We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Siderophores in fluorescent pseudomonads: new tricks from an old dog

    Dimitris Mossialos

    † Author for correspondence

    University of Thessaly, Department of Biochemistry & Biotechnology, GR-41221 Larissa, Greece.

    &
    Grigoris D Amoutzias

    University of Lausanne, Department of Ecology & Evolution, Biophore, CH-1015, Switzerland and, Institute of Agrobiotechnology, Center For Research & Technology – Hellas, 6th Km Charilaou–Thermi Rd, PO Box 361, 570 01 Thermi, Thessaloniki, Greece.

    Published Online:https://doi.org/10.2217/17460913.2.4.387

    Iron is an essential nutrient for almost all bacteria; however, at neutral pH its bioavailability is limited. Siderophores are iron-binding compounds of low molecular weight that enable the microorganisms that produce them to obtain the necessary iron from the environment. Fluorescent pseudomonads include those that are plant growth promoting, human and plant pathogens, as well as bacteria involved in the biodegradation of xenobiotics. Although pyoverdine is the main siderophore produced by different fluorescent pseudomonads, other siderophores produced by fluorescent pseudomonads include pyochelin, (thio)quinolobactin and pyridine-2, 6-bis thiocarboxylic acid. Research on siderophores continues to reveal new information on their regulation, biosynthesis, function and properties. In this review, we focus on recent advances in the field, particularly on newly characterized siderophores produced by fluorescent pseudomonads and their biotechnological potential.

    Papers of special note have been highlighted as either of interest (•) or of considerable interest (••) to readers.

