We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Pharmacogenomics of anti-TB drugs-related hepatotoxicity

    Puspita Das Roy

    Human Genetics Unit, Biological Sciences Division, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India.

    ,
    Mousumi Majumder

    Human Genetics Unit, Biological Sciences Division, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India.

    &
    Bidyut Roy

    † Author for correspondence

    Human Genetics Unit, Biological Sciences Division, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India.

    Published Online:https://doi.org/10.2217/14622416.9.3.311

    Anti-TB drug (ATD)-related hepatotoxicity is a worldwide serious medical problem among TB patients. Apart from acting on the bacteria, isoniazid, the principal ATD, is also metabolized by human enzymes to generate toxic chemicals that might cause hepatotoxicity. It has been proposed that the production and elimination of the toxic metabolites depends on the activities of several enzymes, such as N-acetyl transferase 2 (NAT2), cytochrome P450 oxidase (CYP2E1) and glutathione S-transferase (GSTM1). There is now evidence that DNA sequence variations or polymorphisms at these loci (NAT2, CYP2E1 and GSTM1) could modulate the activities of these enzymes and, hence, the risk of hepatotoxicity. Since the prevalence of polymorphisms is different in worldwide populations, the risk of ATD hepatotoxicity varies in the populations. Thus, the knowledge of polymorphisms at these loci, prior to medication, may be useful in evaluating risk and controlling ATD hepatotoxicity.

    Papers of special note have been highlighted as considerable interest (•) to readers.

