We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Adult neurogenesis and neurodegenerative disease

    , &
    Gerd Kempermann

    † Author for correspondence

    Volkswagenstiftung Research Group at the Dept of Experimental Neurology Charité University Medicine Berlin and Research group "Neuronal Stem Cells" Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch Robert-Rössle-Str. 10, 13125 Berlin, Germany. Tel.: +49 (0)30 9406 2362 Fax: +49 (0)30 9406 3814

    Published Online:https://doi.org/10.2217/17460751.1.1.15

    Advances in stem cell biology of the adult brain and the discovery of adult neurogenesis have raised the hope that neurodegenerative disorders might ultimately become amenable to causal therapy. Stem cells contribute to cellular plasticity during the lifespan, and in some sense, brain development never ends. However, neurodegeneration is not just a lack of neuroregeneration, and cell genesis in the adult brain does not apparently lead to successful endogenous responses to neurodegeneration. The brain heals poorly; nevertheless, the onset, severity and progression of neurodegenerative disorders show large variation and can often be influenced by cognitive training and physical activity. Rather than providing endogenous repair, cellular plasticity, including adult neurogenesis might thus contribute to the ‘cognitive reserve’ that determines how well an organism can compensate for neurodegeneration. From this perspective, neurodegenerative disorders, such as Alzheimer’s, Parkinson’s, Lewy body and Huntington’s diseases, might share a relevant biological principle that even links them to psychiatric disorders, like depression, which are not considered ‘neurodegenerative’ in a classical sense. However, the integration of neuroregenerative phenomena and most notably adult neurogenesis into the concepts of neurodegeneration is not without problems and remains speculative at present. Adult neurogenesis might be part of the physiological regenerative response and might thereby alter or alleviate symptoms, but it might also become impaired by the disease mechanism and thereby contribute to the symptoms of neurodegeneration. In any case, the extent to which effects on the level of cellular plasticity, be it degenerative or regenerative, are relevant functionally remains to be determined. The present review gives an overview of what is known about cell genesis and adult neurogenesis in neurodegenerative disorders and discusses how cellular plasticity might be part of concepts that integrate aspects of development and cellular plasticity into neurodegeneration.

    Bibliography

    • Kempermann G, Jessberger S, Steiner B, Kronenberg G: Milestones of neuronal development in the adult hippocampus. Trends Neurosci.27(8), 447–452 (2004).
    • Carleton A, Petreanu LT, Lansford R, Alvarez-Buylla A, Lledo PM: Becoming a new neurone in the adult olfactory bulb. Nature Neurosci. 6(5), 507–518 (2003).
    • Bengzon J, Kokaia Z, Elmér E, Nanobashvili A, Kokaia M, Lindvall O: Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. Proc. Natl Acad. Sci. USA 94, 1043210437 (1997).
    • Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH: Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J. Neurosci. 17, 37273738 (1997).
    • Jacobs BL, Praag H, Gage FH: Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol. Psychiatry 5(3), 262–269 (2000).
    • Jin K, Galvan V, Xie L et al.: Enhanced neurogenesis in Alzheimer’s disease transgenic (PDGF-APPSw,Ind) mice. Proc. Natl Acad. Sci. USA 101(36), 13363–13367 (2004).
    • Hoglinger GU, Rizk P, Muriel MP et al.: Dopamine depletion impairs precursor cell proliferation in Parkinson’s disease. Nature Neurosci. 7(7), 726–735 (2004).
    • Mallon BS, Shick HE, Kidd GJ, Macklin WB: Proteolipid promoter activity distinguishes two populations of NG2-positive cells throughout neonatal cortical development. J. Neurosci. 22(3), 876–885 (2002).
    • Nishiyama A, Watanabe M, Yang Z, Bu J: Identity, distribution, and development of polydendrocytes: NG2-expressing glial cells. J. Neurocytol. 31(6–7), 437–455 (2002).
    • 10  Liu J, Solway K, Messing RO, Sharp FR: Increased neurogenesis in the dentate gyrus after transient ischaemia in gerbils. J. Neurosci. 18(19), 7768–7778 (1998).
