We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Plasma and cerebrospinal fluid levels of cytokines as disease markers of neurologic manifestation in long-term HTLV-1 infected individuals

    Daniela V Rosa

    Laboratório de Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av Alfredo Balena, 190. Belo Horizonte-MG, CEP 30130-100, Brazil

    Instituto Nacional de Ciência eTecnologia de Medicina Molecular, INCT-MM, CNPq-FAPEMIG, Universidade Federalde Minas Gerais, Belo Horizonte

    ,
    Luiz A Magno

    Laboratório de Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av Alfredo Balena, 190. Belo Horizonte-MG, CEP 30130-100, Brazil

    Instituto Nacional de Ciência eTecnologia de Medicina Molecular, INCT-MM, CNPq-FAPEMIG, Universidade Federalde Minas Gerais, Belo Horizonte

    ,
    Nathália CM Pereira

    Laboratório de Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av Alfredo Balena, 190. Belo Horizonte-MG, CEP 30130-100, Brazil

    Instituto Nacional de Ciência eTecnologia de Medicina Molecular, INCT-MM, CNPq-FAPEMIG, Universidade Federalde Minas Gerais, Belo Horizonte

    ,
    Luiz C Romanelli

    Laboratório de Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av Alfredo Balena, 190. Belo Horizonte-MG, CEP 30130-100, Brazil

    Instituto Nacional de Ciência eTecnologia de Medicina Molecular, INCT-MM, CNPq-FAPEMIG, Universidade Federalde Minas Gerais, Belo Horizonte

    GIPH Hemominas, Belo Horizonte-MG, Brazil

    ,
    Maicon R Albuquerque

    Laboratório de Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av Alfredo Balena, 190. Belo Horizonte-MG, CEP 30130-100, Brazil

    Instituto Nacional de Ciência eTecnologia de Medicina Molecular, INCT-MM, CNPq-FAPEMIG, Universidade Federalde Minas Gerais, Belo Horizonte

    ,
    Marina L Martins

    GIPH Hemominas, Belo Horizonte-MG, Brazil

    , ,
    Rodrigo Nicolato

    Laboratório de Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av Alfredo Balena, 190. Belo Horizonte-MG, CEP 30130-100, Brazil

    Instituto Nacional de Ciência eTecnologia de Medicina Molecular, INCT-MM, CNPq-FAPEMIG, Universidade Federalde Minas Gerais, Belo Horizonte

    ,
    Ana C Simões e Silva

    Laboratório de Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av Alfredo Balena, 190. Belo Horizonte-MG, CEP 30130-100, Brazil

    Instituto Nacional de Ciência eTecnologia de Medicina Molecular, INCT-MM, CNPq-FAPEMIG, Universidade Federalde Minas Gerais, Belo Horizonte

    Department of Pediatrics, Universidade Federal de Minas Gerais, Av Alfredo Balena, 190. Belo Horizonte-MG, CEP 30130-100, Brazil

    &
    Debora M de Miranda

    *Author for correspondence:

    E-mail Address: deborammiranda@ufmg.br

    Laboratório de Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av Alfredo Balena, 190. Belo Horizonte-MG, CEP 30130-100, Brazil

    Instituto Nacional de Ciência eTecnologia de Medicina Molecular, INCT-MM, CNPq-FAPEMIG, Universidade Federalde Minas Gerais, Belo Horizonte

