We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Helicobacter pylori: phenotypes, genotypes and virulence genes

    José Luiz Proença-Modena*

    Department of Cell & Molecular Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil.

    ,
    Gustavo Olszanski Acrani*

    Department of Cell & Molecular Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil.

    &
    Marcelo Brocchi

    † Author for correspondence

    Department of Microbiology & Immunology, Institute of Biology, CP 6109, State University of Campinas – UNICAMP, 13083-970, Campinas, SP, Brazil.

    Published Online:https://doi.org/10.2217/17460913.4.2.223

    Helicobacter pylori is a Gram-negative, microaerophilic bacterium that colonizes the gastric mucus overlying the epithelium of the stomach in more than 50% of the world’s population. This gastric colonization induces chronic gastric inflammation in all infected individuals, but only induces clinical diseases in 10–20% of infected individuals. These include peptic ulcers, acute and atrophic gastritis, intestinal metaplasia, gastric adenocarcinoma and gastric B-cell lymphoma. Various bacterial virulence factors are associated with the development of such gastric diseases, and the characterization of these markers could aid medical prognosis, which could be extremely important in predicting clinical outcomes. The purpose of this review is to summarize the role of the phenotypes, virulence-related genes and genotypes of H. pylori in the establishment of gastric colonization and the development of associated diseases.

    Papers of special note have been highlighted as: ▪▪ of considerable interest

    Bibliography

    • Kusters JG, van Vliet AH, Kuipers EJ: Pathogenesis of Helicobacter pylori infection. Clin. Microbiol. Rev.19(3),449–490 (2006).Crossref, Medline, CASGoogle Scholar
    • Amieva MR, El-Omar EM: Host-bacterial interactions in Helicobacter pylori infection. Gastroenterology134(1),306–323 (2008).Crossref, Medline, CASGoogle Scholar
    • Marshall BJ, Warren JR: Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet1(8390),1311–1315 (1984).▪▪ A historical article that describes the presence and cultivation of spiral or curved Gram-negative, flagellate and microaerophilic bacilli from gastric biopsies of human patients, that were later classified as Helicobacter pylori. This article also suggested the association of this bacterium with gastric diseases.Crossref, Medline, CASGoogle Scholar
    • Blaser MJ, Atherton JC: Helicobacter pylori persistence: biology and disease. J. Clin. Invest.113(3),321–333 (2004).Crossref, Medline, CASGoogle Scholar
    • Ernst PB, Gold BD: The disease spectrum of Helicobacter pylori: the immunopathogenesis of gastroduodenal ulcer and gastric cancer. Annu. Rev. Microbiol.54,615–640 (2000).Crossref, Medline, CASGoogle Scholar
    • Atherton JC: The pathogenesis of Helicobacter pylori-induced gastro-duodenal diseases. Annu. Rev. Pathol.1,63–96 (2006).Crossref, Medline, CASGoogle Scholar
    • Modena JL, Acrani GO, Micas AF et al.: Correlation between Helicobacter pylori infection, gastric diseases and life habits among patients treated at a university hospital in southeast Brazil. Braz. J. Infect. Dis.11(1),89–95 (2007).Crossref, MedlineGoogle Scholar
    • The EUROGAST Study Group: An international association between Helicobacter pylori infection and gastric cancer. Lancet341(8857),1359–1362 (1993).▪▪ Definitively confirms the relationship between gastric cancer and H. pylori colonization of the gastric mucosa in an important multicenter epidemiological study.Crossref, MedlineGoogle Scholar
    • Forman D, Sitas F, Newell DG et al.: Geographic association of Helicobacter pylori antibody prevalence and gastric cancer mortality in rural China. Int. J. Cancer.46(4),608–611 (1990).Crossref, Medline, CASGoogle Scholar
    • 10  Fallone CA, Barkun AN, Gottke MU et al.: Association of Helicobacter pylori genotype with gastroesophageal reflux disease and other upper gastrointestinal diseases. Am. J. Gastroenterol.95(3),659–669 (2000).Crossref, Medline, CASGoogle Scholar
    • 11  Godoy AP, Ribeiro ML, Benvengo YH et al.: Analysis of antimicrobial susceptibility and virulence factors in Helicobacter pylori clinical isolates. BMC Gastroenterol.3,20 (2003).Crossref, MedlineGoogle Scholar
    • 12  Linz B, Balloux F, Moodley Y et al.: An African origin for the intimate association between humans and Helicobacter pylori. Nature445(7130),915–918 (2007).▪▪ Using the sequences of a large number of bacterial strains, this article shows that H. pylori has already been infecting modern humans before their migration out of Africa.Crossref, MedlineGoogle Scholar
    • 13  Covacci A, Telford JL, Del Giudice G, Parsonnet J, Rappuoli R: Helicobacter pylori virulence and genetic geography. Science284(5418),1328–1333 (1999).Crossref, Medline, CASGoogle Scholar
    • 14  Tomb JF, White O, Kerlavage AR et al.: The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature388(6642),539–547 (1997).▪▪ The first study that reported the complete genome sequence of strain 26695 of H. pylori, describing the general characteristics of its genome.Crossref, Medline, CASGoogle Scholar
    • 15  Alm RA, Ling LS, Moir DT et al.: Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature397(6715),176–180 (1999).▪▪ Describes for the first time a systematic comparison between the entire genomes of two unrelated H. pylori strains. This work showed that the major part of the genes specific to each strain are clustered in a single hypervariable region.Crossref, MedlineGoogle Scholar