    • 11  Szele FG, Chesselet M-F: Cortical lesions induce an increase in cell number and PSA-NCAM expression in the subventricular zone of adult rats. J. Comp. Neurol. 368, 439454 (1996).
    • 12  Lie DC, Dziewczapolski G, Willhoite AR, Kaspar BK, Shults CW, Gage FH: The adult substantia nigra contains progenitor cells with neurogenic potential. J. Neurosci. 22(15), 6639–6649 (2002).
    • 13  Kronenberg G, Wang LP, Synowitz M et al.: Nestin-expressing cells divide and adopt a complex electrophysiologic phenotype after transient brain ischaemia. J. Cereb. Blood Flow Metab. Epub ahead of print (2005).
    • 14  Ehninger D, Kempermann G: Regional effects of wheel running and environmental enrichment on cell genesis and microglia proliferation in the adult murine neocortex. Cereb Cortex 13(8), 845–851 (2003).
    • 15  Nakatomi H, Kuriu T, Okabe S et al.: Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell110(4), 429–441. (2002).
    • 16  Magavi SS, Macklis JD: Induction of neuronal type-specific neurogenesis in the cerebral cortex of adult mice: manipulation of neural precursors in situ. Brain Res. Dev. Brain Res. 134(1–2), 57–76 (2002).
    • 17  Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O: Neuronal replacement from endogenous precursors in the adult brain after stroke. Nature Med. 8(9), 963–970 (2002).
    • 18  Herrera DG, Garcia-Verdugo JM, Alvarez-Buylla A: Adult-derived neural precursors transplanted into multiple regions in the adult brain. Ann. Neurol. 46(6), 867–877 (1999).
    • 19  Shihabuddin LS, Horner PJ, Ray J, Gage FH: Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J. Neurosci. 20(23), 8727–8735 (2000).
    • 20  Suhonen JO, Peterson DA, Ray J, Gage FH: Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature383(6601), 624–627 (1996).
    • 21  Filippov V, Kronenberg G, Pivneva T et al.: Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Mol. Cell Neurosci. 23(3), 373–382 (2003).
    • 22  Seri B, Garcia-Verdugo JM, McEwen BS, Alvarez-Buylla A: Astrocytes give rise to new neurons in the adult mammalian hippocampus. J. Neurosci. 21(18), 7153–7160 (2001).
    • 23  Couillard-Despres S, Winner B, Schaubeck S et al.: Doublecortin expression levels in adult brain reflect neurogenesis. Eur. J. Neurosci. 21(1), 1–14 (2005).
    • 24  Rao MS, Shetty AK: Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur. J. Neurosci. 19(2), 234–246 (2004).
    • 25  Brandt MD, Jessberger S, Steiner B et al.: Transient calretinin-expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice. Mol. Cell Neurosci. 24, 603613 (2003).
    • 26  Huttmann K, Sadgrove M, Wallraff A et al.: Seizures preferentially stimulate proliferation of radial glia-like astrocytes in the adult dentate gyrus: functional and immunocytochemical analysis. Eur. J. Neurosci. 18(10), 2769–2778 (2003).
    • 27  Kunze A, Grass S, Witte OW, Yamaguchi M, Kempermann G, Redecker C: Proliferative response of distinct hippocampal progenitor cell populations after cortical infarcts in the adult brain. Neurobiol. Dis. (2005) (Epub ahead of print).
    • 28  Jessberger S, Römer B, Babu H, Kempermann G: Seizures induce proliferation and dispersion of doublecortin-positive hippocampal progenitor cells. Exp. Neurol. (2005) (In press).
    • 29  Kronenberg G, Reuter K, Steiner B et al.: Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. J. Comp. Neurol. 467(4), 455–463 (2003).
    • 30  Steiner B, Kronenberg G, Jessberger S, Brandt MD, Reuter K, Kempermann G: Differential regulation of gliogenesis in the context of adult hippocampal neurogenesis in mice. Glia46(1), 41–52 (2004).
    • 31  Price DL, Tanzi RE, Borchelt DR, Sisodia SS: Alzheimer’s disease: genetic studies and transgenic models. Annu. Rev. Genet. 32, 461493 (1998).
