Abstract
In this review, we describe the contribution of peptides to the biomedical applications of metallic nanoparticles. We also discuss strategies for the preparation of peptide–nanoparticle conjugates and the synthesis of the peptides and metallic nanoparticles. An overview of the techniques used for the characterization of the conjugates is also provided. Mainly for biomedical purposes, metallic nanoparticles conjugated to peptides have been prepared from Au and iron oxide (magnetic nanoparticles). Peptides with the capacity to penetrate the plasma membrane are used to deliver nanoparticles to the cell. In addition, peptides that recognize specific cell receptors are used for targeting nanoparticles. The potential application of peptide–nanoparticle conjugates in cancer and Alzheimer’s disease therapy is discussed. Several peptide–nanoparticle conjugates show biocompatibility and present a low degree of cytotoxicity. Furthermore, several peptide–metallic nanoparticle conjugates are used for in vitro diagnosis.
Papers of special note have been highlighted as either of interest (•) or of considerable interest (••) to readers.
Bibliography
- 1 Pankhurst QA, Connolly J, Jones SK et al.: Applications of magnetic NPs in biomedicine. J. Phys. D Appl. Phys.36,R167–R181 (2003).Crossref, CAS, Google Scholar
- 2 Huh YM, Jun YW, Song HT et al.: In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J. Am. Chem. Soc.127,12387–12391 (2005).Crossref, Medline, CAS, Google Scholar
- 3 Loo Ch, Lowery A, Halas N et al.: Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett.5(4),709–711 (2005).Crossref, Medline, CAS, Google Scholar
- 4 Efremov RG, Chugunov AO, Pyrkov TV et al.: Molecular lipophilicity in protein modeling and drug design. Curr. Med. Chem.14(4),393–415 (2007).Crossref, Medline, CAS, Google Scholar
- 5 Naz RK, Dabir P: Peptide vaccines against cancer, infectious diseases, and conception. Front. Biosci.12,1833–1844 (2007).Crossref, Medline, CAS, Google Scholar
- 6 Cruz LJ, Iglesias E, Aguilar JC et al.: Different immune response of mice immunized with conjugates containing multiple copies of either consensus or mixotope versions of the V3 loop peptide from human immunodeficiency virus type 1. Bioconjug. Chem.15,1110–1117 (2004).Crossref, Medline, CAS, Google Scholar
- 7 Daniel MC, Astruc D: AuNPs: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.104(1),293–346 (2004).• Complete review related to the synthesis and characterization of Au nanoparticles (NPs).Crossref, Medline, CAS, Google Scholar
- 8 Turkevich J, Stevenson PC, Hillier J: A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc.11,55–75 (1951).Crossref, Google Scholar
- 9 Frens G: Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci.241,20–22 (1973).Crossref, CAS, Google Scholar
- 10 Zhang LX, Sun XP, Song YH, Jiang X, Dong SJ, Wang EA: Didodecyldimethylammonium bromide lipid bilayer-protected gold nanoparticles: synthesis, characterization, and self-assembly. Langmuir22(6),2838–2843 (2006).Crossref, Medline, CAS, Google Scholar
- 11 Huang CJ, Chiu PH, Wang YH, Chen KL, Linn JJ, Yang CF: Electrochemically controlling the size of AuNPs. J. Electrochem. Soc.153(12),D193–D198 (2006).Crossref, CAS, Google Scholar
- 12 Goodman CM, McCusker CD, Yilmaz T, Rotello VM: Toxicity of AuNPs functionalized with cationic and anionic side chains. Bioconjug. Chem.15(4),897–900 (2004).Crossref, Medline, CAS, Google Scholar