    • 16  Oh JD, Kling-Bäckhed H, Giannakis M et al.: The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: evolution during disease progression. Proc. Natl Acad. Sci. USA103(26),9999–10004 (2006).Crossref, Medline, CASGoogle Scholar
    • 17  Baltrus DA, Amieva MR, Covacci et al.: The complete genome sequence of Helicobacter pylori strain G27. J. Bacteriol.191(1),447–448 (2009).Crossref, Medline, CASGoogle Scholar
    • 18  Dunn BE, Campbell GP, Perez-Perez GI, Blaser MJ: Purification and characterization of urease from Helicobacter pylori. J. Biol. Chem.265(16),9464–9469 (1990).Crossref, Medline, CASGoogle Scholar
    • 19  Clyne M, Dolan B, Reeves EP: Bacterial factors that mediate colonization of the stomach and virulence of Helicobacter pylori. FEMS Microbiol. Lett.268(2),135–143 (2007).Crossref, Medline, CASGoogle Scholar
    • 20  Stingl K, De Reuse H: Staying alive overdosed: how does Helicobacter pylori control urease activity? Int. J. Med. Microbiol.295(5),307–315 (2005).Crossref, Medline, CASGoogle Scholar
    • 21  Scott DR, Marcus EA, Weeks DL, Sachs G: Mechanisms of acid resistance due to the urease system of Helicobacter pylori. Gastroenterology123(1),187–195 (2002).Crossref, Medline, CASGoogle Scholar
    • 22  Pflock M, Kennard S, Delany I, Scarlato V, Beier D: Acid-induced activation of the urease promoters is mediated directly by the ArsRS two-component system of Helicobacter pylori. Infect. Immun.73(10),6437–6445 (2005).▪▪ Demonstrated that acid-induced transcription of the urease genes is mediated directly by the ArsRS two-component system, using an elegant footprint analysis to identify binding sites of the phosphorylated ArsRS response regulator within the ureA and ureI promoters.Crossref, Medline, CASGoogle Scholar
    • 23  Sachs G, Weeks DL, Wen Y et al.: Acid acclimation by Helicobacter pylori. Physiology (Bethesda).20,429–438 (2005).Crossref, Medline, CASGoogle Scholar
    • 24  Skouloubris S, Labigne A, De Reuse H: The AmiE aliphatic amidase and AmiF formamidase of Helicobacter pylori: natural evolution of two enzyme paralogues. Mol. Microbiol.40(3),596–609 (2001).Crossref, Medline, CASGoogle Scholar
    • 25  McGee DJ, Zabaleta J, Viator RJ et al.: Purification and characterization of Helicobacter pylori arginase, RocF: unique features among the arginase superfamily. Eur. J. Biochem.271(10),1952–1962 (2004).Crossref, Medline, CASGoogle Scholar
    • 26  Pflock M, Kennard S, Finsterer N, Beier D: Acid-responsive gene regulation in the human pathogen Helicobacter pylori. J. Biotechnol.126(1),52–60 (2006).Crossref, Medline, CASGoogle Scholar
    • 27  Windle HJ, Fox A, Ni Eidhin D, Kelleher D: The thioredoxin system of Helicobacter pylori. J. Biol. Chem.275(7),5081–5089 (2000).Crossref, Medline, CASGoogle Scholar
    • 28  Eaton KA, Morgan DR, Krakowka S: Motility as a factor in the colonization of gnotobiotic piglets by Helicobacter pylori. J. Med. Microbiol.37(2),123–127 (1992).Crossref, Medline, CASGoogle Scholar
    • 29  Andersen-Nissen E, Smith KD, Strobe KL et al.: Evasion of Toll-like receptor 5 by flagellated bacteria. Proc. Natl Acad. Sci. USA102(26),9247–9252 (2005).Crossref, Medline, CASGoogle Scholar
    • 30  McGee DJ, Langford ML, Watson EL, Carter JE, Chen YT, Ottemann KM: Colonization and inflammation deficiencies in Mongolian gerbils infected by Helicobacter pylori chemotaxis mutants. Infect. Immun.73(3),1820–1827 (2005).Crossref, Medline, CASGoogle Scholar
    • 31  Croxen MA, Sisson G, Melano R, Hoffman PS: The Helicobacter pylori chemotaxis receptor TlpB (HP0103) is required for pH taxis and for colonization of the gastric mucosa. J. Bacteriol.188(7),2656–2665 (2006).Crossref, Medline, CASGoogle Scholar
    • 32  Alm RA, Bina J, Andrews BM et al.: Comparative genomics of Helicobacter pylori: analysis of the outer membrane protein families. Infect. Immun.68(7),4155–4168 (2000).Crossref, Medline, CASGoogle Scholar
    • 33  Odenbreit S: Adherence properties of Helicobacter pylori: impact on pathogenesis and adaptation to the host. Int. J. Med. Microbiol.295(5),317–324 (2005).Crossref, Medline, CASGoogle Scholar
    • 34  Boren T, Falk P, Roth KA, Larson G, Normark S: Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science262(5141),1892–1895 (1993).Crossref, Medline, CASGoogle Scholar
    • 35  Ilver D, Arnqvist A, Ogren J et al.: Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science279(5349),373–377 (1998).▪▪ The BabA adhesin was purified by receptor activity-directed affinity tagging and it was demonstrated that the bacterial BabA phenotype was associated with the presence of the cag pathogenicity island, among clinical isolates of H. pylori. Furthermore, it was demonstrated that this adhesin binds to important fucosylated group antigens.Crossref, Medline, CASGoogle Scholar
    • 36  Yamaoka Y: Roles of Helicobacter pylori BabA in gastroduodenal pathogenesis. World J. Gastroenterol.14(27),4265–4272 (2008).Crossref, Medline, CASGoogle Scholar
    • 37  Pride DT, Meinersmann RJ, Blaser MJ: Allelic variation within Helicobacter pyloribabA and babB. Infect. Immun.69(2),1160–1171 (2001).Crossref, Medline, CASGoogle Scholar
    • 38  Aspholm-Hurtig M, Dailide G, Lahmann M et al.: Functional adaptation of BabA, the H. pylori ABO blood group antigen binding adhesin. Science305(5683),519–522 (2004).▪▪ Reports interesting results suggesting that babA diversity enables H. pylori to adapt to and colonize the host.Crossref, Medline, CASGoogle Scholar