    • 32  Kamenetz F, Tomita T, Hsieh H et al.: APP processing and synaptic function. Neuron37(6), 925–937 (2003).
    • 33  Jankowsky JL, Xu G, Fromholt D, Gonzales V, Borchelt DR: Environmental enrichment exacerbates amyloid plaque formation in a transgenic mouse model of Alzheimer’s disease. J. Neuropathol. Exp. Neurol. 62(12), 1220–1227 (2003).
    • 34  Lazarov O, Robinson J, Tang YP et al.: Environmental enrichment reduces Aβ levels and amyloid deposition in transgenic mice. Cell120(5), 701–713 (2005).
    • 35  Arendash GW, Garcia MF, Costa DA, Cracchiolo JR, Wefes IM, Potter H: Environmental enrichment improves cognition in aged Alzheimer’s transgenic mice despite stable β-amyloid deposition. Neuroreport15(11), 1751–4 (2004).
    • 36  Haughey NJ, Liu D, Nath A, Borchard AC, Mattson MP: Disruption of neurogenesis in the subventricular zone of adult mice, and in human cortical neuronal precursor cells in culture, by amyloid β-peptide: implications for the pathogenesis of Alzheimer’s disease. Neuromolecular Med. 1(2), 125–135 (2002).
    • 37  Haughey NJ, Nath A, Chan SL, Borchard AC, Rao MS, Mattson MP: Disruption of neurogenesis by amyloid β-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer’s disease. J. Neurochem. 83(6), 1509–1524 (2002).
    • 38  Geula C, Wu CK, Saroff D, Lorenzo A, Yuan M, Yankner BA: Aging renders the brain vulnerable to amyloid β-protein neurotoxicity. Nature Med. 4(7), 827–831 (1998).
    • 39  Wen PH, Hof PR, Chen X et al.: The presenilin-1 familial Alzheimer’s disease mutant P117L impairs neurogenesis in the hippocampus of adult mice. Exp. Neurol. 188(2), 224–237 (2004).
    • 40  Chevallier NL, Soriano S, Kang DE, Masliah E, Hu G, Koo EH: Perturbed neurogenesis in the adult hippocampus associated with presenilin-1 A246E mutation. Am. J. Pathol. 167(1), 151–159 (2005).
    • 41  Wang R, Dineley KT, Sweatt JD, Zheng H: Presenilin 1 familial Alzheimer’s disease mutation leads to defective associative learning and impaired adult neurogenesis. Neuroscience126(2), 305–312 (2004).
    • 42  Feng R, Rampon C, Tang YP et al.: Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron32(5), 911–926 (2001).
    • 43  Andorfer C, Acker CM, Kress Y, Hof PR, Duff K, Davies P: Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J. Neurosci. 25(22), 5446–5454 (2005).
    • 44  Herrup K, Neve R, Ackerman SL, Copani A: Divide and die: cell cycle events as triggers of nerve cell death. J. Neurosci. 24(42), 9232–9239 (2004).
    • 45  Nagy Z, Esiri MM, Cato AM, Smith AD: Cell cycle markers in the hippocampus in Alzheimer’s disease. Acta Neuropathol. (Berlin) 94(1), 6–15 (1997).
    • 46  Nagy Z, Esiri MM, Smith AD: Expression of cell division markers in the hippocampus in Alzheimer’s disease and other neurodegenerative conditions. Acta Neuropathol. 93(3), 294–300 (1997).
    • 47  Friedland RP, Fritsch T, Smyth KA et al.: Patients with Alzheimer’s disease have reduced activities in midlife compared with healthy control-group members. Proc. Natl Acad. Sci. USA 98(6), 3440–3445 (2001).
    • 48  Katzman R: Education and the prevalence of dementia and Alzheimer’s disease. Neurology43(1), 13–20 (1993).
    • 49  Eng PM, Rimm EB, Fitzmaurice G, Kawachi I: Social ties and change in social ties in relation to subsequent total and cause-specific mortality and coronary heart disease incidence in men. Am. J. Epidemiol. 155(8), 700–709 (2002).