- 13 Busbee BD, Obare SO, Murphy CJ: An improved synthesis of high-aspect-ratio gold nanorods. Adv. Mater.15(5),414–416 (2003).Crossref, CAS, Google Scholar
- 14 Doolittle JW, Dutta PK: Influence of microwave radiation on the growth of AuNPs and microporous zincophosphates in a reverse micellar system. Langmuir22(10),4825–4831 (2006).Crossref, Medline, CAS, Google Scholar
- 15 Shen M, Du YK, Hua NP, Yang P: Microwave irradiation synthesis and self- assembly of alkylamine-stabilized AuNPs. Powder Technol.162(1),64–72 (2006).Crossref, CAS, Google Scholar
- 16 Mafune F, Kohno JY, Takeda Y, Kondow T: Full physical preparation of size-selected gold nanoparticles in solution: laser ablation and laser-induced size control. J. Phys. Chem. B106(31),7575–7577 (2002).Crossref, CAS, Google Scholar
- 17 Bjerneld EJ, Svedberg F, Kall M: Laser-induced growth and deposition of noble-metal NPs for surface-enhanced Raman scattering. Nano Lett.3(5),593–596 (2003).Crossref, CAS, Google Scholar
- 18 Park JE, Atobe M, Fuchigami T: Synthesis of multiple shapes of AuNPs with controlled sizes in aqueous solution using ultrasound. Ultrason. Sonochem.13(3),237–241 (2006).Crossref, Medline, CAS, Google Scholar
- 19 Okitsu K, Ashokkumar M, Grieser F: Sonochemical synthesis of AuNPs: effects of ultrasound frequency. J. Phys. Chem. B109(44),20673–20675 (2005).Crossref, Medline, CAS, Google Scholar
- 20 Su CH, Wu PL, Yeh CS: Sonochemical synthesis of well-dispersed AuNPs at the ice temperature. J. Phys. Chem. B107(51),14240–14243 (2003).Crossref, CAS, Google Scholar
- 21 Yang YC, Wang CH, Hwu YK, Je JH: Synchrotron x-ray synthesis of colloidal gold particles for drug delivery. Mat. Chem. Phys.100(1),72–76 (2006).Crossref, CAS, Google Scholar
- 22 Seino S, Kinoshita T, Otome Y et al.: γ-ray synthesis of composite NPs of noble metals and magnetic iron oxides. Scripta. Mater.51(6),467–472 (2004).Crossref, CAS, Google Scholar
- 23 Karadas F, Ertas G, Ozkaraoglu E, Suzer S: X-ray-induced production of AuNPs on a SiO2/Si System and in a poly(methyl methacrylate) matrix. Langmuir21(1),437–442 (2005).Crossref, Medline, CAS, Google Scholar
- 24 Gachard E, Remita E, Khatouri J, Keita B, Nadjo L, Belloni J: Radiation-induced and chemical formation of gold clusters. N. J. Chem.22(11),1257–1265 (1998).Crossref, CAS, Google Scholar
- 25 Kabashin AV, Meunier M: Laser ablation-based synthesis of functionalized colloidal nanomaterials in biocompatible solutions. J. Photochem. Photobiol. A182(3),330–334 (2006).Crossref, CAS, Google Scholar
- 26 Andreescu D, Sau TK, Goia DV: Stabilizer-free nanosize gold sols. J. Colloid Interface Sci.298(2),742–751 (2006).Crossref, Medline, CAS, Google Scholar
- 27 Gupta AK, Gupta M: Synthesis and surface engineering of iron oxide NPs for biomedical applications. Biomaterials26(18),3995–4021 (2005).• Complete review related to the synthesis and characterization of iron oxide (IO)NPs.Crossref, Medline, CAS, Google Scholar
- 28 Reimers GW, Khalafalla SE: Preparing magneticfluids by a peptizing method. US Bureau Mines Tech. Rep.59 (1972)Google Scholar
- 29 Hadjipanayis GC, Siegel RW: Nanophase materials: synthesis, properties and applications. NATO ASI series Appl. Sci.E260, Kluwer, Dordrecht, The Netherlands (1993).Google Scholar
- 30 Sjogren CE, Briley-Saebo K, Hanson M, Johansson C: Magnetic characterization of iron oxides for magnetic resonance imaging. Magn. Reson. Med.31(3),268–272 (1994).Crossref, Medline, CAS, Google Scholar
