We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging

    Matthew N Rhyner

    Department of Biomedical Engineering, Chemistry, Hematology and Oncology, and the Winship Cancer Institute, Emory University and Georgia Institute of Technology, 101 Woodruff Circle, Suite 2001, Atlanta, GA 30322, USA.

    ,
    Andrew M Smith

    Department of Biomedical Engineering, Chemistry, Hematology and Oncology, and the Winship Cancer Institute, Emory University and Georgia Institute of Technology, 101 Woodruff Circle, Suite 2001, Atlanta, GA 30322, USA.

    ,
    Xiaohu Gao

    Department of Bioengineering, University of Washington, Bagley Hall, Room 412, Campus Box 351721, Seattle, WA 98195, USA

    ,
    Hui Mao

    Department of Radiology, Emory University, Atlanta, GA 30322, USA

    ,
    Lily Yang

    Department of Surgery and Winship Cancer Institute, Emory University, 1365 Clifton Road, Suite C4000, Atlanta, GA 30322, USA

    &
    Shuming Nie

    † Author for correspondence

    Department of Biomedical Engineering, Chemistry, Hematology and Oncology, and the Winship Cancer Institute, Emory University and Georgia Institute of Technology, 101 Woodruff Circle, Suite 2001, Atlanta, GA 30322, USA.

    Center for Biotechnology and Bioengineering, Hunan University, Changsha, China

    Published Online:https://doi.org/10.2217/17435889.1.2.209

    Nanometer-sized particles, such as semiconductor quantum dots and iron oxide nanocrystals, have novel optical, electronic, magnetic or structural properties that are not available from either molecules or bulk solids. When linked with tumor-targeting ligands, such as monoclonal antibodies, peptide fragments of tumor-specific proteins or small molecules, these nanoparticles can be used to target tumor antigens (biomarkers) and tumor vasculatures with high affinity and specificity. In the mesoscopic size range of 5–100 nm diameter, quantum dots and related nanoparticles have large surface areas and functional groups that can be linked to multiple diagnostic (e.g., optical, radioisotopic or magnetic) and therapeutic (e.g., anticancer) agents. In this review, recent advances in the development and applications of bioconjugated quantum dots and multifunctional nanoparticles for in vivo tumor imaging and targeting are discussed.

    Papers of special note have been highlighted as either of interest (•) or of considerable interest (••) to readers.