    Bibliography

    • Braun V: Avoidance of iron toxicity through regulation of bacterial iron transport. Biol. Chem.378,779–786 (1997).Medline, CASGoogle Scholar
    • Neilands JB: Siderophores: structure and function of microbial iron transport compounds. J. Biol. Chem.270,26723–26726 (1995).Crossref, Medline, CASGoogle Scholar
    • Guerinot ML: Microbial iron transport. Annu. Rev. Microbiol.48,743–772 (1994).• Classic review article on siderophores.Crossref, Medline, CASGoogle Scholar
    • Drechsel H, Jung J: Peptide siderophores. J. Peptide Sci.4,147–181 (1998).Crossref, Medline, CASGoogle Scholar
    • Faraldo-Gomez JD, Sansom MS: Acquisition of siderophores in Gram-negative bacteria. Nat. Rev. Mol. Cell Biol.4,105–116 (2003).Crossref, Medline, CASGoogle Scholar
    • Postle K, Kadner RJ: Touch and go: tying TonB to transport. Mol. Microbiol.29,673–684 (2003).Google Scholar
    • Palleroni NJ: Pseudomonadaceae. In: Bergey’s Manual of Systematic Bacteriology. Krieg NR, Holt JG (Eds). Williams and Wilkins, Baltimore, USA 141–199 (1984).Google Scholar
    • Budzikiewicz H: Siderophores of fluorescent pseudomonads. Z. Naturforsch.52c,713–720 (1997).CrossrefGoogle Scholar
    • Hohnadel D, Meyer JM: Specificity of pyoverdine-mediated iron uptake among fluorescent Pseudomonas strains. J. Bacteriol.170,4865–4873 (1988).Crossref, Medline, CASGoogle Scholar
    • 10  Budzikiewicz H: Secondary metabolites from fluorescent pseudomonads. FEMS Microbiol. Rev.10,209–228 (1993).Crossref, Medline, CASGoogle Scholar
    • 11  Sadikot RT, Blackwell TS, Christman JW, Prince AS: Pathogen–host interactions in Pseudomonas aeruginosa pneumonia. Am. J. Respir. Crit. Care Med.171,1209–1223 (2005).Crossref, MedlineGoogle Scholar
    • 12  Williams HD, Zlosnik JE, Ryall B: Oxygen, cyanide and energy generation in the cystic fibrosis pathogen Pseudomonas aeruginosa. Adv. Microb. Physiol.52,1–71 (2007).Crossref, Medline, CASGoogle Scholar
    • 13  Fuchs R, Schafer M, Geoffroy VA, Meyer JM: Siderotyping – a powerful tool for the characterization of pyoverdines. Curr. Top. Med. Chem1(1),31–57 (2001).Crossref, Medline, CASGoogle Scholar
    • 14  Meyer JM, Geoffroy VA, Baida N et al.: Siderophore typing, a powerful tool for the identification of fluorescent and non-fluorescent pseudomonads. Appl. Environ. Microbiol.68,2745–2753 (2002).Crossref, Medline, CASGoogle Scholar
    • 15  Poole K, Neshat S, Krebes K, Heinrichs DE: Cloning and nucleotide sequence analysis of the ferripyoverdine receptor gene fpvA of Pseudomonas aeruginosa. J. Bacteriol.175,4597–4604 (1993).Crossref, Medline, CASGoogle Scholar
    • 16  Cobessi D, Celia H, Folschweiller N, Schalk IJ, Abdallah MA, Pattus F: The crystal structure of the pyoverdine outer membrane receptor FpvA from Pseudomonas aeruginosa at 3.6 angstroms resolution. J. Mol. Biol.347(1),121–134 (2005).Crossref, Medline, CASGoogle Scholar
    • 17  Wirth C, Meyer-Klaucke W, Pattus F, Cobessi D: From the periplasmic signalling domain to the extracellular face of an outer membrane signal transducer of Pseudomonas aeruginosa: crystal structure of the ferric pyoverdine outer membrane receptor. J. Mol. Biol.368(2),398–406 (2007).Crossref, Medline, CASGoogle Scholar
    • 18  Ghysels B, Dieu BT, Beatson SA et al.: FpvB, an alternative type I ferripyoverdine receptor of Pseudomonas aeruginosa. Microbiology150,1671–1680 (2004).Crossref, Medline, CASGoogle Scholar
    • 19  de Chial M, Ghysels B, Beatson SA et al.: Identification of type II and type III pyoverdine receptors from Pseudomonas aeruginosa. Microbiology149,821–831 (2003).Crossref, Medline, CASGoogle Scholar
    • 20  Visca P, Imperi F, Lamont IL: Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol.15(1),22–30 (2007).•• Excellent, comprehensive review on pyoverdine biology.Crossref, Medline, CASGoogle Scholar