- 31 Collier JH, Messersmith PB: Biomimetic mineralization, mesoporous structures. In: Encyclopedia of Materials: Science and Technology. Buschow KH, Buschow J, Cahn RW et al. (Eds). Elsevier Science, Amsterdam, Holland 602–606 (2001).Google Scholar
- 32 Sinha A, Das SK, Rao V, Ramachandrarao P: Synthesis of organized inorganic crystal assemblies. Curr. Sci.79(5),646–648 (2000).CAS, Google Scholar
- 33 Rosensweig RE: Ferrohydrodynamics. Rosensweig RE (Ed.). Dover Publications INC Cambridge University Press, New York, NY, USA (1985).Google Scholar
- 34 Tillotson TM, Gash AE, Simpson RL, Hrubesh LW, Satcher JH: Nanostructured energetic materials using sol–gel methodologies. J. Noncryst. Solids285,335–358 (2001).Crossref, Google Scholar
- 35 Ziolo RF, Giannelis EP, Weinstein BA et al.: Matrix mediated synthesis of γ-Fe2O3: a new optically transparent magnetic material. Science257,219–223 (1992).Crossref, Medline, CAS, Google Scholar
- 36 Deng Y, Wang L, Yang W, Fu S, Elaiessari A: Preparation of magnetic polymeric particles via inverse microemulsion polymerization process. J. Magn. Magn. Mater.257(1),69–78 (2003).Crossref, CAS, Google Scholar
- 37 Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan W: Synthesis and characterization of silica-coated iron oxide NPs in microemulsion: the effect of non-ionic surfactants. Langmuir17,2900–2906 (2001).Crossref, CAS, Google Scholar
- 38 Li S, Irwin G, Simmons B, John V, McPherson G, Bose A: Structured materials synthesis in a self-assembled surfactant mesophase. Colloids Surf. A174,275 (2000).Crossref, CAS, Google Scholar
- 39 Lloyd-Williams P, Albericio F, Giralt E: Chemical Approaches to the Synthesis of Peptides and Proteins. Albericio F (Ed.). CRC, Boca Raton, FL, USA (1997).• Pedagogic book related to peptide synthesis.Google Scholar
- 40 Merrifield Bruce R: Solid-phase synthesis (Nobel lecture). Angew. Chem.97,801–812 (1985).Crossref, CAS, Google Scholar
- 41 Albericio F, Chinchilla R, Dodsworth DJ et al.: New trends in peptide coupling reagents. Org. Prep. Proced. Int.33(3),203–303 (2001).Crossref, CAS, Google Scholar
- 42 Kaiser E, Colescott RL, Bossinger CD et al.: Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal. Biochem.34(2),595–598 (1970).Crossref, Medline, CAS, Google Scholar
- 43 Chan WC, White PD: Fmoc Solid Phase Peptide Synthesis. Oxford University Press, Oxford, UK 303–327 (2000).Google Scholar
- 44 Albericio F: Orthogonal protecting groups for Nα-amino and C-terminal carboxyl functions in solid-phase peptide synthesis. Biopolymers55,123–139 (2000).Crossref, Medline, CAS, Google Scholar
- 45 Selsted ME: HPLC methods for purification of antimicrobial peptides. Methods Mol. Biol.78,17–33 (1997).Medline, CAS, Google Scholar
- 46 Yeganeh MS, Dougal SM, Polizzotti RS, Rabinowitz P: Interfacial atomic structure of a self-assembled alkyl thiol monolayer /Au (111): a sum-frequency generation study. Phys. Rev. Lett.74,1811–1814 (1995).Crossref, Medline, CAS, Google Scholar
- 47 Kogan MJ, Bastus NJ, Amigo R et al.: NP-mediated local and remote manipulation of protein aggregation. Nano Lett.6,110–115 (2006).• Interesting potential application of a conjugated peptide–AuNP for the treatment of Alzheimer’s disease.Crossref, Medline, CAS, Google Scholar
- 48 Levy R, Thanh TK, Doty RC et al.: Rational and combinatorial design of peptide capping ligands for AuNPs. J. Am. Chem. Soc.126,10076–10084 (2004).• One of the pioneer works related to the potential use and properties of peptides–AuNPs.Crossref, Medline, CAS, Google Scholar
