We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Stem cell therapy for heart failure: the science and current progress

    M Ian Phillips

    † Author for correspondence

    Keck Graduate Institute, Stem Cell Labs, 535 Watson Drive, Claremont, CA 91711, USA.

    ,
    Yao Liang Tang

    Keck Graduate Institute, Stem Cell Labs, 535 Watson Drive, Claremont, CA 91711, USA

    &
    Kai Pinkernell

    Cytori Therapeutics Inc., 3020 Callan Road, San Diego, CA 92121, USA

    Published Online:https://doi.org/10.2217/14796678.4.3.285

    Cell therapy, particularly with stem cells, has created great interest as a solution to the fact that there are limited treatments for postischemic heart disease and none that can regenerate damaged heart cells to strengthen cardiac performance. From the first efforts with myoblasts to recent clinical trials with bone marrow-derived stem cells, early reports of cell therapy suggest improvement in cardiac performance as well as other clinical end points. Based on these exciting but tentative results, other stem cell types are being explored for their particular advantages as a source of adult stem cells. Autologous adipose-derived stem cells are multilinear and can be obtained relatively easily in large quantities from patients; cardiac-derived stem cells are highly appropriate for engraftment in their natural niche, the heart. Human umbilical cord blood cells are potentially forever young and allogenic adult mesenchymal stem cells appear not to evoke the graft versus host reaction. Human embryonic stem cells are effective and can be scaled up for supply purposes. The recent discovery of induced pluripotentcy in human adult stem cells, with only three transcription factor genes, opens a whole new approach to making autologous human pluripotent stem cells from skin or other available tissues. Despite the excitement, stem cells may have to be genetically modified with heme oxygenase, Akt or other genes to survive transplantation in a hypoxic environment. Homing factors and hormones secreted from transplanted stem cells may be more important than cells if they provide the necessary stimulus to trigger cardiac regrowth to replace scar tissue. As we await results from larger and more prolonged clinical trials, the science of stem cell therapy in cardiac disease keeps progressing.