    • 21  Crosa JH, Walsh CT: Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol. Mol. Biol. Rev.66,223–249 (2002).Crossref, Medline, CASGoogle Scholar
    • 22  Grunewald J, Marahiel MA: Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides. Microbiol. Mol. Biol. Rev.70,121–146 (2006).Crossref, MedlineGoogle Scholar
    • 23  Mossialos D, Ochsner U, Baysse C et al.: Identification of new, conserved, non-ribosomal peptide synthetases from fluorescent pseudomonads involved in the biosynthesis of the siderophore pyoverdine. Mol. Microbiol.45,1673–1685 (2002).Crossref, Medline, CASGoogle Scholar
    • 24  Escolar L, Pérez-Martin J, de Lorenzo V: Opening the iron box: transcriptional metalloregulation by the Fur protein. J. Bacteriol.181,6223–6229 (1999).Crossref, Medline, CASGoogle Scholar
    • 25  Wilderman PJ, Sowa NA, FitzGerald DJ et al.: Idnetification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. Proc. Natl Acad. Sci. USA101(26),9792–9797 (2004).• First description of sRNAs in pseudomonads involved in iron homeostasis.Crossref, Medline, CASGoogle Scholar
    • 26  Vasil ML: How we learnt about iron acquisition in Pseudomonas aeruginosa: a series of very fortunate events. Biometals20(3–4),587–601 (2007).Crossref, Medline, CASGoogle Scholar
    • 27  Visca P, Leoni L, Wilson MJ, Lamont IL: Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas Mol. Microbiol.45,1177–1190 (2002).Crossref, Medline, CASGoogle Scholar
    • 28  Beare PA, For RJ, Martin LW, Lamont IL: Siderophore-mediated cell signaling in Pseudomonas aeruginosa: divergent pathways regulate virulence factor production and siderophore receptor synthesis. Mol. Microbiol.47,195–207 (2003).Crossref, Medline, CASGoogle Scholar
    • 29  Lamont IL, Beare PA, Ochsner U, Vasil AI, Vasil ML: Siderophore-mediated signalling regulates virulence factor production in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA99,7072–7077 (2002).•• Seminal paper describing, for the first time, pyoverdine-mediated signaling.Crossref, Medline, CASGoogle Scholar
    • 30  Redly GA, Poole K: FpvIR control of fpvA ferric pyoverdine gene expression in Pseudomonas aeruginosa: demonstration of an interaction between FpvI and FpvR and identification of mutations in each compromising this interaction. J. Bacteriol.187,5648–5657 (2005).Crossref, Medline, CASGoogle Scholar
    • 31  Llamas MA, Sparrius M, Kloet R, Jimenez CR, Vandenbroucke-Grauls C, Bitter W: The heterologous siderophores ferrioxamine B and ferrichrome activate signalling pathways in Pseudomonas aeruginosa. J. Bacteriol.188,1882–1891 (2006).Crossref, Medline, CASGoogle Scholar
    • 32  Poole K, McKay GA: Iron acquisition and its control in Pseudomonas aeruginosa: many roads lead to Rome. Front Biosci.8,d661–d686 (2003).• Comprehensive review covering pyoverdine and other pseudomonad siderophores.Crossref, Medline, CASGoogle Scholar
    • 33  Britigan BE, Rasmussen GT, Cox CD: Augmentation of oxidant injury to human pulmonary epithelial cells by the Pseudomonas aeruginosa siderophore pyochelin. Infect. Immun.65,1071–1076 (1997).Crossref, Medline, CASGoogle Scholar
    • 34  Serino L, Reimmann C, Visca P, Beyeler M, Della Chiesa V, Haas D: Biosynthesis of pyochelin and dihydroaeruginoic acid requires the iron regulated pchDCBA operon in Pseudomonas aeruginosa. J. Bacteriol.179,248–257 (1997).Crossref, Medline, CASGoogle Scholar
    • 35  Reimmann C, Serino L, Beyeler M, Haas D: Dihydroaeruginoic acid synthetase and pyochelin synthetase, products of the pchEF genes, are induced by extracellular pyochelin in Pseudomonas aeruginosa. Microbiology144,3135–3148 (1998).Crossref, Medline, CASGoogle Scholar