    • 50  Ceria CD, Masaki KH, Rodriguez BL, Chen R, Yano K, Curb JD: The relationship of psychosocial factors to total mortality among older Japanese–American men: the Honolulu Heart Program. J. Am. Geriatr. Soc. 49(6), 725–731 (2001).
    • 51  Colcombe SJ, Kramer AF, Erickson KI et al.: Cardiovascular fitness, cortical plasticity, and aging. Proc. Natl Acad. Sci. USA 101(9), 3316–3321 (2004).
    • 52  Wilson RS, Mendes De Leon CF, Barnes LL et al.: Participation in cognitively stimulating activities and risk of incident Alzheimer’s disease. JAMA287(6), 742–748 (2002).
    • 53  Fratiglioni L, Paillard-Borg S, Winblad B: An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol. 3(6), 343–353 (2004).
    • 54  Kempermann G, Kuhn HG, Gage FH: Experience-induced neurogenesis in the senescent dentate gyrus. J. Neurosci. 18(9), 3206–3212 (1998).
    • 55  Kempermann G, Gast D, Gage FH: Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Ann. Neurol. 52(2), 135–143 (2002).
    • 56  Ickes BR, Pham TM, Sanders LA, Albeck DS, Mohammed AH, Granholm AC: Long-term environmental enrichment leads to regional increases in neurotrophin levels in rat brain. Exp. Neurol. 164(1), 45–52 (2000).
    • 57  Torasdotter M, Metsis M, Henriksson BG, Winblad B, Mohammed AH: Environmental enrichment results in higher levels of nerve growth factor mRNA in the rat visual cortex and hippocampus. Behav. Brain Res. 93(1–2), 83–90 (1998).
    • 58  Davies AM: The neurotrophic hypothesis: where does it stand? Philos. Trans. R. Soc. Lond. B. Biol. Sci. 351(1338), 389–394 (1996).
    • 59  Mitchell JJ, Paiva M, Walker DW, Heaton MB: BDNF and NGF afford in vitro neuroprotection against ethanol combined with acute ischaemia and chronic hypoglycemia. Dev. Neurosci. 21(1), 68–75 (1999).
    • 60  Shetty AK, Turner DA: In vitro survival and differentiation of neurons derived from epidermal growth factor-responsive postnatal hippocampal stem cells: inducing effects of brain-derived neurotrophic factor. J. Neurobiol. 35(4), 395–425 (1998).
    • 61  Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA: Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl Acad. Sci. USA 99(18), 11946–11950 (2002).
    • 62  Kuhn HG, Winkler J, Kempermann G, Thal LJ, Gage FH: Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J. Neurosci. 17, 58205829 (1997).
    • 63  Aberg MA, Aberg ND, Hedbacker H, Oscarsson J, Eriksson PS: Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J. Neurosci. 20(8), 2896–2903 (2000).
    • 64  Young D, Lawlor PA, Leone P, Dragunow M, During MJ: Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective. Nature Med. 5(4), 448–453 (1999).
    • 65  Fabel K, Tam B, Kaufer D et al.: VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur. J. Neurosci. 18(10), 2803–2812 (2003).
    • 66  Trejo JL, Carro E, Torres-Aleman I: Circulating insulin-like growth Factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J. Neurosci. 21(5), 1628–1634. (2001).
    • 67  Zuchner T, Schliebs R, Perez-Polo JR: Downregulation of muscarinic acetylcholine receptor M2 adversely affects the expression of Alzheimer’s disease-relevant genes and proteins. J. Neurochem. 95(1), 20–32 (2005).
    • 68  Winkler J, Suhr ST, Gage FH, Thal LJ, Fisher LJ: Essential role of neocortical acetylcholine in spatial memory. Nature375(6531), 484–487 (1995).
    • 69  Mohapel P, Leanza G, Kokaia M, Lindvall O: Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning. Neurobiol. Aging 26(6), 939–946 (2005).
    • 70  Cooper-Kuhn CM, Winkler J, Kuhn HG: Decreased neurogenesis after cholinergic forebrain lesion in the adult rat. J. Neurosci. Res. 77(2), 155–165 (2004).