    Published Online:https://doi.org/10.2217/bmm-2017-0313

    Aim: The aim of this study is to evaluate the presence of a particular immunological profile in individuals long-term infected with HTLV-1, followed presenting different clinical courses. Materials & methods: Forty-eight individuals were evaluated for 19 cytokines analyzed in cerebrospinal fluid and plasma of patients with HTLV-1 presenting with and without neurological symptoms. Results: Proinflammatory cytokines and the chemokine ligand 11 (ITAC/CXCL11) were increased in individuals with HTLV-1 coursing with neurological symptoms. Conclusion: Different cytokines’ expression profile in the presence of neurological symptoms may help to understand and characterize the progression for severe clinical presentations.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Willems L, Hasegawa H, Accolla R et al. Reducing the global burden of HTLV-1 infection: an agenda for research and action. Antiviral Res. 137, 41–48 (2017). • The HTLV task force strengthen medical research and public health response to viral agents of human disease and prepare for new pandemic threats.
    • 2 Osame M, Usuku K, Izumo S et al. HTLV-I associated myelopathy, a new clinical entity. Lancet 1(8488), 1031–1032 (1986).
    • 3 Souza A, Santos S, Carvalho LP, Grassi MFR, Carvalho EM. Impairment of the humoral and CD4(+) T cell responses in HTLV-1-infected individuals immunized with tetanus toxoid. Hum. Immunol. 77(8), 674–81 (2016).
    • 4 Goncalves DU, Proietti FA, Barbosa-Stancioli EF et al. HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) inflammatory network. Inflam. Allergy Drug Targets 7(2), 98–107 (2008).
    • 5 Matsuura E, Yamano Y, Jacobson S. Neuroimmunity of HTLV-I infection. J. Neuroimmune Pharmacol. 5(3), 310–25 (2010). •• An important review paper about pathophysiological findings on HTLV-associated myelopathy/tropical spastic paraparesis and focus on viral-host immune responses to the virus in HTLV-I infected individuals.
    • 6 Jacobson S. Immunopathogenesis of human T cell lymphotropic virus type I-associated neurologic disease. J. Infect. Dis. 186(Suppl.), S187–S192 (2002).
    • 7 Andrade RG, Ribeiro MA, Namen-Lopes MSS et al. Evaluation of the use of real-time PCR for human T cell lymphotropic virus 1 and 2 as a confirmatory test in screening for blood donors. Rev. Soc. Bras. Med. Trop. 43(2), 111–115 (2010).
    • 8 Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33(11), 1444–1452 (1983). •• Explanation of a new Expanded Disability Status Scale with each of the former steps divided into two.
    • 9 Furtado M dos SBS, Andrade RG, Romanelli LCF et al. Monitoring the HTLV-1 proviral load in the peripheral blood of asymptomatic carriers and patients with HTLV-associated myelopathy/tropical spastic paraparesis from a Brazilian cohort: ROC curve analysis to establish the threshold for risk disease. J. Med. Virol. 84(4), 664–671 (2012).
    • 10 Grassi MFR, Olavarria VN, Kruschewsky R de A et al. Human T cell lymphotropic virus type 1 (HTLV-1) proviral load of HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients according to new diagnostic criteria of HAM/TSP. J. Med. Virol. 83(7), 1269–74 (2011).
    • 11 Vallinoto ACR, Santana BB, Sá KSG et al. HTLV-1-Associated myelopathy/tropical spastic paraparesis is not associated with SNP rs12979860 of the IL-28B gene. Med. Inflamm. 2015, 804167 (2015).
    • 12 Araya N, Sato T, Yagishita N et al. Human T-lymphotropic virus type 1 (HTLV-1) and regulatory T cells in HTLV-1-associated neuroinflammatory disease. Viruses 3(9), 1532–1548 (2011).
    • 13 Montanheiro PA, Penalva de Oliveira AC, Smid J et al. The elevated interferon gamma production is an important immunological marker in HAM/TSP pathogenesis. Scand. J. Immunol. 70(4), 403–407 (2009).
    • 14 Sagawa K, Mochizuki M, Masuoka K et al. Immunopathological mechanisms of human T cell lymphotropic virus type 1 (HTLV-I) uveitis. Detection of HTLV-I-infected T cells in the eye and their constitutive cytokine production. J. Clin. Invest. 95(2), 852–858 (1995).
    • 15 de Castro-Costa CM, Araújo A de QC, Câmara CC et al. Pain in tropical spastic paraparesis/HTLV-I associated myelopathy patients. Arquivos de neuro-psiquiatria 67(3B), 866–870 (2009).
