cancer Discov. 7(7), 675–693 (2017).
    • 48. Teo MY, Seier K, Ostrovnaya I et al. Alterations in DNA damage response and repair genes as potential marker of clinical benefit from PD-1/PD-L1 blockade in advanced urothelial cancers. J. Clin. Oncol. 36(17), 1685–1694 (2018).
    • 49. Bejerano G, Pheasant M, Makunin I et al. Ultraconserved elements in the human genome. Science (New York, NY). 304(5675), 1321–1325 (2004).
    • 50. Terracciano D, Ferro M, Terreri S et al. Urinary long noncoding RNAs in nonmuscle-invasive bladder cancer: new architects in cancer prognostic biomarkers. Transl. Res. 184, 108–117 (2017).
    • 51. Long non-coding RNA containing ultraconserved genomic region 8 promotes bladder cancer tumorigenesis. Oncotarget 7, 20636–20654 (2016).
    • 52. Han Y, Liu Y, Gui Y, Cai Z. Long intergenic non-coding RNA TUG1 is overexpressed in urothelial carcinoma of the bladder. J. Surg. Oncol. 107(5), 555–559 (2013).
    • 53. Terreri S, Durso M, Colonna V et al. New cross-talk layer between ultraconserved non-coding RNAs, microRNAs and polycomb protein YY1 in bladder cancer. Genes 7(12), 127 (2016).
    • 54. Zhang Q, Miao S, Han X et al. MicroRNA-3619-5p suppresses bladder carcinoma progression by directly targeting β-catenin and CDK2 and activating p21. Cell Death & Disease. 9(10), 960 (2018).
    • 55. Zhang J, Mao S, Wang L et al. MicroRNA-154 functions as a tumor suppressor in bladder cancer by directly targeting ATG7. Oncol. Rep. 41(2), 819–828 (2019).
    • 56. Xie X, Pan J, Han X, Chen W. Downregulation of microRNA-532-5p promotes the proliferation and invasion of bladder cancer cells through promotion of HMGB3/Wnt/β-catenin signaling. Chem. Biol. Interact. 300, 73–81 (2019).
    • 57. Zhao F, Zhou L-H, Ge Y-Z et al. MicroRNA-133b suppresses bladder cancer malignancy by targeting TAGLN2-mediated cell cycle. J. Cell. Physiol. 234(4), 4910–4923 (2019).
    • 58. Cantiello F, Russo GI, Vartolomei MD et al. Systemic inflammatory markers and oncologic outcomes in patients with high-risk non–muscle-invasive urothelial bladder cancer. Eur. Urol. Oncol. 1(5), 403–410 (2018).
    • 59. Kim HS, Ku JH. Systemic inflammatory response based on neutrophil-to-lymphocyte ratio as a prognostic marker in bladder cancer. Dis. Markers 2016, 8345286 (2016).
    • 60. Vartolomei MD, Porav-Hodade D, Ferro M et al. Prognostic role of pretreatment neutrophil-to-lymphocyte ratio (NLR) in patients with non–muscle-invasive bladder cancer (NMIBC): a systematic review and meta-analysis. Urol. Oncol. 36(9), 389–399 (2018).
    • 61. Viers BR, Boorjian SA, Frank I et al. Pretreatment neutrophil-to-lymphocyte ratio is associated with advanced pathologic tumor stage and increased cancer-specific mortality among patients with urothelial carcinoma of the bladder undergoing radical cystectomy. Eur. Urol. 66(6), 1157–1164 (2014).
    • 62. Ninomiya S, Kawahara T, Miyoshi Y, Yao M, Uemura H. A retrospective study on the possible systematic inflammatory response markers to predict the prognosis of patients with bladder cancer undergoing radial cystectomy. Mol. Clin. Oncol. 13(5), 47 (2020).
    • 63. Nabavizadeh R, Bobrek K, Master VA. Risk stratification for bladder cancer: biomarkers of inflammation and immune activation. Urol. Oncol. 38(9), 706–712 (2020).
    • 64. Goessl C, Müller M, Straub B, Miller K. DNA alterations in body fluids as molecular tumor markers for urological malignancies. Eur. Urol. 41(6), 668–676 (2002).
    • 65. Gazzaniga P, de Berardinis E, Raimondi C et al. Circulating tumor cells detection has independent prognostic impact in high-risk non-muscle invasive bladder cancer. Int. J. Cancer 135(8), 1978–1982 (2014).
    • 66. Non-invasive detection of urothelial carcinoma (UC) by cost-effective low-coverage whole genome sequencing from urine exfoliated cells DNA. J. Clin. Oncol. 38(15 Suppl.), 1552–1552 (2020).
    • 67. Satyal U, Srivastava A, Abbosh PH. Urine biopsy – liquid gold for molecular detection and surveillance of bladder cancer. Front. Oncol. 9, 1266 (2019).