    Bibliography

    • Chan WCW, Maxwell DJ, Gao XH, Bailey RE, Han MY, Nie SM: Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol.13,40–46 (2002).
    • Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP: Semiconductor nanocrystals as fluorescent biological labels. Science281,2013–2016 (1998).• Seminal paper demonstrating that semiconductor quantum dots (QDs) can be solubilized in aqueous solution and can be conjugated to biomolecules for biolabeling applications.
    • Chan WCW, Nie SM: Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science281,2016–2018 (1998).• Seminal paper that demonstrates the feasibility of preparing and using QD bioconjugates for ultrasensitive detection and imaging.
    • Mattoussi H, Mauro JM, Goldman ER et al.: Self-assembly of CdSe–ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc.122,12142–12150 (2000).
    • Akerman ME, ChanWCW, Laakkonen P, Bhatia SN, Ruoslahti E: Nanocrystal targeting in vivo. Proc. Natl Acad. Sci. USA99,12617–12621 (2002).
    • Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A: In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science298,1759–1762 (2002).•• Reports the development of lipid-encapsulated QDs for in vivo imaging in live organisms. These dots are remarkable stable and biocompatible.
    • Wu XY, Liu HJ, Liu JQ et al.: Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol.21,41–46 (2003).• Reports the use of amphiphilic polymers for solubilizing QDs and the conjugation of antibodies to the polymer coating. The results demonstrate high-quality multicolor staining of cancer cells with bioconjugated QD probes.
    • Jaiswal JK, Mattoussi H, Mauro JM, Simon SM: Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol.21,47–51 (2003).
    • Larson DR, Zipfel WR, Williams RM et al.: Water-soluble quantum dots for multiphoton fluorescence imaging in vivo.Science300,1434–1436 (2003).
    • 10  Ishii D, Kinbara K, Ishida Y et al.: Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles. Nature423,628–632 (2003).
    • 11  Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM: Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater.2,630–638 (2003).
    • 12  Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A: Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science302,442–445 (2003).•• Demonstrates that QD probes can be used to image and track individual receptor molecules on the surface of live cells (neurons).
    • 13  Lidke DS, Nagy P, Heintzmann R et al.: Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat. Biotechnol.22,198–203 (2004).•• Describes the use of antibody-conjugated QDs to study receptor endocytosis in unprecedented details.
    • 14  Smith A, Ruan G, Rhyner MN, Nie SM: Engineering luminescent quantum dots for in vivo molecular and cellular imaging. Ann. Biomed. Eng.34,1–12 (2006).
    • 15  Gao XH, Yang LL, Petros JA, Marshal FF, Simons JW, Nie SM: In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol.16,63–72 (2005).
    • 16  Smith AM, Gao XH, Nie SM: Quantum dot nanocrystals for in vivo molecular and cellular imaging. Photochem. Photobiol.80,377–385 (2004).
    • 17  Pinaud F, Michalet X, Bentolila LA et al.: Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials27,1679–1687 (2006).
    • 18  Alivisatos AP, Gu WW, Larabell C: Quantum dots as cellular probes. Annu. Rev. Biomed. Eng.7,55–76 (2005).
    • 19  Michalet X, Pinaud FF, Bentolila LA et al.: Quantum dots for live cells, in vivo imaging, and diagnostics. Science307,538–544 (2005).
    • 20  Stroh M, Zimmer JP, Duda DG et al.: Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo.Nat. Med.11,678–682 (2005).
    • 21  Goldman ER, Medintz IL, Whitley JL et al.: A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor. J. Am. Chem. Soc.127,6744–6751 (2005).
    • 22  Josephson L, Tung CH, Moore A, Weissleder R: High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates. Bioconjug. Chem.10,186–191 (1999).
    • 23  Bulte JWM, Douglas T, Witwer B et al.: Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat. Biotechnol.19,1141–1147 (2001).
    • 24  Curtis A, Wilkinson C: Nantotechniques and approaches in biotechnology. Trends Biotechnol.19,97–101 (2001).
    • 25  Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R: Biodegradable long-circulating polymeric nanospheres. Science263,1600–1603 (1994).
    • 26  Alivisatos AP: Semiconductor clusters, nanocrystals, and quantum dots. Science271,933–937 (1996).
    • 27  Duncan R, Discovery NRD: The dawning era of polymer therapeutics. Nat. Rev. Drug Discov.2,347–360 (2003).
    • 28  Jain RK: Understanding barriers to drug delivery: high resolution in vivo imaging is key. Clin. Cancer Res.5,1605–1606 (1999).
    • 29  Jain RK: Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function. J. Control. Release74,7–25 (2001).
    • 30  Lemon BI, Crooks RM: Preparation and characterization of dendrimer-encapsulated CdS semiconductor quantum dots. J. Am. Chem. Soc.122,12886–12887 (2000).
    • 31  Murray CB, Sun SH, Gaschler W, Doyle H, Betley TA, Kagan CR: Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM. J. Res. Dev.45,47–56 (2001).
    • 32  Rogach A, Kershaw S, Burt M et al.: Colloidally prepared HgTe nanocrystals with strong room-temperature infrared luminescence. Adv. Mater. Weinheim11,552 (1999).
    • 33  Gao XH, Nie SM: Doping mesoporous materials with multicolor quantum dots. J. Phys. Chem. B107,11575–11578 (2003).
    • 34  Han MY, Gao XH, Su JZ, Nie S: Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol.19,631–635 (2001).
    • 35  Yu WW, Qu LH, Guo WZ, Peng XG: Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater.15,2854–2860 (2003).
    • 36  Kim SW, Zimmer JP, Ohnishi S, Tracy JB, Frangioni JV, Bawendi MG: Engineering InAsxP1-x/InP/ZnSe III–V alloyed core/shell quantum dots for the near-infrared. J. Am. Chem. Soc.127,10526–10532 (2005).