    • 36  Reimmann C, Patel HM, Serino L, Barone M, Walsh CT, Haas D: Essential PchG-dependent reduction in pyochelin biosynthesis of Pseudomonas aeruginosa. J. Bacteriol.183,813–820 (2001).Crossref, Medline, CASGoogle Scholar
    • 37  Ankenbauer RG: Cloning of the outer membrane high-affinity Fe (III)-pyochelin receptor of Pseudomonas aeruginosa. J. Bacteriol.174,4401–4409 (1992).Crossref, Medline, CASGoogle Scholar
    • 38  Heinrichs D, Poole K: PchR, a regulator of ferripyochelin receptor gene (fptA) expression in Pseudomonas aeruginosa, functions both as an activator and as a repressor. J. Bacteriol.178,2586–2592 (1996).Crossref, Medline, CASGoogle Scholar
    • 39  Cobessi D, Celia H, Pattus F: Crystal structure at high resolution of ferric-pyochelin and its membrane receptor FptA from Pseudomonas aeruginosa. J. Mol. Biol.352(4),893–904 (2005).Crossref, Medline, CASGoogle Scholar
    • 40  Gaille C, Kast P, Haas D: Salicylate biosynthesis in Pseudomonas aeruginosa. Purification and characterization of PchB, a novel bifunctional enzyme displaying isochorismate pyruvate-lyase and chorismate mutase activities. J. Biol. Chem.277,21768–21775 (2002).Crossref, Medline, CASGoogle Scholar
    • 41  Gaille C, Reimmann C, Haas D: Isochorismate synthase (PchA), the first and rate-limiting enzyme in salicylate biosynthesis of Pseudomoans aeruginosa. J. Biol. Chem.278,16893–16898 (2003).Crossref, Medline, CASGoogle Scholar
    • 42  Quadri LE, Keating TA, Patel HM, Walsh CT: Assembly of the Pseudomonas aeruginosa nonribosomal peptide siderophore pyochelin: in vitro reconstitution of aryl-4, 2-bisthiazoline synthetase activity from PchD, PchE and PchF. Biochemistry38,14941–14954 (1999).• Seminal paper on pyochelin biochemistry.Crossref, Medline, CASGoogle Scholar
    • 43  Reimmann C, Patel HM, Walsh CT, Haas D: PchC thioesterase optimises nonribosomal biosynthesis of the peptide siderophore pyochelin in Pseudomonas aeruginosa. J. Bacteriol.186,6367–6373 (2004).Crossref, Medline, CASGoogle Scholar
    • 44  Michel L, Gonzalez N, Jagdeep S, Nguyen-Ngoc T, Reimmann C: PchR-box recognition by the AraC-type regulator PchR of Pseudomonas aeruginosa requires the siderophore pyochelin as an effector. Mol. Microbiol.58,495–509 (2005).• Detailed paper on pyochelin regulation demonstrating new aspects of the PchR regulator.Crossref, Medline, CASGoogle Scholar
    • 45  Cornelis P, Anjaiah V, Koedam N et al.: Stability, frequency and multiplicity of transposon insertions in the pyoverdine region in the chromosomes of different fluorescent pseudomonads. J. Gen. Microbiol.138,1337–1343 (1992).Crossref, Medline, CASGoogle Scholar
    • 46  Mossialos D, Meyer JM, Budzikiewicz H et al.: Quinolobactin, a new siderophore of Pseudomonas fluorescens ATCC 17400, the production of which is repressed by the cognate pyoverdine. Appl. Environ. Microbiol.66,487–492 (2000).Crossref, Medline, CASGoogle Scholar
    • 47  du Moulinet d’Hardemare A, Serratrice G, Pierre JL: Synthesis and iron-binding properties of quinolobactin, a siderophore from a pyoverdine-deficient Pseudomonas fluorescens. Biometals17,691–697 (2004).Crossref, MedlineGoogle Scholar
    • 48  Matthis S, Baysse C, Koedam N et al.: The Pseudomonas siderophore quinolobactin is synthesized from xanthurenic acid, an intermediate of the kynurenine pathway. Mol. Microbiol.52,371–384 (2004).Crossref, MedlineGoogle Scholar
    • 49  Matthis S, Tehrani KA, Laus G et al.: Thioquinolobactin, a Pseudomonas siderophore with antifungal and anti-Pythium activity. Environ. Microbiol.9(2),22–30 (2007)• First, and only description so far of antifungal thioquinolobactin activity.Google Scholar