    • 39  Gerhard M, Lehn N, Neumayer N et al.: Clinical relevance of the Helicobacter pylori gene for blood-group antigen-binding adhesin. Proc. Natl Acad. Sci. USA96(22),12778–12783 (1999).Crossref, Medline, CASGoogle Scholar
    • 40  Prinz C, Schoniger M, Rad R et al.: Key importance of the Helicobacter pylori adherence factor blood group antigen binding adhesin during chronic gastric inflammation. Cancer Res.61(5),1903–1909 (2001).Medline, CASGoogle Scholar
    • 41  Oliveira AG, Santos A, Guerra JB et al.: babA2- and cagA-positive Helicobacter pylori strains are associated with duodenal ulcer and gastric carcinoma in Brazil. J. Clin. Microbiol.41(8),3964–3966 (2003).Crossref, Medline, CASGoogle Scholar
    • 42  Erzin Y, Koksal V, Altun S et al.: Prevalence of Helicobacter pylorivacA, cagA, cagE, iceA, babA2 genotypes and correlation with clinical outcome in Turkish patients with dyspepsia. Helicobacter11(6),574–580 (2006).Crossref, Medline, CASGoogle Scholar
    • 43  Gatti LL, Modena JL, Payao SL et al.: Prevalence of Helicobacter pyloricagA, iceA and babA2 alleles in Brazilian patients with upper gastrointestinal diseases. Acta Trop.100(3),232–240 (2006).Crossref, Medline, CASGoogle Scholar
    • 44  Olfat FO, Zheng Q, Oleastro M et al.: Correlation of the Helicobacter pylori adherence factor BabA with duodenal ulcer disease in four European countries. FEMS Immunol. Med. Microbiol.44(2),151–156 (2005).Crossref, Medline, CASGoogle Scholar
    • 45  Gatti LL, Fagundes e Souza EK, Leite KR et al.: cagA vacA alelles and babA2 genotypes of Helicobacter pylori associated with gastric disease in Brazilian adult patients. Diagn. Microbiol. Infect. Dis.51(4),231–235 (2005).Crossref, Medline, CASGoogle Scholar
    • 46  Mizushima T, Sugiyama T, Komatsu Y et al.: Clinical relevance of the babA2 genotype of Helicobacter pylori in Japanese clinical isolates. J. Clin. Microbiol.39(7),2463–2465 (2001).Crossref, Medline, CASGoogle Scholar
    • 47  Mattar R, dos Santos AF, Eisig JN et al.: No correlation of babA2 with vacA and cagA genotypes of Helicobacter pylori and grading of gastritis from peptic ulcer disease patients in Brazil. Helicobacter10(6),601–608 (2005).Crossref, Medline, CASGoogle Scholar
    • 48  Wen S, Velin D, Felley CP et al.: Expression of Helicobacter pylori virulence factors and associated expression profiles of inflammatory genes in the human gastric mucosa. Infect. Immun.75(11),5118–5126 (2007).Crossref, Medline, CASGoogle Scholar
    • 49  Mahdavi J, Sondén B, Hurtig M et al.: Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science297(5581),573–578 (2002).Crossref, Medline, CASGoogle Scholar
    • 50  Walz A, Odenbreit S, Mahdavi J, Boren T, Ruhl S: Identification and characterization of binding properties of Helicobacter pylori by glycoconjugate arrays. Glycobiology15(7),700–708 (2005).Crossref, Medline, CASGoogle Scholar
    • 51  Unemo M, Aspholm-Hurtig M, Ilver D et al.: The sialic acid binding SabA adhesin of Helicobacter pylori is essential for nonopsonic activation of human neutrophils. J. Biol. Chem.280(15),15390–15397 (2005).Crossref, Medline, CASGoogle Scholar
    • 52  Aspholm M, Olfat FO, Norden J et al.: SabA is the H. pylori hemagglutinin and is polymorphic in binding to sialylated glycans. PLoS Pathog.2(10),E110 (2006).Crossref, MedlineGoogle Scholar
    • 53  de Jonge R, Pot RG, Loffeld RJ et al.: The functional status of the Helicobacter pylori sabB adhesin gene as a putative marker for disease outcome. Helicobacter9(2),158–164 (2004).Crossref, Medline, CASGoogle Scholar
    • 54  Zanotti G, Papinutto E, Dundon W et al.: Structure of the neutrophil-activating protein from Helicobacter pylori. J. Mol. Biol.323(1),125–130 (2002).Crossref, Medline, CASGoogle Scholar
    • 55  Namavar F, Sparrius M, Veerman EC, Appelmelk BJ, Vandenbroucke-Grauls CM: Neutrophil-activating protein mediates adhesion of Helicobacter pylori to sulfated carbohydrates on high-molecular-weight salivary mucin. Infect. Immun.66(2),444–447 (1998).Crossref, Medline, CASGoogle Scholar
    • 56  Teneberg S, Miller-Podraza H, Lampert HC et al.: Carbohydrate binding specificity of the neutrophil-activating protein of Helicobacter pylori. J. Biol. Chem.272(30),19067–19071 (1997).Crossref, Medline, CASGoogle Scholar
    • 57  Dundon WG, Nishioka H, Polenghi A et al.: The neutrophil-activating protein of Helicobacter pylori. Int. J. Med. Microbiol.291(6–7),545–550 (2002).Crossref, Medline, CASGoogle Scholar
    • 58  Evans DJ Jr, Evans DG, Takemura T et al.: Characterization of a Helicobacter pylori neutrophil-activating protein. Infect. Immun.63(6),2213–2220 (1995).Crossref, Medline, CASGoogle Scholar
    • 59  Odenbreit S, Till M, Hofreuter D, Faller G, Haas R: Genetic and functional characterization of the alpAB gene locus essential for the adhesion of Helicobacter pylori to human gastric tissue. Mol. Microbiol.31(5),1537–1548 (1999).Crossref, Medline, CASGoogle Scholar
    • 60  de Jonge R, Durrani Z, Rijpkema SG, Kuipers EJ, van Vliet AH, Kusters JG: Role of the Helicobacter pylori outer-membrane proteins AlpA and AlpB in colonization of the guinea pig stomach. J. Med. Microbiol.53(5),375–379 (2004).Crossref, Medline, CASGoogle Scholar
    • 61  Peck B, Ortkamp M, Diehl KD, Hundt E, Knapp B: Conservation, localization and expression of HopZ, a protein involved in adhesion of Helicobacter pylori. Nucleic Acids Res.27(16),3325–3333 (1999).Crossref, Medline, CASGoogle Scholar
    • 62  Dossumbekova A, Prinz C, Mages J et al.: Helicobacter pylori HopH (OipA) and bacterial pathogenicity: genetic and functional genomic analysis of hopH gene polymorphisms. J. Infect. Dis.194(10),1346–1355 (2006).Crossref, Medline, CASGoogle Scholar