    • 16 Ribas JGR, Melo GCN. [Human T-cell lymphotropic virus type 1(HTLV-1)-associated myelopathy]. Rev. Soc. Bras. Med. Trop. 35(4), 377–384 (2002).
    • 17 Nagasaka M, Morioka I, Kawabata A et al. Comprehensive analysis of serum cytokines/chemokines in febrile children with primary human herpes virus-6B infection. J. Infect. Chemother. 22(9), 593–598 (2016).
    • 18 Zeremski M, Petrovic LM, Chiriboga L et al. Intrahepatic levels of CXCR3-associated chemokines correlate with liver inflammation and fibrosis in chronic hepatitis C. Hepatology 48(5), 1440–1450 (2008).
    • 19 Müller M, Carter S, Hofer MJ, Campbell IL. Review: the chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 in neuroimmunity – a tale of conflict and conundrum. Neuropathol. Appl. Neurobiol. 36(5), 368–387 (2010).
    • 20 Rupprecht TA, Koedel U, Muhlberger B, Wilske B, Fontana A, Pfister H-W. CXCL11 is involved in leucocyte recruitment to the central nervous system in neuroborreliosis. J. Neurol. 252(7), 820–823 (2005).
    • 21 Moniuszko A, Czupryna P, Pancewicz S et al. Evaluation of CXCL8, CXCL10, CXCL11, CXCL12 and CXCL13 in serum and cerebrospinal fluid of patients with neuroborreliosis. Immunol. Lett. 157(1–2), 45–50 (2014). • Knowledge of the role of chemokines in inflammation during neuroborreliosis in serum and cerebrospinal fluid.
    • 22 Araya N, Sato T, Ando H et al. HTLV-1 induces a Th1-like state in CD4+CCR4+ T cells. J. Clin. Invest. 124(8), 3431–3442 (2014).
    • 23 Guerreiro JB, Santos SB, Morgan DJ et al. Levels of serum chemokines discriminate clinical myelopathy associated with human T lymphotropic virus type 1 (HTLV-1)/tropical spastic paraparesis (HAM/TSP) disease from HTLV-1 carrier state. Clin. Exp. Immunol. 145(2), 296–301 (2006).
    • 24 Sato T, Coler-Reilly A, Utsunomiya A et al. CSF CXCL10, CXCL9, and neopterin as candidate prognostic biomarkers for HTLV-1-associated myelopathy/tropical spastic paraparesis. PLoS Negl. Trop. Dis. 7(10), e2479 (2013).
    • 25 Nagai M, Kubota R, Greten TF, Schneck JP, Leist TP, Jacobson S. Increased activated human T cell lymphotropic virus type I (HTLV-I) Tax11–19-specific memory and effector CD8+ cells in patients with HTLV-I-associated myelopathy/tropical spastic paraparesis: correlation with HTLV-I provirus load. J. Infect. Dis. 183(2), 197–205 (2001).
    • 26 Best I, López G, Verdonck K et al. IFN-gamma production in response to Tax 161–233, and frequency of CD4+ Foxp3+ and Lin HLA-DRhigh CD123+ cells, discriminate HAM/TSP patients from asymptomatic HTLV-1-carriers in a Peruvian population. Immunology 128(1 Suppl.), e777–e786 (2009).
    • 27 Kuroda Y, Matsui M. Cerebrospinal fluid interferon-gamma is increased in HTLV-I-associated myelopathy. J. Neuroimmunol. 42(2), 223–226 (1993).
    • 28 Nishimoto N, Yoshizaki K, Eiraku N et al. Elevated levels of interleukin-6 in serum and cerebrospinal fluid of HTLV-I-associated myelopathy/tropical spastic paraparesis. J. Neurol. Sci. 97(2–3), 183–193 (1990).
    • 29 Ohbo K, Sugamura K, Sekizawa T, Kogure K. Interleukin-6 in cerebrospinal fluid of HTLV-I-associated myelopathy. Neurology 41(4), 594–595 (1991).
    • 30 Schultz RM, Kleinschmidt WJ. Functional identity between murine gamma interferon and macrophage activating factor. Nature 305(5931), 239–240 (1983).
    • 31 Raine CS, Cannella B, Duijvestijn AM, Cross AH. Homing to central nervous system vasculature by antigen-specific lymphocytes. II. Lymphocyte/endothelial cell adhesion during the initial stages of autoimmune demyelination. Laboratory investigation; a journal of technical methods and pathology. Lab. Invest. 63(4), 476–489 (1990).
    • 32 Umehara F, Izumo S, Ronquillo AT, Matsumuro K, Sato E, Osame M. Cytokine expression in the spinal cord lesions in HTLV-I-associated myelopathy. J. Neuropathol. Exp. Neurol. 53(1), 72–77 (1994).
    • 33 Ottum PA, Arellano G, Reyes LI, Iruretagoyena M, Naves R. Opposing roles of interferon-gamma on cells of the central nervous system in autoimmune neuroinflammation. Front. Immunol. 6, 539 (2015).
    • 34 Salmaggi A, Gelati M, Dufour A et al. Expression and modulation of IFN-gamma-inducible chemokines (IP-10, Mig, and I-TAC) in human brain endothelium and astrocytes: possible relevance for the immune invasion of the central nervous system and the pathogenesis of multiple sclerosis. J. Interferon Cytokine Res. 22(6), 631–640 (2002).