- 49 Wang Z, Lévy R, Fernig DG, Brust M: The peptide route to multifunctional AuNPs. Bioconjug. Chem.16,497–500 (2005).Crossref, Medline, CAS, Google Scholar
- 50 Wang Z, Lévy R, Fernig DG, Brust M: Kinase-catalyzed modification of AuNPs: a new approach to colorimetric kinase activity screening. J. Am. Chem. Soc.128,2214–2215 (2006).Crossref, Medline, CAS, Google Scholar
- 51 De la Fuente JM, Berry CC, Riehle MO, Curtis SG: NPs targeting at cells. Langmuir22,3286–3293 (2006).Crossref, Medline, CAS, Google Scholar
- 52 Josephson L, Tung CH, Moore A, Weissleder R: High-efficiency intracellular magnetic labelling with novel superparamagnetic–Tat peptide conjugates. Bioconjug. Chem.10,186–191 (1999).Crossref, Medline, CAS, Google Scholar
- 53 Lewin M, Carlesso N, Tung CH et al.: Tat peptide-derivatized magnetic NPs allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol.18,410–414 (2000).Crossref, Medline, CAS, Google Scholar
- 54 Bhadriraju K, Hansen LK: Hepatocyte adhesion, growth and differentiated function on RGD-containing proteins. Biomaterials21(3),267–272 (2000).Crossref, Medline, CAS, Google Scholar
- 55 Meriaudeau F, Downey T, Wig A et al.: Fiber optic sensor based on gold island plasmon resonance. Sens. Actuators B54(1),106–117 (1999).Crossref, Google Scholar
- 56 Mie G: Contributions to the optics of turbid media, especially colloidal metal solutions. Ann. Physik.25,377 (1908).Crossref, CAS, Google Scholar
- 57 Kreibig U, Genzel L: Optical absorption of small metallic nanoparticles. Surf. Sci.156,678 (1985).Crossref, CAS, Google Scholar
- 58 Creighton JA, Eadon DG: Ultraviolet-visible absorption spectra of the colloidal metallic elements. Faraday Trans. J. Chem. Soc.87,3881 (1991).Crossref, CAS, Google Scholar
- 59 Link S, El-Sayed M: Spectral propierties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B103(40),8410–8426 (1999).Crossref, CAS, Google Scholar
- 60 Link S, Mohamed MB, El-Sayed M: Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B103,3073–3077 (1999).Crossref, CAS, Google Scholar
- 61 Shipway AN, Lahav M, Gabai R et al.: Investigations into the electrostatically induced aggregation of gold nanoparticles. Langmuir16(23),8789–8795 (2000).Crossref, CAS, Google Scholar
- 62 Mandal TK, Si S: pH-controlled reversible assembly of peptide-functionalized gold nanoparticles. Langmuir23,190–195 (2007).Crossref, Medline, Google Scholar
- 63 De la Fuente JM, Berry CC: Tat peptide as an efficient molecule to translocate AuNPs into the cell nucleus. Bioconjug. Chem.16,1176–1180 (2005).• Nice example of how a peptide could contribute to the translocation of AuNPs.Crossref, Medline, CAS, Google Scholar
- 64 Tkachenko AG, Xie H, Liu Y et al.: Cellular trajectories of peptide-modified gold NP complexes: comparison of nuclear localization signals and peptide transduction domain. Bioconjug. Chem.15,482–490 (2004).Crossref, Medline, CAS, Google Scholar
- 65 Tkachenko AG, Xie H, Coleman D et al.: Multifunctional gold nanoparticles–peptide complexes for nuclear targeting. J. Am. Chem. Soc.125,4700–47701 (2003).Crossref, Medline, CAS, Google Scholar
- 66 Baudhuin P, Beauvois S, Courtoy PJ: Colloidal Gold: Principles, Methods, and Applications. Hayat MA (Ed.). Academic Press, New York, NY, USA (1989).Google Scholar
- 67 Fabris L, Antonello S, Armelao L et al.: Gold nanoclusters protected by conformationally constrained peptides. J. Am. Chem. Soc.128,326–336 (2006).Crossref, Medline, CAS, Google Scholar