    Bibliography

    • Rosamond W, Flegal K, Furie K et al.: Heart Disease and Stroke Statistics – 2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation117(4),E25–E146 (2008).
    • Weir RA, McMurray JJ: Epidemiology of heart failure and left ventricular dysfunction after acute myocardial infarction. Curr. Heart Fail. Rep.3(4),175–180 (2006).
    • Orlic D, Hill JM, Arai AE: Stem cells for myocardial regeneration. Circ. Res.91,1092–1102 (2002).
    • Chiu RC, Zibaitis A, Kao RL: Cellular cardiomyoplasty: myocardial regeneration with satellite cell implantation. Ann. Thorac. Surg.60,12–18 (1995).
    • Tang YL: Cellular therapy with autologous skeletal myoblasts for ischemic heart disease and heart failure. Methods Mol. Med.112,193–204 (2005).
    • Zhang F, Chen Y, Yang Z et al.: Cellular cardiomyoplasty for a patient with heart failure. Cardiovasc. Radiat. Med.4,43–46 (2003).
    • Taylor DA, Atkins BZ, Hungspreugs P et al.: Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat. Med.4,929–933 (1998).
    • Menasche P: Skeletal myoblasts and cardiac repair. J. Mol. Cell. Cardiol. (2007) (Epub ahead of print).
    • Marelli D, Desrosiers C, el-Alfy M, Kao RL, Chiu RC: Cell transplantation for myocardial repair: an experimental approach. Cell Transplant.1,383–390 (1992).
    • 10  Hagege AA, Marolleau JP, Vilquin JT et al.: Skeletal myoblast transplantation in ischemic heart failure: long-term follow-up of the first Phase I cohort of patients. Circulation114,I108–I113 (2006).
    • 11  Murry CE, Field LJ, Menasche P: Cell-based cardiac repair: reflections at the 10-year point. Circulation112,3174–3183 (2005).
    • 12  Steendijk P, Smits PC, Valgimigli M, van der Giessen WJ, Onderwater EE, Serruys PW: Intramyocardial injection of skeletal myoblasts: long-term follow-up with pressure–volume loops. Nat. Clin. Pract. Cardiovasc. Med.3(Suppl. 1),S94–S100 (2006).
    • 13  Reinecke H, Poppa V, Murry CE: Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J. Mol. Cell. Cardiol.34,241–249 (2002).
    • 14  Menasche P, Hagege AA, Vilquin JT et al.: Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J. Am. Coll. Cardiol.41,1078–1083 (2003).
    • 15  Cleland JG, Coletta AP, Abdellah AT et al.: Clinical trials update from the American Heart Association 2006: OAT, SALT 1 and 2, MAGIC, ABCD, PABA-CHF). IMPROVE-CHF, and percutaneous mitral annuloplasty. Eur. J. Heart Fail.9,92–97 (2007).
    • 16  Laflamme MA, Gold J, Xu C et al.: Formation of human myocardium in the rat heart from human embryonic stem cells. Am. J. Pathol.167(3),663–671 (2005).
    • 17  Wobus AM, Wallukat G, Hescheler J: Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation48(3),173–182 (1991).
    • 18  Banach K, Halbach MD, Hu P, Hescheler J, Egert U: Development of electrical activity in cardiac myocyte aggregatesderived from mouse embryonic stem cells. Am. J. Physiol. Heart Circ. Physiol.284(6),H2114–H2123 (2003).
    • 19  Kehat I, Khimovich L, Caspi O et al.: Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol.22(10),1282–1289 (2004).
    • 20  Kehat I, Kenyagin-Karsenti D, Snir M et al.: Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest.108(3),407–414 (2001).
    • 21  Dolnikov K, Shilkrut M, Zeevi-Levin N et al.: Functional properties of human embryonic stem cell-derived cardiomyocytes: intracellular Ca2+ handling and the role of sarcoplasmic reticulum in the contraction. Stem Cells24(2),236–245 (2006).
    • 22  Xu C, He JQ, Kamp TJ et al.: Human embryonic stem cell-derived cardiomyocytes can be maintained in defined medium without serum. Stem Cells Dev.15(6),931–941 (2006).
    • 23  Binah O, Dolnikov K, Sadan O et al.: Functional and development properties of human embryonic stem cells-derived cardiomyocytes. J. Electrocardiol.40(6 Suppl.),S192–S196 (2007).
    • 24  Kehat I, Kenyagin-Karsenti D, Snir M et al.: Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest.108(3),407–414 (2001).
    • 25  Xue T, Cho HC, Akar FG et al.: Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation111,11–20 (2005).
    • 26  Laflamme MA, Chen KY, Naumova AV et al.: Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol.25(9),1015–1024 (2007).
    • 27  Mummery C, van der Heyden MA, de Boer TP et al.: Cardiomyocytes from human and mouse embryonic stem cells. Methods Mol. Med.140,249–272 (2007).
    • 28  Chachques JC, Trainini JC, Lago N et al.: Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM clinical trial): one year follow up. Cell Transplant.16(9),927–934 (2007).
