We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Refractory myocardial ischemic syndromes: patients’ characterization and treatment goals

    Ran Kornowski

    † Author for correspondence

    Tel Aviv University, Cardiology Department, Rabin Medical Center, Petach Tikva, 49100, Israel.

    ,
    Shmuel Fuchs

    Tel Aviv University, Cardiology Department, Rabin Medical Center, Petach Tikva, 49100, Israel.

    &
    Nili Zafrir

    Tel Aviv University, Cardiology Department, Rabin Medical Center, Petach Tikva, 49100, Israel.

    Published Online:https://doi.org/10.2217/14796678.1.5.629

    Experimental strategies such as gene transfer and/or cell transplantation have been explored to enrich collateral perfusion and improve contractility in severely ischemic cardiac patients. Nonetheless, the criteria used to define those patients are not uniform and need to be standardized. The authors propose herein standardized definitions in order to characterize the ‘no option’ ischemic cardiac patients as follows: lack of revascularization options; angina symptoms; limited exercise capacity; perfusion defects; an identifiable target myocardial region. In order to define a favorable clinical effect, the following end points should be the aim of treatment: improved exercise; reduced perfusion defects; improved angina or equivalent symptoms; augmented myocardial stress response; better quality of life parameters following treatment; improved collateral-dependent perfusion. The authors propose that such a systematic approach for patient evaluation should be considered to allow an accurate assessment of treatment efficacy and the comparison of results between alternative myocardial revascularization trials.

    Bibliography

    • Mukherjee D, Bhatt DL, Roe MT et al.: Direct myocardial revascularization and angiogenesis – how many patients might be eligible? Am. J. Cardiol.84, 598–600 (1999).
    • Mukherjee D, Comella K, Bhatt DL et al.: Clinical outcome of a cohort of patients eligible for therapeutic angiogenesis or transmyocardial revascularization. Am. Heart J.142, 72–74 (2001).
    • Henderson RA, Pocock SJ, Clayton TC et al.: Seven-year outcome in the RITA-2 trial: coronary angioplasty versus medical therapy. Second Randomized Intervention Treatment of Angina (RITA-2) trial participants. J. Am. Coll. Cardiol.42, 1161–1170 (2003).
    • DeJongste MJ, Tio RA, Foreman RD: Chronic therapeutically refractory angina pectoris. Heart90, 225–230 (2004).
    • Leong L, Horowitz J, Frenneaux M: Metabolic manipulation in ischemic heart disease, a novel approach to treatment. Eur. Heart J.25, 634–641 (2004).
    • Kinnaird T, Stabile E, Burnett MS, Epstein SE: Bone-marrow-derived cells for enhancing collateral development: mechanisms, animal data, and initial clinical experiences. Circ. Res.95, 354–363 (2004).
    • Kornowski R, Baim DS, Moses JW et al.: Short- and intermediate-term clinical outcomes from direct myocardial laser revascularization guided by biosense left ventricular electromechanical mapping. Circulation102, 1120–1125 (2000).
    • Fuchs S, Satler LF, Kornowski R et al.: Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease: a feasibility study. J. Am. Coll. Cardiol.41, 1721–1724 (2003).
    • Losordo DW, Vale PR, Hendel RC et al.: Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation105, 2012–2018 (2002).
    • 10  Perin EC, Dohmann HF, Borojevic R et al.: Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation107, 2294–2302 (2003).
    • 11  Henry TD, Annex BH, McKendall GR et al.: VIVA Investigators. The VIVA trial: Vascular endothelial growth factor in Ischemia for Vascular Angiogenesis. Circulation107, 1359–1365 (2003).
    • 12  Simons M, Annex BH, Laham RJ et al.: Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation105, 788–793 (2002).
    • 13  Topol EJ, Serruys PW: Frontiers in interventional cardiology. Circulation98, 1802–1820 (1998).
    • 14  Kornowski R, Hong MK, Leon MB: Current perspectives on direct myocardial revascularization. Am. J. Cardiol.81, E44–E48 (1998).
    • 15  van Domburg RT, Lemos PA, Takkenberg JJ et al.: The impact of the introduction of drug-eluting stents on the clinical practice of surgical and percutaneous treatment of coronary artery disease. Eur. Heart J.26, 675–681 (2005).
    • 16  Moussa I, Leon MB, Baim DS et al.: Impact of sirolimus-eluting stents on outcome in diabetic patients: a SIRIUS (SIRolImUS)-coated Bx velocity balloon-expandable stent in the treatment of patients with de novo coronary artery lesions) substudy. Circulation109, 2273–2278 (2004).
    • 17  Go V, Bhatt MR, Hendel RC: The diagnostic and prognostic value of ECG-gated SPECT myocardial perfusion imaging. J. Nucl. Med.45, 912–921 (2004).
    • 18  Gibbons RJ: Myocardial perfusion imaging. Heart83, 355–360 (2000).
    • 19  Strauer BE, Kornowski R: Stem cell therapy in perspective. Circulation107, 929–934 (2003).
    • 20  Wollert KC, Meyer GP, Lotz J et al.: Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet364, 141–148 (2004).
    • 21  Herreros J, Prosper F, Perez A et al.: Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction. Eur. Heart J.24, 2012–2020 (2003).
    • 22  Strauer BE, Brehm M, Zeus T et al.: Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation106, 1913–1918 (2002).
    • 23  Cuocolo A, Acampa W, Imbriaco M et al.: The many ways to myocardial perfusion imaging. Q. J. Nucl. Med. Mol. Imaging49, 4–18 (2005).
    • 24  Gibbons RJ, Araoz PA: The year in cardiac imaging. J. Am. Coll. Cardiol.44, 1937–1944 (2004).
    • 25  Hofmann M, Wollert KC, Meyer GP et al.: Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation111, 2198–2202 (2005).
    • 26  Kornowski R: Left ventricular electromechanical mapping for determination of myocardial function and viability. J. Am. Coll. Cardiol.40, 1075–1078 (2002).
    • 27  Kornowski R, Fuchs S: Optimization of glycemic control and restenosis prevention in diabetic patients undergoing percutaneous coronary interventions. J. Am. Coll. Cardiol.43, 15–17 (2004).
    • 28  Epstein SE, Kornowski R, Fuchs S, Dvorak HF: Angiogenesis therapy: amidst the hype, the neglected potential for serious side effects. Circulation104, 115–119 (2001).
    • 29  Kang HJ, Kim HS, Zhang SY et al.: Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomized clinical trial. Lancet363, 751–756 (2004).
    • 30  Schwartz Y, Kornowski R: Progenitor and embryonic stem cell transplantation for myocardial angiogenesis and functional restoration. Eur. Heart J.24, 404–411 (2003).