    • 50  Godert AM, Jin M, McLafferty FW et al.: Biosynthesis of the thioquinolobactin siderophore: an interesting variation on sulphur transfer. J. Bacteriol.189,2941–2944 (2007).Crossref, Medline, CASGoogle Scholar
    • 51  Lee CH, Lewis TA, Paszczynski A, Crawford RL: Identification of an extracellular catalyst of carbon tetrachloride dehalogenation from Pseudomonas stutzeri KC as pyridine-2, 6-bis (thiocarboxylate). Biochm. Biophys. Res. Commun.261,562–566 (1999).Crossref, Medline, CASGoogle Scholar
    • 52  Stolworthy JC, Paszczynski A, Korus RA, Crawford RL: Metal binding by pyridine-2, 6-bis (monothiocarboxylic acid), a biochelator produced by Pseudomonas stutzeri and Pseudomonas putida. Biodegradation12,411–418 (2001).Crossref, Medline, CASGoogle Scholar
    • 53  Cortese M, Paszczynski A, Lewis TA, Sebat J, Crawford RL: Metal chelating properties of pyridine-2, 6-bis (thiocarboxylic acid) produced by Pseudomonas spp. and the biological activities of the formed complexes. Biometals15,103–120 (2002).Crossref, Medline, CASGoogle Scholar
    • 54  Lewis TA, Cortese M, Sebat J, Green T, Lee CH, Crawford RL: A Pseudomonas stutzeri gene cluster encoding the biosynthesis of the CCl4 – dechlorination agent pyridine-2, 6-bis (thiocarboxylic acid). Environ. Microbiol.2,407–416 (2000).Crossref, Medline, CASGoogle Scholar
    • 55  Sepulveda-Torres LDC, Huang A, Kim H, Criddle CS: Analysis of regulatory elements and genes required for carbon tetrachloride degradation in Pseudomonas stutzeri strain KC. J. Mol. Microbiol. Biotechnol.4,151–161 (2002).Medline, CASGoogle Scholar
    • 56  Lewis TA, Leach L, Morales S et al.: Physiological and molecular genetic evaluation of the dechlorination agent, pyridine-2, 6-bis (monothiocarboxylic acid) (PDTC) as a secondary siderophore of Pseudomonas. Environ. Microbiol.6,159–169 (2004).• Provides solid evidence that pyridine-2, 6-bis thiocarboxylic acid is a secondary siderophore of pseudomonads.Crossref, Medline, CASGoogle Scholar
    • 57  Morales S, Lewis TA: Transcriptional regulation of the ptd gene cluster of Pseudomonas stutzeri KC involves an AraC/XylS family transcriptional activator (PdtC) and the cognate siderophore pyridine-2, 6-bis (thiocarboxylic acid). Appl. Environ. Microbiol.72,6994–7002 (2006).Crossref, Medline, CASGoogle Scholar
    • 58  Budzikiewicz H: Heteroaromatic monothiocarboxylic acids from Pseudomonas spp. Biodegradation14,65–72 (2003).Crossref, Medline, CASGoogle Scholar
    • 59  Wernke MJ, Schell JD: Solvents and malignancy. Clin. Occup. Environ. Med.4,513–527 (2004).Crossref, MedlineGoogle Scholar
    • 60  Appel KE: Organotin compounds: toxicokinetic aspects. Drugs Metab. Rev.36,763–786 (2004).Crossref, Medline, CASGoogle Scholar
    • 61  Inoue H, Takimura O, Kawaguchi K et al.: Tin-carbon cleavage of organotin compounds by pyoverdine from Pseudomonas chlororaphis. Appl. Environ. Microbiol.69,878–883 (2003).Crossref, Medline, CASGoogle Scholar
    • 62  Sun GX, Zhou WQ, Zhong JJ: Organotin decomposition by pyochelin, secreted by Pseudomonas aeruginosa even in an iron-sufficient environment. Appl. Environ. Microbiol.72,6411–6413 (2006).Crossref, Medline, CASGoogle Scholar
    • 63  Sun GX, Zhong JJ: Mechanism of augmentation of organotin decomposition by ferripyochelin: formation of hydroxyl radical and organotin–pyochelin–iron ternary complex. Appl. Environ. Microbiol.72,7264–7269 (2006).• Provides insights into how pyochelin decomposes organotins.Crossref, Medline, CASGoogle Scholar
    • 64  Braud A, Jezequel K, Leger MA, Lebeau T: Siderophore production by using free and immobilized cells of two Pseudomonads cultivated in a medium enriched with Fe and/or toxic metals (cr, Hg, Pb). Biotechnol. Bioeng.94,1080–1088 (2006).Crossref, Medline, CASGoogle Scholar