We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/14796678.3.6.635

Vascular regeneration occurs throughout life as a dynamic process. Millions of new endothelial cells are created with essentially the same number of cells undergoing programmed cell death or necrosis every day. As a result, the human vascular tree could be considered to essentially replace its entire endothelial population over a specified number of years. Within this network there is a compartment of vascular progenitor cells that appear to govern this homeostasis throughout life, continuously repopulating cells that die by apoptosis or necrosis. This delicate equilibrium appears to be disrupted in atherosclerotic disease processes as patients with known ischemic heart disease risk factors have been found to have lower numbers of circulating endothelial progenitor cells, which may tip the balance in favor of lesion formation, rather than repair. The aim of this article is to discuss the types of vascular progenitor cells and the mechanisms behind their mobilization, homing and differentiation into mature endothelial cells capable of vascular repair.

Papers of special note have been highlighted as either of interest (•) or of considerable interest (••) to readers.

Bibliography

  • Urbich C, Dimmeler S: Endothelial progenitor cells functional characterization. Trends Cardiovasc. Med.14,318–322 (2004).
  • Xu Q: The impact of progenitor cells in atherosclerosis. Nat. Clin. Pract. Cardiovasc. Med.3,94–101 (2006).•• Formed a hypothesis about the role of progenitor cells in the pathogenesis of atherosclerosis.
  • Aicher A, Zeiher AM, Dimmeler S: Mobilizing endothelial progenitor cells. Hypertension45,321–325 (2005).
  • Aicher A, Rentsch M, Sasaki K et al.: Nonbone marrow-derived circulating progenitor cells contribute to postnatal neovascularization following tissue ischemia. Circ. Res.100,581–589 (2007).• Used an interesting animal model that provided the direct evidence of how tissue progenitors contribute to angiogenesis in other tissues.
  • Iwami Y, Masuda H, Asahara T: Endothelial progenitor cells: past, state of the art, and future. J. Cell Mol. Med.8,488–497 (2004).
  • Case J, Mead LE, Bessler WK et al.: Human CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp. Hematol.35,1109–1118 (2007).
  • Heissig B, Hattori K, Dias S et al.: Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell109,625–637 (2002).
  • Jin DK, Shido K, Kopp HG et al.: Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat. Med.12,557–567 (2006).
  • Aicher A, Heeschen C, Mildner-Rihm C et al.: Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat. Med.9,1370–1376 (2003).
  • 10  Qin G, Ii M, Silver M et al.: Functional disruption of α4 integrin mobilizes bone marrow-derived endothelial progenitors and augments ischemic neovascularization. J. Exp. Med.203,153–163 (2006).
  • 11  Yoshioka T, Takahashi M, Shiba Y et al.: Granulocyte colony-stimulating factor (G-CSF) accelerates reendothelialization and reduces neointimal formation after vascular injury in mice. Cardiovasc. Res.70,61–69 (2006).
  • 12  Ziegelhoeffer T, Fernandez B, Kostin S et al.: Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ. Res.94,230–238 (2004).
  • 13  Kang HJ, Kim HS, Zhang SY et al.: Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet363,751–756 (2004).• Demonstrated the positive and negative effects of granulocyte colony-stimulating factor-enhanced endothelial progenitor cell (EPC) mobilization in patients with myocardial infarction.
  • 14  Vanderheyden M, Mansour S, Bartunek J: Accelerated atherosclerosis following intracoronary haematopoietic stem cell administration. Heart91,448 (2004).
  • 15  Assmus B, Walter DH, Lehmann R et al.: Intracoronary infusion of progenitor cells is not associated with aggravated restenosis development or atherosclerotic disease progression in patients with acute myocardial infarction. Eur. Heart J.27,2989–2995 (2006).
  • 16  Schachinger V, Erbs S, Elsasser A et al.: Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur. Heart J.27,2775–2783 (2006).
  • 17  Rafii S, Lyden D: Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat. Med.9,702–712 (2003).
  • 18  Losordo DW, Dimmeler S: Therapeutic angiogenesis and vasculogenesis for ischemic disease: part II: cell-based therapies. Circulation109,2692–2697 (2004).