    • 63  Censini S, Lange C, Xiang Z et al.: cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc. Natl Acad. Sci. USA93(25),14648–14653 (1996).▪▪ An important article that describes the structure of the cag pathogenicity island of H. pylori. The authors reported evidence that this pathogenicity island encodes a new secretion system for the export of virulence determinants and that some of its genes were associated with the induction of IL-8 expression in gastric epithelial cell lines.Crossref, Medline, CASGoogle Scholar
    • 64  Cascales E, Christie PJ: The versatile bacterial type IV secretion systems. Nat. Rev. Microbiol.1(2),137–149 (2003).Crossref, Medline, CASGoogle Scholar
    • 65  Christie PJ, Atmakuri K, Krishnamoorthy V, Jakubowski S, Cascales E: Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu. Rev. Microbiol.59,451–485 (2005).Crossref, Medline, CASGoogle Scholar
    • 66  Backert S, Selbach M: Role of type IV secretion in Helicobacter pylori pathogenesis. Cell. Microbiol.10(8),1573–1581 (2008).Crossref, Medline, CASGoogle Scholar
    • 67  Cover TL, Dooley CP, Blaser MJ: Characterization of and human serologic response to proteins in Helicobacter pylori broth culture supernatants with vacuolizing cytotoxin activity. Infect. Immun.58(3),603–610 (1990).Crossref, Medline, CASGoogle Scholar
    • 68  Covacci A, Censini S, Bugnoli M et al.: Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc. Natl Acad. Sci. USA90(12),5791–5795 (1993).Crossref, Medline, CASGoogle Scholar
    • 69  Proenca Modena JL, Lopes Sales AI, Olszanski Acrani G et al.: Association between Helicobacter pylori genotypes and gastric disorders in relation to the cag pathogenicity island. Diagn. Microbiol. Infect. Dis.59(1),7–16 (2007).Crossref, MedlineGoogle Scholar
    • 70  Ashour AA, Magalhães PP, Mendes EM et al.: Distribution of vacA genotypes in Helicobacter pylori strains isolated from Brazilian adult patients with gastritis, duodenal ulcer or gastric carcinoma. FEMS Immunol. Med. Microbiol.33(3),173–178 (2002).Crossref, Medline, CASGoogle Scholar
    • 71  Figueiredo C, Van Doorn LJ, Nogueira C et al.: Helicobacter pylori genotypes are associated with clinical outcome in Portuguese patients and show a high prevalence of infections with multiple strains. Scand. J. Gastroenterol.36(2),128–135 (2001).Crossref, Medline, CASGoogle Scholar
    • 72  Miehlke S, Kirsch C, Agha-Amiri K et al.: The Helicobacter pylorivacA s1, m1 genotype and cagA is associated with gastric carcinoma in Germany. Int. J. Cancer87(3),322–327 (2000).Crossref, Medline, CASGoogle Scholar
    • 73  Rota CA, Pereira-Lima JC, Blaya C, Nardi NB: Consensus and variable region PCR analysis of Helicobacter pylori 3´ region of cagA gene in isolates from individuals with or without peptic ulcer. J. Clin. Microbiol.39(2),606–612 (2001).Crossref, Medline, CASGoogle Scholar
    • 74  Queiroz DM, Mendes EN, Carvalho AS et al.: Factors associated with Helicobacter pylori infection by a cagA-positive strain in children. J. Infect. Dis.181(2),626–630 (2000).Crossref, Medline, CASGoogle Scholar
    • 75  Queiroz DM, Mendes EN, Rocha GA et al.: cagA-positive Helicobacter pylori and risk for developing gastric carcinoma in Brazil. Int. J. Cancer78(2),135–139 (1998).Crossref, Medline, CASGoogle Scholar
    • 76  Rudi J, Kolb C, Maiwald M et al.: Diversity of Helicobacter pylori vacA and cagA genes and relationship to VacA and CagA protein expression, cytotoxin production, and associated diseases. J. Clin. Microbiol.36(4),944–948 (1998).Crossref, Medline, CASGoogle Scholar
    • 77  D’Elios MM, Manghetti M, De Carli M et al.: T helper 1 effector cells specific for Helicobacter pylori in the gastric antrum of patients with peptic ulcer disease. J. Immunol.158(2),962–967 (1997).MedlineGoogle Scholar
    • 78  D’Elios MM, Manghetti M, Almerigogna F et al.: Different cytokine profile and antigen-specificity repertoire in Helicobacter pylori-specific T cell clones from the antrum of chronic gastritis patients with or without peptic ulcer. Eur. J. Immunol.27(7),1751–1755 (1997).Crossref, MedlineGoogle Scholar
    • 79  D’Elios MM, Amedei A, Del Prete G: Helicobacter pylori antigen-specific T-cell responses at gastric level in chronic gastritis, peptic ulcer, gastric cancer and low-grade mucosa-associated lymphoid tissue (MALT) lymphoma. Microbes Infect.5(8),723–730 (2003).Crossref, MedlineGoogle Scholar
    • 80  Segal ED, Cha J, Lo J, Falkow S, Tompkins LS: Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc. Natl Acad. Sci. USA96(25),14559–14564 (1999).Crossref, Medline, CASGoogle Scholar
    • 81  Stein M, Rappuoli R, Covacci A: Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell-translocation. Proc. Natl Acad. Sci. USA97(3),1263–1268 (2000).Crossref, Medline, CASGoogle Scholar
    • 82  Odenbreit S, Puls J, Sedlmaier B et al.: Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science287(5457),1497–1500 (2000).Crossref, Medline, CASGoogle Scholar
    • 83  Higashi H, Tsutsumi R, Fujita A et al.: Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc. Natl Acad. Sci. USA99(22),14428–14433 (2002).Crossref, Medline, CASGoogle Scholar
    • 84  Selbach M, Moese S, Hauck CR, Meyer TF, Backert S: Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J. Biol. Chem.277(9),6775–6778 (2002).Crossref, Medline, CASGoogle Scholar
    • 85  Stein M, Bagnoli F, Halenbeck R et al.: c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol. Microbiol.43(4),971–980 (2002).Crossref, Medline, CASGoogle Scholar