    • 37  Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM: In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol.22,969–976 (2004).•• Reports a new class of multifunctional QD probe for simultaneous tumor targeting and imaging in live animal models. The structural design involves encapsulating luminescent QDs with an ABC triblock copolymer and linking this amphiphilic polymer to tumor-targeting ligands and drug-delivery functionalities. In vivo targeting studies of human prostate cancer growing in nude mice indicate that the QD probes can be delivered to tumor sites by enhanced permeation and retention and by antibody binding to cancer-specific cell surface biomarkers.
    • 38  Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L: Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat. Biotechnol.23,1418–1423 (2005).
    • 39  Caplan MR, Rosca EV: Targeting drugs to combinations of receptors: a modeling analysis of potential specificity. Ann. Biomed. Eng.33,1113–1124 (2005).
    • 40  Vu TQ, Maddipati R, Blute TA, Nehilla BJ, Nusblat L, Desai TA: Peptide-conjugated quantum dots activate neuronal receptors and initiate downstream signaling of neurite growth. Nano Lett.5,603–607 (2005).
    • 41  Fu AH, Micheel CM, Cha J, Chang H, Yang H, Alivisatos AP: Discrete nanostructures of quantum dots/Au with DNA. J. Am. Chem. Soc.126,10832–10833 (2004).
    • 42  Nehilla BJ, Vu TQ, Desai TA: Stoichiometry-dependent formation of quantum dot-antibody bioconjugates: a complementary atomic force microscopy and agarose gel electrophoresis study. J. Phys. Chem. B109,20724–20730 (2005).
    • 43  Ntziachristos V, Bremer C, Weissleder R: Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur. Radiol.13,195–208 (2003).
    • 44  Ntziachristos V, Schellenberger EA, Ripoll J et al.: Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate. Proc. Natl Acad. Sci. USA101,12294–12299 (2004).
    • 45  Kircher MF, Weissleder R, Josephson L: A dual fluorochrome probe for imaging proteases. Bioconjug. Chem.15,242–248 (2004).
    • 46  Schellenberger EA, Sosnovik D, Weissleder R, Josephson L: Magneto/optical annexin V, a multimodal protein. Bioconjug. Chem.15,1062–1067 (2004).
    • 47  Wang DS, He JB, Rosenzweig N, Rosenzweig Z: Superparamagnetic Fe2O3 beads–CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation. Nano Lett.4,409–413 (2004).
    • 48  Gu HW, Zheng RK, Zhang XX, Xu B: Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. J. Am. Chem. Soc.126,5664–5665 (2004).
    • 49  Patri AK, Myc A, Beals J, Thomas TP, Bander NH, Baker JR: Synthesis and in vitro testing of J591 antibody-dendrimer conjugates for targeted prostate cancer therapy. Bioconjug. Chem.15,1174–1181 (2004).
    • 50  Mulder WJ, Koole R, Brandwijk RJ et al.: Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett.6,1–6 (2006).
    • 51  van Tilborg GAF, Mulder WJM, Chin PTK et al.: Annexin A5-conjugated quantum dots with a paramagnetic lipidic coating for the multimodal detection of apoptotic cells. Bioconjug. Chem.17,865–868 ( 2006).
    • 52  Quintana A, Raczka E, Piehler L et al.: Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm. Res.19,1310–1316 (2002).
    • 53  Torchilin VP, Trubetskoy VS, Milshteyn AM et al.: Targeted delivery of diagnostic agents by surface-modified liposomes. J. Control. Release28,45–58 (1994).
    • 54  Torchilin V, Babich J, Weissig V: Liposomes and micelles to target the blood pool for imaging purposes. J. Liposome Res.10,483–499 (2000).
    • 55  Buck SM, Koo YEL, Park E et al.: Optochemical nanosensor PEBBLEs: photonic explorers for bioanalysis with biologically localized embedding. Curr. Opin. Chem. Biol.8,540–546 (2004).
    • 56  Voura EB, Jaiswal JK, Mattoussi H, Simon SM: Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat. Med.10,993–998 (2004).
    • 57  Hoshino A, Hanaki K, Suzuki K, Yamamoto K: Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body. Biochem. Biophys. Res. Commun.314,46–53 (2004).
    • 58  Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS: Noninvasive imaging of quantum dots in mice. Bioconjug. Chem.15,79–86 (2004).• Significant paper that carefully examines the in vivo behavior of injected QDs into live mice.
    • 59  Kim S, Lim YT, Soltesz EG et al.: Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol.22,93–97 (2004).•• Uses near-infrared-emitting QDs (Type II) for in vivo fluorescence imaging of lymph nodes.
    • 60  Parungo CP, Colson YL, Kim SW et al.: Sentinel lymph node mapping of the pleural space. Chest127,1799–1804 (2005).
    • 61  Soltesz EG, Kim S, Laurence RG et al.: Intraoperative sentinel lymph node mapping of the lung using near-infrared fluorescent quantum dots. Ann. Thorac. Surg.79,269–277 (2005).
    • 62  So MK, Xu CJ, Loening AM, Gambhir SS, Rao JH: Self-illuminating quantum dot conjugates for in vivo imaging. Nat. Biotechnol.24,339–343 (2006).
    • 63  Bander NH, Trabulsi EJ, Kostakoglu L et al.: Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen. J. Urol.170,1717–1721 (2003).
    • 64  Cai WB, Shin DW, Chen K et al.: Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett.6,669–676 (2006).
    • 65  Goldman ER, Clapp AR, Anderson GP et al.: Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal. Chem.76,684–688 (2004).
    • 66  Lingerfelt BM, Mattoussi H, Goldman ER, Mauro JM, Anderson GP: Preparation of quantum dot–biotin conjugates and their use in immunochromatography assays. Anal. Chem.75,4043–4049 (2003).
    • 67  Medintz IL, Konnert JH, Clapp AR et al.: A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly. Proc. Natl Acad. Sci. USA101,9612–9617 (2004).
    • 68  Lovric J, Bazzi HS, Cuie Y, Fortin GRA, Winnik FM, Maysinger D: Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J. Mol. Med.83,377–385 (2005).
    • 69  Hoshino A, Fujioka K, Oku T et al.: Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nanoletters4,2163–2169 (2004).
    • 70  Derfus AM, Chan WCW, Bhatia SN: Probing the cytotoxicity of semiconductor quantum dots. Nano Lett.4,11–18 (2004).• One of the first important papers to examine the potential toxicities of semiconductor QDs in living cell imaging applications.
    • 71  Ipe BI, Lehnig M, Niemeyer CM: On the generation of free radical species from quantum dots. Small1,706–709 (2005).
    • 72  Kirchner C, Liedl T, Kudera S et al.: Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett.5,331–338 (2005).