    • 71  Van der Borght K, Mulder J, Keijser JN, Eggen BJ, Luiten PG, Van der Zee EA: Input from the medial septum regulates adult hippocampal neurogenesis. Brain Res. Bull. 67(1–2), 117–125 (2005).
    • 72  Berendse HW, Booij J, Francot CM et al.: Subclinical dopaminergic dysfunction in asymptomatic Parkinson’s disease patients’ relatives with a decreased sense of smell. Ann. Neurol. 50(1), 34–41 (2001).
    • 73  Winner B, Lie DC, Rockenstein E et al.: Human wild type α-synuclein impairs neurogenesis. J. Neuropathol. Exp. Neurol. 63(11), 1155–1166 (2004).
    • 74  Laakso MP, Partanen K, Riekkinen P et al.: Hippocampal volumes in Alzheimer’s disease, Parkinson’s disease with and without dementia, and in vascular dementia: An MRI study. Neurology46(3), 678–681 (1996).
    • 75  Riekkinen P, Jr., Kejonen K, Laakso MP, Soininen H, Partanen K, Riekkinen M: Hippocampal atrophy is related to impaired memory, but not frontal functions in non-demented Parkinson’s disease patients. Neuroreport9(7), 1507–1511 (1998).
    • 76  Camicioli R, Moore MM, Kinney A, Corbridge E, Glassberg K, Kaye JA: Parkinson’s disease is associated with hippocampal atrophy. Mov. Disord. 18(7), 784–790 (2003).
    • 77  Kempermann G, Wiskott L, Gage FH: Functional significance of adult neurogenesis. Curr. Opin. Neurobiol. 14(2), 186–191 (2004).
    • 78  Shors TJ: Memory traces of trace memories: neurogenesis, synaptogenesis and awareness. Trends Neurosci.27(5), 250–256 (2004).
    • 79  Schinder AF, Gage FH: A hypothesis about the role of adult neurogenesis in hippocampal function. Physiology (Bethesda) 19, 253–261 (2004).
    • 80  Zhao M, Momma S, Delfani K et al.: Evidence for neurogenesis in the adult mammalian substantia nigra. Proc. Natl Acad. Sci. USA 100(13), 7925–7930 (2003).
    • 81  Frielingsdorf H, Schwarz K, Brundin P, Mohapel P: No evidence for new dopaminergic neurons in the adult mammalian substantia nigra. Proc. Natl Acad. Sci. USA 101(27), 10177–10182 (2004).
    • 82  Magavi S, Leavitt B, Macklis J: Induction of neurogenesis in the neocortex of adult mice. Nature405, 951–955 (2000).
    • 83  Mohapel P, Frielingsdorf H, Haggblad J, Zachrisson O, Brundin P: Platelet-derived growth factor (PDGF-BB) and brain-derived neurotrophic factor (BDNF) induce striatal neurogenesis in adult rats with 6-hydroxydopamine lesions. Neuroscience132(3), 767–776 (2005).
    • 84  Fallon J, Reid S, Kinyamu R et al.: In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proc. Natl Acad. Sci. USA 97(26), 14686–14691 (2000).
    • 85  Hirsch MA, Toole T, Maitland CG, Rider RA: The effects of balance training and high-intensity resistance training on persons with idiopathic Parkinson’s disease. Arch. Phys Med. Rehabil. 84(8), 1109–1117 (2003).
    • 86  Yang F, Ueda K, Chen P, Ashe KH, Cole GM: Plaque-associated α-synuclein (NACP) pathology in aged transgenic mice expressing amyloid precursor protein. Brain Res.853(2), 381–383 (2000).
    • 87  Masliah E, Rockenstein E, Veinbergs I et al.: β-amyloid peptides enhance α-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer’s disease and Parkinson’s disease. Proc. Natl Acad. Sci. USA 98(21), 12245–12250 (2001).
    • 88  Gibb WR, Lees AJ: Lewy body disease. Neurology39(6), 878–879 (1989).