    • 86  Tammer I, Brandt S, Hartig R, König W, Backert S: Activation of Abl by Helicobacter pylori: a novel kinase for CagA and crucial mediator of host cell scattering. Gastroenterology 132(4),1309–1319 (2007).Crossref, Medline, CASGoogle Scholar
    • 87  Higashi H, Tsutsumi R, Muto S et al.: Shp-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science295(5555),683–686 (2002).▪▪ Shows that the intracellular target of the CagA protein of H. pylori is a two domain-containing Src homolog, tyrosine phosphatase (Shp-2). In addition, the disruption of the CagA–Shp-2 complex abolished the CagA-dependent cellular response, showing that CagA perturbs cell functions by deregulating Shp-2.Crossref, Medline, CASGoogle Scholar
    • 88  Tsutsumi R, Higashi H, Higuchi M, Okada M, Hatakeyama M: Attenuation of Helicobacter pylori CagA x Shp-2 signaling by interaction between CagA and C-terminal Src kinase. J. Biol. Chem.278(6),3664–3670 (2003).Crossref, Medline, CASGoogle Scholar
    • 89  Suzuki M, Mimuro H, Suzuki T, Park M, Yamamoto T, Sasakawa C: Interaction of CagA with Crk plays an important role in Helicobacter pylori-induced loss of gastric epithelial cell adhesion. J. Exp. Med.202(9),1235–1247 (2005).Crossref, Medline, CASGoogle Scholar
    • 90  Ren S, Higashi H, Lu H, Azuma T, Hatakeyama M: Structural basis and functional consequence of Helicobacter pylori CagA multimerization in cells. J. Biol. Chem.281(43),32344–32352 (2006).Crossref, Medline, CASGoogle Scholar
    • 91  Higashi H, Nakaya A, Tsutsumi R et al.: Helicobacter pylori CagA induces Ras-independent morphogenetic response through Shp-2 recruitment and activation. J. Biol. Chem.279(17),17205–17216 (2004).Crossref, Medline, CASGoogle Scholar
    • 92  Tsutsumi R, Takahashi A, Azuma T, Hatakeyama M: Focal adhesion kinase is a substrate and downstream effector of Shp-2 complexed with Helicobacter pylori CagA. Mol. Cell Biol.26(1),261–276 (2006).Crossref, Medline, CASGoogle Scholar
    • 93  Selbach M, Moese S, Hurwitz R et al.: The Helicobacter pylori CagA protein induces cortactin dephosphorylation and actin rearrangement by c-Src inactivation. EMBO J.22(3),515–528 (2003).Crossref, Medline, CASGoogle Scholar
    • 94  Brandt S, Shafikhani S, Balachandran P et al.: Use of a novel coinfection system reveals a role for Rac1, H-Ras, and CrkII phosphorylation in Helicobacter pylori-induced host cell actin cytoskeletal rearrangements. FEMS Immunol. Med. Microbiol.50(2),190–205 (2007).Crossref, Medline, CASGoogle Scholar
    • 95  Amieva MR, Vogelmann R, Covacci A, Tompkins LS, Nelson WJ, Falkow S: Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science300(5624),1430–1434 (2003).Crossref, Medline, CASGoogle Scholar
    • 96  Saadat I, Higashi H, Obuse C et al.: Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature447(7142),330–333 (2007).Crossref, Medline, CASGoogle Scholar
    • 97  Zeaiter Z, Cohen D, Müsch A et al.: Analysis of detergent-resistant membranes of Helicobacter pylori infected gastric adenocarcinoma cells reveals a role for MARK2/Par1b in CagA-mediated disruption of cellular polarity. Cell. Microbiol.10(3),781–794 (2008).Crossref, Medline, CASGoogle Scholar
    • 98  Murata-Kamiya N, Kurashima Y, Teishikata Y et al.: Helicobacter pylori CagA interacts with E-cadherin and deregulates the β-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene26(32),4617–4626 (2007).Crossref, Medline, CASGoogle Scholar
    • 99  Mimuro H, Suzuki T, Tanaka J et al.: Grb2 is a key mediator of Helicobacter pylori CagA protein activities. Mol. Cell10(4),745–755 (2002).Crossref, Medline, CASGoogle Scholar
    • 100  Brandt S, Kwok T, Hartig R, König W, Backert S: NF-κB activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein. Proc. Natl Acad. Sci. USA102(26),9300–9305 (2005).Crossref, Medline, CASGoogle Scholar
    • 101  Meyer-ter-Vehn T, Covacci A, Kist M, Pahl HL: Helicobacter pylori activates mitogen-activated protein kinase cascades and induces expression of the proto-oncogenes c-fos and c-jun. J. Biol. Chem.275(21),16064–16072 (2000).Crossref, Medline, CASGoogle Scholar
    • 102  Wang J, Brooks EG, Bamford KB et al.: Negative selection of T cells by Helicobacter pylori as a model for bacterial strain selection by immune evasion. J. Immunol.167(2),926–934 (2001).Crossref, Medline, CASGoogle Scholar
    • 103  Azuma T, Yamakawa A, Yamazaki S et al.: Correlation between variation of the 3´ region of the cagA gene in Helicobacter pylori and disease outcome in Japan. J. Infect. Dis.186(11),1621–1630 (2002).Crossref, Medline, CASGoogle Scholar
    • 104  Owen RJ, Sharp S, Lawson AJ et al.: Investigation of the biological relevance of Helicobacter pylori cagE locus diversity, presence of CagA tyrosine phosphorylation motifs and vacuolating cytotoxin genotype on IL-8 induction in gastric epithelial cells. FEMS Immunol. Med. Microbiol.36(3),135–140 (2003).Crossref, Medline, CASGoogle Scholar
    • 105  Argent RH, Kidd M, Owen RJ et al.: Determinants and consequences of different levels of CagA phosphorylation for clinical isolates of Helicobacter pylori. Gastroenterology127(2),514–523 (2004).Crossref, Medline, CASGoogle Scholar
    • 106  Tummuru MK, Sharma SA, Blaser MJ: Helicobacter pylori picB, a homologue of the Bordetella pertussis toxin secretion protein, is required for induction of IL-8 in gastric epithelial cells. Mol. Microbiol.18(5),867–876 (1995).Crossref, Medline, CASGoogle Scholar