  • 19  Mallat Z, Silvestre JS, Le Ricousse-Roussanne S et al.: Interleukin 18/interleukin-18 binding protein signaling modulates ischemia-induced neovascularization in mice hindlimb. Circ. Res.91,441–448 (2002).
  • 20  Hristov M, Zernecke A, Bidzhekov K et al.: Importance of CXC chemokine receptor 2 in the homing of human peripheral blood endothelial progenitor cells to sites of arterial injury. Circ. Res.100,590–597 (2007).
  • 21  Mayr U, Zou Y, Zhang Z et al.: Accelerated arteriosclerosis of vein grafts in inducible NO synthase-/- mice is related to decreased endothelial progenitor cell repair. Circ. Res.98,412–420 (2006).• Used intersting mouse model that provided direct evidence for how EPC homing is influenced by nitric oxide and VEGF production.
  • 22  Dulak J, Jozkowicz A, Dembinska-Kiec A et al.: Nitric oxide induces the synthesis of vascular endothelial growth factor by rat vascular smooth muscle cells. Arterioscl. Thromb. Vasc. Biol.20,659–666 (2000).
  • 23  Gershlick AH, Richardson G: Drug eluting stents. Br. Med. J.333,1233–1234 (2006).
  • 24  Rotmans JI, Heyligers JM, Verhagen HJ et al.: In vivo cell seeding with anti-CD34 antibodies successfully accelerates endothelialization but stimulates intimal hyperplasia in porcine arteriovenous expanded polytetrafluoroethylene grafts. Circulation112,12–18 (2005).
  • 25  Xiao Q, Zeng L, Zhang Z et al.: Sca-1+ progenitors derived from embryonic stem cells differentiate into endothelial cells capable of vascular repair after arterial injury. Arterioscl. Thromb. Vasc. Biol.26,2244–2251 (2006).•• First report showing stem cell antigen (Sca)-1+ cells could serve as common progenitors for endothelial and smooth muscle cells.
  • 26  Yamamoto K, Takahashi T, Asahara T et al.: Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress. J. Appl. Physiol.95,2081–2088 (2003).
  • 27  Zeng L, Xiao Q, Margariti A et al.: HDAC3 is crucial in shear- and VEGF-induced stem cell differentiation toward endothelial cells. J. Cell Biol.174,1059–1069 (2006).
  • 28  Wassmann S, Werner N, Czech T, Nickenig G: Improvement of endothelial function by systemic transfusion of vascular progenitor cells. Circ. Res.99,e74–e83 (2006).
  • 29  Hill JM, Zalos G, Halcox JP et al.: Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N. Engl. J. Med.348,593–600 (2003).
  • 30  Yoder MC, Mead LE, Prater D et al.: Re-defining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood109,1801–1809 (2006).
  • 31  You D, Waeckel L, Ebrahimian TG et al.: Increase in vascular permeability and vasodilation are critical for proangiogenic effects of stem cell therapy. Circulation114,328–338 (2006).
  • 32  Tanaka K, Sata M, Hirata Y, Nagai R: Diverse contribution of bone marrow cells to neointimal hyperplasia after mechanical vascular injuries. Circ. Res.93,783–790 (2003).
  • 33  Werner N, Priller J, Laufs U et al.: Bone marrow-derived progenitor cells modulate vascular reendothelialization and neointimal formation: effect of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition. Arterioscl. Thromb. Vasc. Biol.22,1567–1572 (2002).
  • 34  Laufs U, Werner N, Link A et al.: Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation109,220–226 (2004).
  • 35  Sainz J, Al Haj, Zen A et al.: Isolation of “side population” progenitor cells from healthy arteries of adult mice. Arterioscl. Thromb. Vasc. Biol.26,281–286 (2006).
  • 36  Abedin M, Tintut Y, Demer LL: Mesenchymal stem cells and the artery wall. Circ. Res.95671–95676 (2004).
  • 37  Hu Y, Zhang Z, Torsney E et al.: Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J. Clin. Invest.113,1258–1265 (2004).• First report on the presence of vascular progenitors in the adventitial tissue of the vessel wall.
  • 38  Fukuda D, Sata M, Tanaka K, Nagai R: Potent inhibitory effect of sirolimus on circulating vascular progenitor cells. Circulation111,926–931 (2005).