    • 29  Orlic D, Kajstura J, Chimenti S, Jakoniuk I et al.: Bone marrow cells regenerate infarcted myocardium. Nature410,701–705 (2001).
    • 30  Murry CE, Soonpaa MH, Reinecke H et al.: Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature428,664–668 (2004).
    • 31  Song S, Song S, Zhang H, Cuevas J, Sanchez-Ramos J: Comparison of neuron-like cells derived from bone marrow stem cells to those differentiated from adult brain neural stem cells. Stem Cells Dev.16(5),747–756 (2007).
    • 32  Abdel-Latif A, Bolli R, Tleyjeh IM et al.: Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch. Intern. Med.167(10),989–997 (2007).
    • 33  Pelacho B, Nakamura Y, Zhang J et al.: Multipotent adult progenitor cell transplantation increases vascularity and improves left ventricular function after myocardial infarction. J. Tissue Eng. Regen. Med.1(1),51–59 (2007).
    • 34  Wang JS, Shum-Tim D, Chedrawy E, Chiu RC: The coronary delivery of marrow stromal cells for myocardial regeneration: pathophysiologic and therapeutic implications. J. Thorac. Cardiovasc. Surg.122(4),699–705 (2001).
    • 35  Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD: Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation105(1),93–98 (2002).
    • 36  Muraski JA, Rota M, Misao Y et al.: Pim-1 regulates cardiomyocyte survival downstream of Akt. Nat. Med.13(12),1467–1475 (2007).
    • 37  Makino S, Fukuda K, Miyoshi S et al.: Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest.103(5),697–705 (1999).
    • 38  Mangi AA, Noiseux N, Kong D et al.: Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat. Med.9,1195–1201 (2003).
    • 39  Tang YL, Tang Y, Zhang YC, Qian K, Shen L, Phillips MI: Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J. Am. Coll. Cardiol.46,1339–1350 (2005).
    • 40  Amado LC, Saliaris AP, Schuler KH et al.: Cardiac repair with myocardial injection of allogenic mesenchymal stem cells after myocardaial infarction. Proc. Natl Acad. Sci.102,11474–11479 (2005).
    • 41  Zuk PA, Zhu M, Mizuno H et al.: Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng.7(2),211–228 (2001).
    • 42  Zuk PA, Zhu M, Ashjian P et al.: Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell13(12),4279–4295 (2002).
    • 43  Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM: Surface protein characterization of human adipose tissue-derived stromal cells. J. Cell Physiol.189(1),54–63 (2001).
    • 44  De Ugarte DA, Morizono K, Elbarbary A et al.: Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs174(3),101–109 (2003).
    • 45  Traktuev D, Merfeld-Clauss S, Li J et al.: A population of multipotent CD34-positive adiopose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ. Res.102(1),77–85 (2008).
    • 46  Yoshimura K, Shigeura T, Matsumoto D et al.: Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J. Cell. Physiol.208(1),64–76 (2006).
    • 47  Planat-Benard V, Menard C, Andre M et al.: Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ. Res.94(2),223–229 (2004).
    • 48  Bai X, Pinkernell K, Song YH, Nabzdyk C, Reiser J, Alt E: Genetically selected stem cells from human adipose tissue express cardiac markers. Biochem. Biophys. Res. Commun.353(3),665–671 (2007).
    • 49  Rehman J, Traktuev D, Li J et al.: Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation109(10),1292–1298 (2004).
    • 50  Miyahara Y, Nagaya N, Kataoka M et al.: Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat. Med.12(4),459–465 (2006).
    • 51  Valina C, Pinkernell K, Song YH et al.: Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. Eur. Heart J.28(21),2667–2677 (2007).
    • 52  Watanabe CT, Lee S, Daniels E et al.: Intracoronary adipose tissue-derived stem cell therapy preserves left ventricular function in a porcine infarct model. Am. J. Cardiol.94(Suppl. 6A),188E (2004).
    • 53  Alt E, Scharlau M, Pinkernell K et al.: Uncultured, autologous adipose-derived stromal cells – a novel cell source for cardiac repair. Am. J. Card.96(7 Suppl. I),71H (2005).
    • 54  Fotuhi P, Song YH, Alt E: Electrophysiological consequence of adipose-derived stem cell transplantation in infarcted porcine myocardium. Europace9(12),1218–1221 (2007).
    • 55  Fraser JK, Schreiber R, Strem B et al.: Plasticity of human adipose stem cells toward endothelial cells and cardiomyocytes. Nat. Clin. Pract. Cardiovasc. Med.3(Suppl. 1),S33–S37 (2006).
    • 56  Anversa P, Rota M, Urbanek K et al.: Myocardial aging – a stem cell problem. Basic Res. Cardiol.100(6),482–493 (2005).