    • 107  Fischer W, Puls J, Buhrdorf R et al.: Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol. Microbiol.42(5),1337–1348 (2001).Crossref, Medline, CASGoogle Scholar
    • 108  Ikenoue T, Maeda S, Ogura K et al.: Determination of Helicobacter pylori virulence by simple gene analysis of the cag pathogenicity island. Clin. Diagn. Lab. Immunol.8(1),181–186 (2001).Crossref, Medline, CASGoogle Scholar
    • 109  Mattar R, Marques SB, Monteiro Mdo S et al.: Helicobacter pylori cag pathogenicity island genes: clinical relevance for peptic ulcer disease development in Brazil. J. Med. Microbiol.56(1),9–14 (2007).Crossref, Medline, CASGoogle Scholar
    • 110  Pacheco AR, Proenca-Modena JL, Sales AIL et al.: Involvement of the Helicobacter pylori plasticity region and cag pathogenicity island (cagPAI) genes in the development of gastroduodenal diseases Eur. J. Clin. Microbiol. Infect. Dis.27(11),1053–1059 (2008).Crossref, Medline, CASGoogle Scholar
    • 111  Glocker E, Lange C, Covacci A, Bereswill S, Kist M, Pahl HL: Proteins encoded by the cag pathogenicity island of Helicobacter pylori are required for NF-κB activation. Infect. Immun.66(5),2346–2348 (1998).Crossref, Medline, CASGoogle Scholar
    • 112  Viala J, Chaput C, Boneca IG et al.: Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat. Immunol.5(11),1166–1174 (2004).Crossref, Medline, CASGoogle Scholar
    • 113  Kersulyte D, Chalkauskas H, Berg DE: Emergence of recombinant strains of Helicobacter pylori during human infection. Mol. Microbiol.31(1),31–43 (1999).Crossref, Medline, CASGoogle Scholar
    • 114  Figura N, Vindigni C, Covacci A et al.: cagA positive and negative Helicobacter pylori strains are simultaneously present in the stomach of most patients with non-ulcer dyspepsia: relevance to histological damage. Gut42(6),772–778 (1998).Crossref, Medline, CASGoogle Scholar
    • 115  Sozzi M, Tomasini ML, Vindigni C et al.: Heterogeneity of cag genotypes and clinical outcome of Helicobacter pylori infection. J. Lab. Clin. Med.146(5),262–270 (2005).Crossref, Medline, CASGoogle Scholar
    • 116  Tomasini ML, Zanussi S, Sozzi M et al.: Heterogeneity of cag genotypes in Helicobacter pylori isolates from human biopsy specimens. J. Clin. Microbiol.41(3),976–980 (2003).Crossref, Medline, CASGoogle Scholar
    • 117  Matteo MJ, Granados G, Pérez CV et al.: Helicobacter pylori cag pathogenicity island genotype diversity within the gastric niche of a single host. J. Med. Microbiol.56(Pt 5),664–669 (2007).Crossref, Medline, CASGoogle Scholar
    • 118  Cover TL, Blaser MJ: Purification and characterization of the vacuolating toxin from Helicobacter pylori. J. Biol. Chem.267(15),10570–10575 (1992).Crossref, Medline, CASGoogle Scholar
    • 119  Radosz-Komoniewska H, Bek T, Jozwiak J, Martirosian G: Pathogenicity of Helicobacter pylori infection. Clin. Microbiol. Infect.11(8),602–610 (2005).Crossref, Medline, CASGoogle Scholar
    • 120  Fitchen N, Letley DP, O’Shea P et al.: All subtypes of the cytotoxin VacA adsorb to the surface of Helicobacter pylori post-secretion. J. Med. Microbiol.54(7),621–630 (2005).Crossref, Medline, CASGoogle Scholar
    • 121  Ilver D, Barone S, Mercati D, Lupetti P, Telford JL: Helicobacter pylori toxin VacA is transferred to host cells via a novel contact-dependent mechanism. Cell. Microbiol.6(2),167–174 (2004).Crossref, Medline, CASGoogle Scholar
    • 122  Reyrat JM, Rappuoli R, Telford JL: A structural overview of the Helicobacter cytotoxin. Int. J. Med. Microbiol.290(4–5),375–379 (2000).Crossref, Medline, CASGoogle Scholar
    • 123  Atherton JC, Cao P, Peek RM Jr et al.: Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J. Biol. Chem.270(30),17771–17777 (1995).▪▪ Describes the polymorphism of vacA sequence related to the signal and middle regions of the gene. The paper also defines different strain genotypes, which can be related to different levels of cytotoxin activity in vitro and also with distinct clinical outcomes.Crossref, Medline, CASGoogle Scholar
    • 124  Ogura K, Maeda S, Nakao M et al.: Virulence factors of Helicobacter pylori responsible for gastric diseases in Mongolian gerbil. J. Exp. Med.192(11),1601–1610 (2000).Crossref, Medline, CASGoogle Scholar
    • 125  Salama NR, Otto G, Tompkins L, Falkow S: Vacuolating cytotoxin of Helicobacter pylori plays a role during colonization in a mouse model of infection. Infect. Immun.69(2),730–736 (2001).Crossref, Medline, CASGoogle Scholar
    • 126  Rhead JL, Letley DP, Mohammadi M et al.: A new Helicobacter pylori vacuolating cytotoxin determinant, the intermediate region, is associated with gastric cancer. Gastroenterology133(3),926–936 (2007).Crossref, Medline, CASGoogle Scholar
    • 127  Letley DP, Lastovica A, Louw JA, Hawkey CJ, Atherton JC: Allelic diversity of the Helicobacter pylori vacuolating cytotoxin gene in South Africa: rarity of the vacA s1a genotype and natural occurrence of an s2/m1 allele. J. Clin. Microbiol.37(4),1203–1205 (1999).Crossref, Medline, CASGoogle Scholar
    • 128  Kidd M, Lastovica AJ, Atherton JC, Louw JA: Heterogeneity in the Helicobacter pylori vacA and cagA genes: association with gastroduodenal disease in South Africa? Gut45(4),499–502 (1999).Crossref, Medline, CASGoogle Scholar
    • 129  De Gusmão VR, Nogueira Mendes E, De Magalhães Queiroz DM et al.: vacA genotypes in Helicobacter pylori strains isolated from children with and without duodenal ulcer in Brazil. J. Clin. Microbiol.38(8),2853–2857 (2000).Crossref, Medline, CASGoogle Scholar
    • 130  Letley DP, Rhead JL, Twells RJ, Dove B, Atherton JC: Determinants of non-toxicity in the gastric pathogen Helicobacter pylori. J. Biol. Chem.278(29),26734–26741 (2003).Crossref, Medline, CASGoogle Scholar