- 68 Hostetler MJ, Wingate JE, Zhong CJ et al.: Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir14,17–30 (1998).Crossref, CAS, Google Scholar
- 69 Bourg MC, Badia A, Lennox RB: Gold sulfur bonding in 2D and 3D self-assembled monolayers: XPS characterization. J. Phys. Chem.104,6562–6567 (2000).Crossref, CAS, Google Scholar
- 70 Jain PK, Lee KS, El-Sayed IH et al.: Calculated absorption and scattering properties of AuNPs of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B110(14),7238–7248 (2006).Crossref, Medline, CAS, Google Scholar
- 71 Slocik JM, Stone MO, Naik RR: Synthesis of gold nanoparticles using multifunctional peptides. Small1(11),1048–1052 (2005).Crossref, Medline, CAS, Google Scholar
- 72 Lévy R, Wang Z, Duchesne L et al.: A generic approach to monofunctionalized protein-like AuNPs based on immobilized metal ion affinity chromatography. Chembiochem7,592–594 (2006).Crossref, Medline, CAS, Google Scholar
- 73 Guarise C, Pasquato L, De Filippis V, Scrimin P: AuNPs-based proteasa assay. Proc. Natl Acad. Sci. USA103,3978–3982 (2006).Crossref, Medline, CAS, Google Scholar
- 74 Mo X, An Y, Yun Ch-S, Yu MS: Nanoparticle-assisted visualization of binding interactions between collagen mimetic peptide and collagen fibers. Angew. Chem. Int. Ed.45,2267–2270 (2005).Crossref, Google Scholar
- 75 Shaw LM, Olsen BR: FACIT collagens: diverse molecular bridges in extracellular matrices. Trends Biochem. Sci.16,191 (1991).Crossref, Medline, CAS, Google Scholar
- 76 Berry CC, Curtis SG: Functionalisation of magnetic NPs for application in biomedicine. J. Phys. D Appl. Phys.36,R198–R206 (2003).Crossref, CAS, Google Scholar
- 77 Hernando A, Crespo P, García MA: Metallic magnetic NPs. Scientific Worldjournal5,972–1001 (2005).Crossref, Medline, CAS, Google Scholar
- 78 Zhao M, Kircher MF, Josephson L, Weissleder R: Differential conjugation of Tat peptide to superparamagnetic NPs and its effect on cellular uptake. Bioconjug. Chem.13,840–844 (2002).Crossref, Medline, CAS, Google Scholar
- 79 Garden OA, Reynolds PR, Yates J et al.: A rapid method for labelling CD4+ T cells with ultrasmall paramagnetic iron oxide NPs for magnetic resonance imaging that preserves proliferative, regulatory and migratory behaviour in vitro. J. Inmunol. Methods314,123–133 (2006).Crossref, Medline, CAS, Google Scholar
- 80 Dodd CH, Hsu HC, Chu WJ et al.: Normal T cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic NPs. J. Immunol. Methods256,89–105 (2001).Crossref, Medline, CAS, Google Scholar
- 81 Lee SJ, Jeong JR, Shin SC et al.: Intracellular translocation of superparamagnetic iron oxide NPs encapsulated with peptide-conjugated poly(D,L lactide-co-glycolide). J. Appl. Phys.97,10Q913–1 (2005).Crossref, Google Scholar
- 82 Wadghiri YZ, Sigurdsson EM, Sadowski M et al.: Detection of Alzheimer’s amyloid in transgenic mice using magnetic resonance microimaging. Magn. Reson. Med.50,293–302 (2003).Crossref, Medline, CAS, Google Scholar
- 83 Thanh TK, Puntes VF, Tung LD, Fernig DG: Peptides as capping ligands for in situ synthesis of water solubles Co NPs for bioapplications. J. Phys. Conf. Series17,70–76 (2005).Crossref, CAS, Google Scholar
- 84 Naik RR, Jones SE, Murray CJ et al.: Peptide templates for NP synthesis derived from polymerase chain reaction-driven phage display. Adv. Funct. Mater.1,25–30 (2004).Crossref, Google Scholar