    Bibliography

    • Farrell GC: Drug-induced acute hepatitis. In: Drug-induced liver disease Farrell GG (Ed.). Churchill Livingstone, Edinburgh, UK, 247–299 (1994).
    • Pessayre D, Larrey D: Drug-induced liver injury: In: Oxford Textbook of clinical Hepatology. Volume 2. McIntyre N, Benhamou JP, Bircher J, Rizetto M, Rodes J (Eds). Oxford University Press, Oxford, UK (1991).
    • Sim E, Payton M, Noble M, Minchin R: An update on genetic, structural and functional studies on arylamine N-acetyltransferases in eucaryotes and procaryotes. Hum. Mol. Genet.9,2435–2441 (2000).• Review on NAT enzymes and loci from bacteria and human.
    • Nebert DW: Polymorphism in drug-metabolizing enzymes: what is their clinical relevance and why do they exist? Am. J. Hum. Genet.60,265–271 (1997).
    • Mitchel JR, Thorgeirsson UP, Black M et al.: Increased incidence of isoniazid hepatitis in rapid acetylators: possible relation to hydrazine metabolites. Clin. Pharmacol. Ther.18,70–79 (1975).
    • Yamamoto T, Suou T, Hirayama C: Elevated serum aminotransferase induced by isoniazid in relation to isoniazid acetylator phenotype. Hepatology6,295–298 (1986).
    • Mitchell JR, Zimmerman HJ, Ishak KG et al.: Isoniazid liver injury: clinical spectrum, pathology and probable pathogenesis. Ann. Intern. Med.84,181–192 (1976).
    • Gurumurthy P, Krishnamurthy MS, Nazareth O et al.: Lack of relationship between hepatic toxicity and acetylator phenotype in three thousand south Indian patients during treatment with isoniazid for tuberculosis. Am. Rev. Respir. Dis.129,58–61 (1984).
    • Singh J, Garg PK, Thakur VS, Tandon RK: Antituberculosis treatment induced hepatotoxicity: Does acetylation status matter? Indian J. Physiol. Pharmacol.39,43–46 (1995).
    • 10  Benichou C: Criteria of drug induced liver disorder: report of an International Consensus Meeting. J. Hepatol.11,272–276 (1990).
    • 11  Rapp RS, Campbell RW, Howell JC, Kendig ELJ: Isoniazid hepatotoxicity in children. Am. Rev. Respir. Dis.118,794–796 (1978).
    • 12  Pande JN, Singh SPN, Khilnani GC, Khilnani S, Tandon RK: Risk Factors for hepatotoxicity from antituberculous drugs: a case control study. Thorax51,132–136 (1996).
    • 13  Kopanoff DE, Snider D, Caras G: Isoniazid related hepatitis: a U.S. Public Health Service cooperative Surveillance study. Am. Rev. Respir. Dis.117,991–1001 (1979).
    • 14  Wong WM, Wu PC, Yuen MF et al.: Antituberculosis drug-related liver dysfunction in chronic hepatitis B infection. Hepatology31,201–206 (2000).
    • 15  Ungo JR, Jones D, Ashkin D et al.: Antituberculosis drug induced hepatotoxicity. The role of hepatitis C virus and the human immunodeficiency virus. Am. J. Respir. Crit. Care Med.157,1871–1876 (1998).
    • 16  Girling DJ: The hepatic toxicity of antituberculosis regimens containing isoniazid, rifampicin and pyrazinamide. Tubercle59,13–32 (1978).
    • 17  Bachs L, Pares A, Elena M, Piera C, Rodes J: Effects of long-term rifampicin administration in primary biliary cirrhosis. Gastroenterology102,2077–2080 (1992).
    • 18  Pessayre D, Bentata M, Deggott C et al.: Isoniazid rifampicin fulminant hepatitis: a possible consequence of enhancement of isoniazid hepatotoxicity by enzyme induction. Gastroenterology72,284–289 (1977).
    • 19  Lees AW, Allen GW, Smith J, Tyrrell WF, Fallon RJ: Toxicity from rifampicin plus isoniazid and rifampicin plus ethambutol therapy. Tubercle52,182–190 (1971).
    • 20  Fountain FF, Tolley E, Chrisman CR, Self TH: Isoniazid hepatotoxicity associated with treatment of latent tuberculosis infection: a 7-year evaluation from a public health tuberculosis clinic. Chest128,116–123 (2005).
    • 21  Saukkonen JJ, Cohn DL, Jasmer RM et al.: An official ATS statement: hepatotoxicity of antituberculosis therapy. Am. J. Respir. Crit. Care Med.174,935–952 (2006).
    • 22  Garg PK, Tandon RK: Antituberculous Agents Induced Liver Injury. In: Drug-induced Liver Disease. Kaplowitz N, Deleve LD (Eds). Marcel Dekker, New York, USA. (2003).• Review on TB treatment, hepatotoxicity and management.
    • 23  Thompson NP, Caplin ME, Hamilton MI et al.: Anti-tuberculosis medication and the liver: dangers and recommendations in management. Eur. Respir. J.8,1384–1388 (1995).
    • 24  Singh J, Garg PK, Tandon RK: Hepatotoxicity due to antituberculosis therapy: clinical profile and reintroduction of therapy. J. Clin. Gastroenterol.22,211–214 (1996).
    • 25  Nelson SD, Mitchell JR, Timbrell JA, Snodgrass WR, Corcoran GB: Isoniazid and iproniazid: activation of metabolites to toxic intermediates in man and rat. Science193,901–903 (1976).