    • 131  Basso D, Zambon CF, Letley DP et al.: Clinical relevance of Helicobacter pyloricagA and vacA gene polymorphisms. Gastroenterology135(1),91–99 (2008).Crossref, Medline, CASGoogle Scholar
    • 132  Cover TL, Blanke SR: Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat. Rev. Microbiol.3(4),320–332 (2005).Crossref, Medline, CASGoogle Scholar
    • 133  Czajkowsky DM, Iwamoto H, Cover TL, Shao Z: The vacuolating toxin from Helicobacter pylori forms hexameric pores in lipid bilayers at low pH. Proc. Natl Acad. Sci. USA96(5),2001–2006 (1999).Crossref, Medline, CASGoogle Scholar
    • 134  Szabo I, Brutsche S, Tombola F et al.: Formation of anion-selective channels in the cell plasma membrane by the toxin VacA of Helicobacter pylori is required for its biological activity. EMBO. J.18(20),5517–5527 (1999).Crossref, Medline, CASGoogle Scholar
    • 135  Tombola F, Morbiato L, del Giudice G et al.: The Helicobacter pylori VacA toxin is a urea permease that promotes urea diffusion across epithelia. J. Clin. Invest.108(5),929–937 (2001).Crossref, Medline, CASGoogle Scholar
    • 136  Papini E, de Bernard M, Milia E et al.: Cellular vacuoles induced by Helicobacter pylori originate from late endosomal compartments. Proc. Natl Acad. Sci. USA91(21),9720–9724 (1994).Crossref, Medline, CASGoogle Scholar
    • 137  Papini E, Satin B, Norais N et al.: Selective increase of the permeability of polarized epithelial cell monolayers by Helicobacter pylori vacuolating toxin. J. Clin. Invest.102(4),813–820 (1998).Crossref, Medline, CASGoogle Scholar
    • 138  Cover TL, Krishna US, Israel DA, Peek RM Jr: Induction of gastric epithelial cell apoptosis by Helicobacter pylori vacuolating cytotoxin. Cancer Res.63(5),951–957 (2003).Medline, CASGoogle Scholar
    • 139  Neu B, Randlkofer P, Neuhofer M et al.: Helicobacter pylori induces apoptosis of rat gastric parietal cells. Am. J. Physiol. Gastrointest. Liver Physiol.283(2),G309–G318 (2002).Crossref, Medline, CASGoogle Scholar
    • 140  Molinari M, Salio M, Galli C et al.: Selective inhibition of Ii-dependent antigen presentation by Helicobacter pylori toxin VacA. J. Exp. Med.187(1),135–140 (1998).Crossref, Medline, CASGoogle Scholar
    • 141  Gebert B, Fischer W, Weiss E, Hoffmann R Haas R: Helicobacter pylori vacuolating cytotoxin inhibits T-lymphocyte activation. Science301(5636),1099–1102 (2003).Crossref, Medline, CASGoogle Scholar
    • 142  Zheng PY, Jones NL: Helicobacter pylori strains expressing the vacuolating cytotoxin interrupt phagosome maturation in macrophages by recruiting and retaining TACO (coronin 1) protein. Cell. Microbiol.5(1),25–40 (2003).Crossref, Medline, CASGoogle Scholar
    • 143  Peek RM Jr, Thompson SA, Donahue JP et al.: Adherence to gastric epithelial cells induces expression of a Helicobacter pylori gene, iceA, that is associated with clinical outcome. Proc. Assoc. Am. Physicians110(6),531–544 (1998).Medline, CASGoogle Scholar
    • 144  Nishiya D, Shimoyama T, Fukuda S et al.: Evaluation of the clinical relevance of the iceA1 gene in patients with Helicobacter pylori infection in Japan. Scand. J. Gastroenterol.35(1),36–39 (2000).Crossref, Medline, CASGoogle Scholar
    • 145  Yamaoka Y, Kodama T, Gutierrez O et al.: Relationship between Helicobacter pylori iceA, cagA, and vacA status and clinical outcome: studies in four different countries. J. Clin. Microbiol.37(7),2274–2279 (1999).Crossref, Medline, CASGoogle Scholar
    • 146  Ashour AA, Collares GB, Mendes EM et al.: iceA genotypes of Helicobacter pylori strains isolated from Brazilian children and adults. J. Clin. Microbiol.39(5),1746–1750 (2001).Crossref, Medline, CASGoogle Scholar
    • 147  Xu Q, Blaser MJ: Promoters of the CATG-specific methyltransferase gene hpyIM differ between iceA1 and iceA2 Helicobacter pylori strains. J. Bacteriol.183(13),3875–3884 (2001).Crossref, Medline, CASGoogle Scholar
    • 148  Xu Q, Morgan RD, Roberts RJ et al.: Functional analysis of iceA1, a CATG-recognizing restriction endonuclease gene in Helicobacter pylori. Nucleic Acids Res.30(17),3839–3847 (2002).Crossref, Medline, CASGoogle Scholar
    • 149  Heithoff DM, Sinsheimer RL, Low DA, Mahan MJ: An essential role for DNA adenine methylation in bacterial virulence. Science284(5416),967–970 (1999).Crossref, Medline, CASGoogle Scholar
    • 150  Ge Z, Taylor DE: Contributions of genome sequencing to understanding the biology of Helicobacter pylori. Annu. Rev. Microbiol.53,353–387 (1999).Crossref, Medline, CASGoogle Scholar
    • 151  Occhialini A, Marais A, Alm R et al.: Distribution of open reading frames of plasticity region of strain J99 in Helicobacter pylori strains isolated from gastric carcinoma and gastritis patients in Costa Rica. Infect. Immun.68(11),6240–6249 (2000).▪▪ Reports the characterization of coding sequences in the plasticity region of Helicobacter pylori strain J99. It also describes the possible role of some of the coding sequences in the pathogenicity of this bacterium.Crossref, Medline, CASGoogle Scholar
    • 152  Santos A, Queiroz DM, Menard A et al.: New pathogenicity marker found in the plasticity region of the Helicobacter pylori genome. J. Clin. Microbiol.41(4),1651–1655 (2003).Crossref, Medline, CASGoogle Scholar
    • 153  de Jonge R, Kuipers EJ, Langeveld SC et al.: The Helicobacter pylori plasticity region locus jhp0947–jhp0949 is associated with duodenal ulcer disease and interleukin-12 production in monocyte cells. FEMS Immunol. Med. Microbiol.41(2),161–167 (2004).Crossref, Medline, CASGoogle Scholar