  • 39  Schober A, Karshovska E, Zernecke A, Weber C: SDF-1α-mediated tissue repair by stem cells: a promising tool in cardiovascular medicine? Trends Cardiovasc. Med.16,103–108 (2006).
  • 40  Zernecke A, Schober A, Bot I et al.: SDF-1α/CXCR4 axis is instrumental in neointimal hyperplasia and recruitment of smooth muscle progenitor cells. Circ. Res.96,784–791 (2005).
  • 41  Abbott JD, Huang Y, Liu D et al.: Stromal cell-derived factor-1α plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation110,3300–3305 (2004).
  • 42  Askari AT, Unzek S, Popovic ZB et al.: Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet362,697–703 (2003).
  • 43  Shimizu K, Sugiyama S, Aikawa M et al.: Host bone-marrow cells are a source of donor intimal smooth-muscle-like cells in murine aortic transplant arteriopathy. Nat. Med.7,738–741 (2001).
  • 44  Saiura A, Sata M, Hirata Y et al.: Circulating smooth muscle progenitor cells contribute to atherosclerosis. Nat. Med.7,382–383 (2001).
  • 45  Han CI, Campbell GR, Campbell JH: Circulating bone marrow cells can contribute to neointimal formation. J. Vasc. Res.38,113–119 (2001).
  • 46  Hillebrands JL, Klatter FA, van den Hurk BM et al.: Origin of neointimal endothelium and α-actin-positive smooth muscle cells in transplant arteriosclerosis. J. Clin. Invest.107,1411–1422 (2001).
  • 47  Li J, Han X, Jiang J et al.: Vascular smooth muscle cells of recipient origin mediate intimal expansion after aortic allotransplantation in mice. Am. J. Pathol.158,1943–1947 (2001).
  • 48  Sata M, Saiura A, Kunisato A et al.: Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat. Med.8,403–409 (2002).• Demonstrated that more than 50% of smooth muscle cells in atherosclerotic lesions are derived from bone marrow stem cells.
  • 49  Hu Y, Davison F, Ludewig B et al.: Smooth muscle cells in transplant atherosclerotic lesions are originated from recipients, but not bone marrow progenitor cells. Circulation106,1834–1839 (2002).• Report demonstrated non-bone marrow origin of smooth muscle cells in arteriosclerotic lesions.
  • 50  Hu Y, Mayr M, Metzler B et al.: Both donor and recipient origins of smooth muscle cells in vein graft atherosclerotic lesions. Circ. Res.91,e13–e20 (2003).
  • 51  Simper D, Stalboerger PG, Panetta CJ et al.: Smooth muscle progenitor cells in human blood. Circulation106,1199–1204 (2002).
  • 52  Frid MG, Kale VA, Stenmark KR: Mature vascular endothelium can give rise to smooth muscle cells via endothelial-mesenchymal transdifferentiation: in vitro analysis. Circ. Res.90,1189–1196 (2002).
  • 53  Tintut Y, Alfonso Z, Saini T et al.: Multilineage potential of cells from the artery wall. Circulation108,2505–2510 (2003).
  • 54  Zhang L, Freedman NJ, Brian L, Peppel K: Graft-extrinsic cells predominate in vein graft arterialization. Arterioscler. Thromb. Vasc. Biol.24,470–476 (2004).
  • 55  Prunet-Marcassus B, Cousin B, Caton D et al.: From heterogeneity to plasticity in adipose tissues: site-specific differences. Exp. Cell Res.312,727–736 (2006).
  • 56  Miranville A, Heeschen C, Sengenes C et al.: Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation110,349–355 (2004).
  • 57  Planat-Benard V, Silvestre JS, Cousin B et al.: Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation109,656–663 (2004).
  • 58  Rehman J, Traktuev D, Li J et al.: Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation109,1292–1298 (2004).
  • 59  Vasa M, Fichtlscherer S, Adler K et al.: Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation103,2885–2890 (2001).
  • 60  Walter DH, Rittig K, Bahlmann FH et al.: Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation105,3017–3024 (2002).
  • 61  Werner N, Junk S, Laufs U et al.: Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ. Res.93,e17–e24 (2003).
  • 62  Bompais H, Chagraoui J, Canron X et al.: Human endothelial cells derived from circulating progenitors display specific functional properties compared with mature vessel wall endothelial cells. Blood103,2577–2584 (2004).