    • 57  Nishiyama N, Miyoshi S, Hida N et al.: The significant cardiomyogenic potential of human umbilical cord blood-derived mesenchymal stem cells in vitro. Stem Cells25,2017–2024 (2007).
    • 58  Henning RJ, Abu-Ali H, Balis JU, Morgan MB, Willing AE, Sanberg PR: Human umbilical cord blood mononuclear cells for the treatment of acute myocardial infarction. Cell Transplant.13(7–8),729–739 (2004).
    • 59  Wu KH, Zhou B, Yu CT et al.: Therapeutic potential of human umbilical cord derived stem cells in a rat myocardial infarction model. Ann. Thorac. Surg.83(4),1491–1498 (2007).
    • 60  Leri A, Kajstura J, Anversa P: Cardiac stem cells and mechanisms of myocardial regeneration. Physiol. Rev.85,1373–1416 (2005).
    • 61  Beltrami AP, Barlucchi L, Torella D et al.: Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell114,763–776 (2003).
    • 62  Oh H, Bradfute SB, Gallardo TD et al.: Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl Acad. Sci. USA100,12313–12318 (2003).
    • 63  Dawn B, Stein AB, Urbanek K et al.: Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc. Natl Acad. Sci. USA102,3766–3771 (2005).
    • 64  Messina E, De Angelis L, Frati G et al.: Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ. Res.95,911–921 (2004).
    • 65  Barile L, Chimenti I, Gaetani R et al.: Cardiac stem cells: isolation, expansion and experimental use for myocardial regeneration. Nat. Clin. Pract. Cardiovasc. Med.4(Suppl. 1),S9–S14 (2007).
    • 66  Smith RR, Barile L, Cho HC et al.: Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation115,896–908 (2007).
    • 67  Oyama T, Nagai T, Wada H et al.: Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. J. Cell Biol.176,329–341 (2007).
    • 68  Hierlihy AM, Seale P, Lobe CG, Rudnicki MA, Megeney LA: The post-natal heart contains a myocardial stem cell population. FEBS Lett.530,239–243 (2002).
    • 69  Matsuura K, Nagai T, Nishigaki N et al.: Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J. Biol. Chem.279,11384–11391 (2004).
    • 70  Tang YL, Shen L, Qian K, Phillips MI: A novel two-step procedure to expand cardiac Sca-1+ cells clonally. Biochem. Biophys. Res. Commun.359,877–883 (2007).
    • 71  Laugwitz KL, Moretti A, Lam J et al.: Postnatal Isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature433,647–653 (2005).
    • 72  Mouquet F, Pfister O, Jain M et al.: Restoration of cardiac progenitor cells after myocardial infarction by self-proliferation and selective homing of bone marrow-derived stem cells. Circ. Res.97,1090–1097 (2005).
    • 73  Tang YL, Zhao Q, Qin X et al.: Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann. Thorac. Surg.80,229–236 (2005).
    • 74  Giordano J, Gerber HP, Williams SP et al.: A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proc. Natl Acad. Sci. USA98,5780–5785 (2001).
    • 75  Shake JG, Gruber PJ, Baumgartner WA et al.: Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann. Thorac. Surg.73(6),1919–1925 (2002).
    • 76  Zhang S, Shpall E, Willerson JT, Yeh ET: Fusion of human hematopoietic progenitor cells and murine cardiomyocytes is mediated by α4 β1 integrin/vascular cell adhesion molecule-1 interaction. Circ. Res.100,693–702 (2007).
    • 77  Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC: Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature428,668–673 (2004).
    • 78  Tang YL, Zhao Q, Zhang YC et al.: Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium. Regul. Pept.117,3–10 (2004).
    • 79  Tang YL, Qian K, Zhang YC, Shen L, Phillips MI: Mobilizing of haematopoietic stem cells to ischemic myocardium by plasmid mediated stromal-cell-derived factor-1α (SDF-1α) treatment. Regul. Pept.125,1–8 (2005).
    • 80  Sadat S, Gehmert S, Song YH et al.: The cardioprotective effect of mesenchymal stem cells is mediated by IGF-I and VEGF. Biochem. Biophys. Res. Commun.363(3),674–679 (2007).
    • 81  Zhang FM, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE: Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J. Mol. Cell. Cardiol.33,907–992 (2001).
    • 82  Geng YJ: Molecular mechanisms for cardiovascular stem cell apoptosis and growth in the hearts with atherosclerotic coronary disease and ischemic heart failure. Science1010,687–697 (2003).
    • 83  Niagara NI, Haider HK, Jiang S, Ashraf M: Pharmacologically preconditioned skeletal myoblasts are resistant to oxidative stress and promote angiomyogenesis via release of paracrine factors in the infarcted heart. Circ. Res.100,545–555 (2007).