    • 154  Lu H, Hsu PI, Graham DY, Yamaoka Y: Duodenal ulcer promoting gene of Helicobacter pylori. Gastroenterology128(4),833–848 (2005).Crossref, Medline, CASGoogle Scholar
    • 155  Arachchi HS, Kalra V, Lal B et al.: Prevalence of duodenal ulcer-promoting gene (dupA) of Helicobacter pylori in patients with duodenal ulcer in North Indian population. Helicobacter12(6),591–597 (2007).Crossref, Medline, CASGoogle Scholar
    • 156  Gomes LI, Rocha GA, Rocha AM et al.: Lack of association between Helicobacter pylori infection with dupA-positive strains and gastroduodenal diseases in Brazilian patients. Int. J. Med. Microbiol.298(3–4),223–230 (2008).Crossref, Medline, CASGoogle Scholar
    • 157  Douraghi M, Mohammadi M, Oghalaie A et al.: dupA as a risk determinant in Helicobacter pylori infection. J. Med. Microbiol.57(Pt 5),554–562 (2008).Crossref, Medline, CASGoogle Scholar
    • 158  Argent RH, Burette A, Miendje Deyi VY, Atherton JC: The presence of dupA in Helicobacter pylori is not significantly associated with duodenal ulceration in Belgium, South Africa, China, or North America. Clin. Infect. Dis.45(9),1204–1206 (2007).Crossref, Medline, CASGoogle Scholar
    • 159  Yamaoka Y: Roles of the plasticity regions of Helicobacter pylori in gastroduodenal pathogenesis. J. Med. Microbiol.57 (Pt 5),545–553 (2008).Crossref, Medline, CASGoogle Scholar
    • 160  Amedei A, Bergman MP, Appelmelk BJ et al.: Molecular mimicry between Helicobacter pylori antigens and H+, K+ – adenosine triphosphatase in human gastric autoimmunity. J. Exp. Med.198(8),1147–1156 (2003).Crossref, Medline, CASGoogle Scholar
    • 161  Muotiala A, Helander IM, Pyhala L, Kosunen TU, Moran AP: Low biological activity of Helicobacter pylori lipopolysaccharide. Infect. Immun.60(4),1714–1716 (1992).Crossref, Medline, CASGoogle Scholar
    • 162  Monteiro MA, Chan KH, Rasko DA et al.: Simultaneous expression of type 1 and type 2 Lewis blood group antigens by Helicobacter pylori lipopolysaccharides. Molecular mimicry between H. pylori lipopolysaccharides and human gastric epithelial cell surface glycoforms. J. Biol. Chem.273(19),11533–11543 (1998).Crossref, Medline, CASGoogle Scholar
    • 163  Appelmelk BJ, Monteiro MA, Martin SL, Moran AP, Vandenbroucke-Grauls CM: Why Helicobacter pylori has Lewis antigens. Trends Microbiol.8(12),565–570 (2000).Crossref, Medline, CASGoogle Scholar
    • 164  Moran AP: Relevance of fucosylation and Lewis antigen expression in the bacterial gastroduodenal pathogen Helicobacter pylori. Carbohydr. Res.343(12),1952–1965 (2008).Crossref, Medline, CASGoogle Scholar
    • 165  Mahdavi J, Boren T, Vandenbroucke-Grauls C, Appelmelk BJ: Limited role of lipopolysaccharide Lewis antigens in adherence of Helicobacter pylori to the human gastric epithelium. Infect. Immun.71(5),2876–2880 (2003).Crossref, Medline, CASGoogle Scholar
    • 166  D’Elios MM, Amedei A, Cappon A et al.: The neutrophil-activating protein of Helicobacter pylori (HP-NAP) as an immune modulating agent. FEMS Immunol. Med. Microbiol.50(2),157–164 (2007).Crossref, MedlineGoogle Scholar
    • 167  Montemurro P, Nishioka H, Dundon WG et al.: The neutrophil-activating protein of Helicobacter pylori is a potent stimulant of mast cells. Eur. J. Immunol.32(3),671–676 (2002).Crossref, Medline, CASGoogle Scholar
    • 168  Amedei A, Cappon A, Codolo G et al.: The neutrophil-activating protein of Helicobacter pylori promotes Th1 immune responses. J. Clin. Invest.116(4),1092–1101 (2006).Crossref, Medline, CASGoogle Scholar
    • 169  Kang J, Blaser MJ: Bacterial populations as perfect gases: genomic integrity and diversification tensions in Helicobacter pylori. Nat. Rev. Microbiol.4(11),826–836 (2006).Crossref, Medline, CASGoogle Scholar
    • 170  Suerbaum S, Josenhans C: Helicobacter pylori evolution and phenotypic diversification in a changing host. Nat. Rev. Microbiol.5(6),441–452 (2007).Crossref, Medline, CASGoogle Scholar
    • 171  Gressmann H, Linz B, Ghai R et al.: Gain and loss of multiple genes during the evolution of Helicobacter pylori. PLoS Genet.1(4),E43 (2005).▪▪ Describes the use of microarray analysis to study gene content in a collection of globally representative strains of H. pylori. The results indicated that 25% of the genes are absent in at least one strain of H. pylori, implying that the evolution of this bacterium is in part mediated by the gain and loss of genes.Crossref, MedlineGoogle Scholar
    • 172  Covacci A, Rappuoli R: Helicobacter pylori: molecular evolution of a bacterial quasi-species. Curr. Opin Microbiol.1(1),96–102 (1998).Crossref, Medline, CASGoogle Scholar
    • 173  Alm RA, Trust TJ: Analysis of the genetic diversity of Helicobacter pylori: the tale of two genomes. J. Mol. Med.77(12),834–846 (1999).Crossref, Medline, CASGoogle Scholar
    • 174  Salaün L, Linz B, Suerbaum S, Saunders NJ: The diversity within an expanded and redefined repertoire of phase-variable genes in Helicobacter pylori. Microbiology150(4),817–830 (2004).Crossref, Medline, CASGoogle Scholar
    • 175  Suerbaum S, Smith JM, Bapumia K et al.: Free recombination within Helicobacter pylori. Proc. Natl Acad. Sci. USA95(21),12619–12624 (1998).Crossref, Medline, CASGoogle Scholar
    • 176  Dhar AK, Soni RK, Das BK, Mukhopadhyay G: Molecular mechanism of action of major Helicobacter pylori virulence factors. Mol. Cell. Biochem.253(1–2),207–215 (2003).Crossref, Medline, CASGoogle Scholar
    • 201  GOLD. Genomes Online Database, version 2.0. www.genomesonline.orgGoogle Scholar