    • 89  Gibb WR, Lees AJ: The significance of the Lewy body in the diagnosis of idiopathic Parkinson’s disease. Neuropathol. Appl. Neurobiol.15(1), 27–44 (1989).
    • 90  Van Gool D, De Strooper B, Van Leuven F, Dom R: Amyloid precursor protein accumulation in Lewy body dementia and Alzheimer’s disease. Dementia6(2), 63–68 (1995).
    • 91  Imamura K, Hishikawa N, Ono K et al.: Cytokine production of activated microglia and decrease in neurotrophic factors of neurons in the hippocampus of Lewy body disease brains. Acta Neuropathol. (Berl). 109(2), 141–150 (2005).
    • 92  Morimoto T, Ohsawa I, Takamura C, Ishiguro M, Kohsaka S: Involvement of amyloid precursor protein in functional synapse formation in cultured hippocampal neurons. J. Neurosci. Res. 51(2), 185–195 (1998).
    • 93  Small DH, Clarris HL, Williamson TG et al.: Neurite-outgrowth regulating functions of the amyloid protein precursor of Alzheimer’s disease. J. Alzheimers Dis. 1(4–5), 275–285 (1999).
    • 94  Hsu LJ, Mallory M, Xia Y et al.: Expression pattern of synucleins (non-Aβ component of Alzheimer’s disease amyloid precursor protein/α-synuclein) during murine brain development. J. Neurochem. 71(1), 338–344 (1998).
    • 95  George JM, Jin H, Woods WS, Clayton DF: Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron15(2), 361–372 (1995).
    • 96  Cattaneo E, Rigamonti D, Goffredo D, Zuccato C, Squitieri F, Sipione S: Loss of normal huntingtin function: new developments in Huntington’s disease research. Trends Neurosci.24(3), 182–188 (2001).
    • 97  Rigamonti D, Bauer JH, De-Fraja C et al.: Wild type huntingtin protects from apoptosis upstream of caspase-3. J. Neurosci. 20(10), 3705–3713 (2000).
    • 98  White JK, Auerbach W, Duyao MP et al.: Huntingtin is required for neurogenesis and is not impaired by the Huntington’s disease CAG expansion. Nature Genet. 17(4), 404–410 (1997).
    • 99  Zuccato C, Ciammola A, Rigamonti D et al.: Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science293(5529), 493–498 (2001).
    • 100  Canals JM, Pineda JR, Torres-Peraza JF et al.: Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J. Neurosci. 24(35), 7727–7739 (2004).
    • 101  Pineda JR, Canals JM, Bosch M et al.: Brain-derived neurotrophic factor modulates dopaminergic deficits in a transgenic mouse model of Huntington’s disease. J. Neurochem. 93(5), 1057–1068 (2005).
    • 102  Zuccato C, Liber D, Ramos C et al.: Progressive loss of BDNF in a mouse model of Huntington’s disease and rescue by BDNF delivery. Pharmacol. Res. 52(2), 133–139 (2005).
    • 103  Alberch J, Perez-Navarro E, Canals JM: Neuroprotection by neurotrophins and GDNF family members in the excitotoxic model of Huntington’s disease. Brain Res. Bull. 57(6), 817–822 (2002).
    • 104  Tattersfield AS, Croon RJ, Liu YW, Kells AP, Faull RL, Connor B: Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington’s disease. Neuroscience127(2), 319–332 (2004).
    • 105  Curtis MA, Penney EB, Pearson AG et al.: Increased cell proliferation and neurogenesis in the adult human Huntington’s disease brain. Proc. Natl Acad. Sci. USA 100(15), 9023–9027 (2003).
    • 106  Curtis MA, Penney EB, Pearson J, Dragunow M, Connor B, Faull RL: The distribution of progenitor cells in the subependymal layer of the lateral ventricle in the normal and Huntington’s disease human brain. Neuroscience132(3), 777–788 (2005).
    • 107  Gil JM, Mohapel P, Araujo IM et al.: Reduced hippocampal neurogenesis in R6/2 transgenic Huntington’s disease mice. Neurobiol. Dis. (2005).