    • 84  Phillips MI, Tang YL: Genetic modification of stem cells for transplantation. Adv. Drug Deliv. Rev.60(2),160–172 (2008).
    • 85  Datta SR, Brunet A, Greenberg ME: Cellular survival: a play in three Akts. Genes Dev.13,2905–2927 (1999).
    • 86  Otterbein LE, Choi AM: Heme oxygenase: colors of defense against cellular stress. Am. J. Physiol. Lung Cell. Mol. Physiol.279,L1029–L1037 (2000).
    • 87  Tang YL, Tang Y, Zhang YC, Qian K, Shen L, Phillips MI: Protection from ischemic heart injury by a vigilant heme oxygenase-1 plasmid system. Hypertension43,746–751 (2004).
    • 88  Tang YL, Tang Y, Zhang YC et al.: A hypoxia-inducible vigilant vector system for activating therapeutic genes in ischemia. Gene Ther.12,1163–1170 (2005).
    • 89  Tang YL, Tang Y, Zhang YC, Qian K, Shen L, Phillips MI: Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J. Am. Coll. Cardiol.46,1339–1350 (2005).
    • 90  Vandervelde S, Van Luyn MJ, Tio R, Harmsen MC: Signaling factors in stem cell-mediated repair of infarcted myocardium. J. Mol. Cell. Cardiol.39,363–376 (2005).
    • 91  Vulliet PR, Greeley M, Halloran SM, MacDonald KA, Kittleson MD: Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet363,783–784 (2004).
    • 92  Askari AT, Unzek S, Popovic ZB et al.: Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet362,697–703 (2003).
    • 93  Grunewald M, Avraham I, Dor Y et al.: VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell124,175–189 (2006).
    • 94  Ceradini DJ, Kulkarni AR, Callaghan MJ et al.: Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med.10,858–864 (2004).
    • 95  Kucia M, Ratajczak J, Reca R, Janowska-Wieczorek A, Ratajczak MZ: Tissue-specific muscle, neural and liver stem/progenitor cells reside in the bone marrow, respond to an SDF-1 gradient and are mobilized into peripheral blood during stress and tissue injury. Blood Cells Mol. Dis.32,52–57 (2004).
    • 96  Abbott JD, Huang Y, Liu D, Hickey R, Krause DS, Giordano FJ: Stromal cell-derived factor-1α plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation110,3300–3305 (2004).
    • 97  Yamaguchi J, Kusano KF, Masuo O et al.: Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation107,1322–1328 (2003).
    • 98  Buning H, Braun-Falco M, Hallek M: Progress in the use of adeno-associated viral vectors for gene therapy. Cells Tissues Organs177,139–150 (2004).
    • 99  Dimmeler S, Burchfield J, Zeiher AM: Cell-based therapy of myocardial infarction. Arterioscler. Thromb. Vasc. Biol.28(2),208–216 (2007).
    • 100  Lipinski MJ, Biondi-Zoccai GG, Abbate A et al.: Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a collaborative systematic review and meta-analysis of controlled clinical trials. J. Am. Coll. Cardiol.50(18),1761–1767 (2007).
    • 101  Bartunek J, Vanderheyden M, Wijns W et al.: Bone-marrow-derived cells for cardiac stem cell therapy: safe or still under scrutiny? Nat. Clin. Pract. Cardiovasc. Med.4(Suppl. 1),S100–S105 (2007).
    • 102  Taylor DA, Zenovich AG: Cell therapy for left ventricular remodeling. Curr. Heart Fail. Rep.4(1),3–10 (2006).
    • 103  Seeger FH, Tonn T, Krzossok N, Zeiher AM, Dimmeler S: Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. Eur. Heart J.28(6),766–772 (2007).
    • 104  Assmus B, Honold J, Schächinger V et al.: Transcoronary transplantation of progenitor cells after myocardial infarction. N. Engl. J. Med.355(12),1222–1232 (2006).
    • 105  Rosenzweig A: Cardiac cell therapy – mixed results from mixed cells. N. Eng. J. Med.355(12),1274–1277 (2006).
    • 106  Schächinger V, Erbs S, Elsässer A et al.: Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N. Engl. J. Med.355(12),1210–1221 (2006).
    • 107  Schächinger V, Erbs S, Elsässer A et al.: Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur. Heart J.27(23),2775–2783 (2006).
    • 108  Schachinger V, Erbs S, Elsasser A et al.: Sustained clinical benefit from intracoronary infusion of bone marrow derived progenitor cells in patients after acute myocardial infarction. Circulation116,II777 (2007).
    • 109  Takahashi K, Tanabe K, Ohnuki M et al.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131(5),861–872 (2007).
    • 110  Yu J, Vodyanik MA, Smuga-Otto K et al.: Induced pluripotent stem cell lines derived from human somatic cells. Science21, 318(5858),1917–1920 (2007).
    • 111  Nakagawa M, Koyanagi M, Tanabe K et al.: Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol.26(1),101–106 (2008).