    • 108  Lazic SE, Grote H, Armstrong RJ et al.: Decreased hippocampal cell proliferation in R6/1 Huntington’s mice. Neuroreport15(5), 811–813 (2004).
    • 109  Schilling G, Savonenko AV, Coonfield ML et al.: Environmental, pharmacological, and genetic modulation of the HD phenotype in transgenic mice. Exp. Neurol. 187(1), 137–149 (2004).
    • 110  Spires TL, Grote HE, Varshney NK et al.: Environmental enrichment rescues protein deficits in a mouse model of Huntington’s disease, indicating a possible disease mechanism. J. Neurosci. 24(9), 2270–2276 (2004).
    • 111  Hockly E, Cordery PM, Woodman B et al.: Environmental enrichment slows disease progression in R6/2 Huntington’s disease mice. Ann. Neurol. 51(2), 235–242 (2002).
    • 112  Glass M, van Dellen A, Blakemore C, Hannan AJ, Faull RL: Delayed onset of Huntington’s disease in mice in an enriched environment correlates with delayed loss of cannabinoid CB1 receptors. Neuroscience123(1), 207–212 (2004).
    • 113  Sullivan FR, Bird ED, Alpay M, Cha JH: Remotivation therapy and Huntington’s disease. J. Neurosci. Nurs. 33(3), 136–142 (2001).
    • 114  Gould E, Cameron HA: Regulation of neuronal birth, migration and death in the rat dentate gyrus. Dev. Neurosci. 18(1–2), 22–35 (1996).
    • 115  Henn FA, Vollmayr B: Neurogenesis and depression: etiology or epiphenomenon? Biol. Psychiatry 56(3), 146–150 (2004).
    • 116  Duman RS: Depression: a case of neuronal life and death? Biol. Psychiatry 56(3), 140–145 (2004).
    • 117  D’Sa C, Duman RS: Antidepressants and neuroplasticity. Bipolar Disord. 4(3), 183–194 (2002).
    • 118  Malberg JE, Eisch AJ, Nestler EJ, Duman RS: Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. 20(24), 9104–9110 (2000).
    • 119  Santarelli L, Saxe M, Gross C et al.: Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science301(5634), 805–809 (2003).
    • 120  Kempermann G, Kronenberg G: Depressed new neurons? Adult hippocampal neurogenesis and a cellular plasticity hypothesis of major depression. Biol. Psychiatry 54, 499503 (2003).
    • 121  Hellings N, Raus J, Stinissen P: Insights into the immunopathogenesis of multiple sclerosis. Immunol. Res. 25(1), 27–51 (2002).
    • 122  Aktas O, Smorodchenko A, Brocke S et al.: Neuronal damage in autoimmune neuroinflammation mediated by the death ligand TRAIL. Neuron46(3), 421–432 (2005).
    • 123  Aharoni R, Arnon R, Eilam R: Neurogenesis and neuroprotection induced by peripheral immunomodulatory treatment of experimental autoimmune encephalomyelitis. J. Neurosci. 25(36), 8217–8228 (2005).
    • 124  Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O: Inflammation is detrimental for neurogenesis in adult brain. Proc. Natl Acad. Sci. USA 100(23), 13632–13637 (2003).
    • 125  Monje ML, Mizumatsu S, Fike JR, Palmer TD: Irradiation induces neural precursor-cell dysfunction. Nature Med. 8(9), 955–962 (2002).
    • 126  Chi L, Ke Y, Luo C et al.: Motor neurone degeneration promotes neural progenitor cell proliferation, migration and neurogenesis in the spinal cords of ALS Mice. Stem Cells (2005).
    • 127  Kaspar BK, Llado J, Sherkat N, Rothstein JD, Gage FH: Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science301(5634), 839–842 (2003).
    • 128  Kaspar BK, Frost LM, Christian L, Umapathi P, Gage FH: Synergy of insulin-like growth factor-1 and exercise in amyotrophic lateral sclerosis. Ann. Neurol. 57(5), 649–655 (2005).
    • 129  Horner PJ, Power AE, Kempermann G et al.: Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J. Neurosci. 20(6), 2218–2228 (2000).