    • 26  Lauterburg BH, Smith CV, Todd EL, Mitchel JR: Oxidation of hydrazine metabolites formed from isoniazid. Clin. Pharmacol. Ther.38,566–571 (1985).
    • 27  Sarma GR, Immanuel, C, Kailasam S, Narayana AS, Venkatesan P: Rifampicin-induced release of hydrazine from isoniazid. A possible cause of hepatitis during treatment of tuberculosis with regimens containing isoniazid and rifampicin. Am. Rev. Respir. Dis.133,1072–1075 (1986).
    • 28  Payton M, Auty R, Delgoda R, Everett M, Sim E: Cloning and characterization arylamine N-acetyltransferase genes from Mycobacterium smegmatis and Mycobacterium tuberculosis: Increased expression results in isoniazid resistance. J. Bacteriol.181,1343–1347 (1999).
    • 29  Upton AM, Mushtaq A, Victor TC et al.: Arylamine N-acetyltransferase of Mycobacterium tuberculosis is a polymorphic enzyme and a site of isoniazid metabolism. Mol. Microbiol.42,309–317 (2001).• Study on bacterial N-acetyl transferases.
    • 30  Majumder M, Sikdar N, Ghosh S, Roy B: Polymorphisms at XPD and XRCC1 DNA repair loci and increased risk of oral leukoplakia and cancer among NAT2 slow acetylators. Int. J. Cancer120,2148–2156 (2007).• Simple method to reconstruct haplotypes from genotype data.
    • 31  Golka K, Blaszkewicz M, Samimi M, Bolt HM, Selinski S: Reconstruction of N-acetyltransferase 2 haplotypes using PHASE. Arch. Toxicol. (2007) (Epub ahead of print).• Use of program to reconstruct haplotypes from genotype data.
    • 32  Batra J, Sharma SK, Ghosh B: Arylamine N-acetyl transferase gene polymorphisms markers for atopic asthma serum IgE and blood eosinophil counts. Pharmacogenomics7,673–682 (2006).• Study of linkage disequilibrium between SNPs at NAT2.
    • 33  Chen C, Ricks S, Doody DR, Fitzgibbons ED, Porter PL, Schwartz SM: N-acetyltranferase 2 polymorphisms, cigarette smoking and alcohol consumption, and oral squamous cell cancer risk. Carcinogenesis22,1993–1999 (2001).
    • 34  Morita S, Yano M, Tsujinaka T et al.: Genetic polymorphisms of drug-metabolizing enzymes and susceptibility to head-and-neck squamous carcinoma. Int. J. Cancer80,685–688 (1999).
    • 35  Ohno M, Yamaguchi I, Yamamoto I et al.: Slow N-acetyltransferase 2 genotype affects the incidence of isoniazid and rifampicin-induced hepatotoxicity. Int. J. Tuberc. Lung Dis.4,256–261 (2000).• Polymorphism at NAT2 increased the risk of anti-TB drug (ATD) hepatotoxicity in Japanese patients.
    • 36  Huang YS, Chern HD, Su WJ et al.: Polymorphisms of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatitis. Hepatology35,883–889 (2002).• Polymorphism at NAT2 increased the risk of ATD hepatotoxicity in Chinese patients.
    • 37  Cho HJ, Koh WJ, Ryu YJ et al.: Genetic polymorphisms of NAT2 and CYP2E1 associated with antituberculosis drug-induced hepatotoxicity in Korean patients with pulmonary tuberculosis. Tuberculosis (Edinb.)87(6),551–556 (2007).• Polymorphism at NAT2 increased the risk of ATD hepatotoxicity in Korean patients.
    • 38  Roy B, Chowdhury A, Kundu S et al.: Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 ‘null’ mutation. J. Gastroenterol. Hepatol.16,1033–1037 (2001).• Polymorphism at GSTM1 increased the risk of ATD hepatotoxicity in Indian patients.
    • 39  Vuilleumier N, Rossier MF, Chiappe A et al.: CYP2E1 genotype and isoniazid-induced hepatotoxicity in patients treated for latent tuberculosis. Eur. J. Clin. Pharmacol.62,423–429 (2006).• Polymorphism at CYP2E1 increased the levels of liver enzymes.
    • 40  Watkins PB: The role of cytochrome P450s in drug-induced liver disease. In: Drug-induced liver disease Kaplowitz N, Deleve LD (Eds). Marcel Dekker, New York, USA 15–33, (2003).• Possible roles of CYP2E1 enzyme in hepatotoxicity.
    • 41  Yue J, Peng RX, Yang J, Kong R, Liu J: CYP2E1 mediated isoniazid-induced hepatotoxicity in rats. Acta Pharmacol. Sin.25,699–704 (2004).• Regulation of CYP2E1 synthesis by isoniazid.
    • 42  Huang YS, Chern HD, Su WJ et al.: Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis. Hepatology37,924–930 (2003).• Polymorphism at CYP2E1 increased the risk of ATD hepatotoxicity in Chinese patients.
    • 43  Watanabe J, Hayashi S, Kawajiri K et al.: Different regulation and expression of the human CYP2E1 gene due to the Rsa 1 polymorphism in the 5’ flanking region. J. Biochem116,321–326 (1994).
    • 44  Carriere V, Berthou F, Baird S, Belloc C, Beaune P, Waziers ID: Human cytochrome P4502E1 (CYP2E1): from genotype to phenotype. Pharmacogenetics6,203–211 (1996).
    • 45  Powell H, Kitteringham NR, Pirmohamed M, Smith DA, Park BK: Expression of cytochrome P4502E1 (CYP2E1) in human liver: assessment on mRNA genotype and phenotype. Pharmacogenetics8,411–421 (1998).
    • 46  Le Marchand L, Sivaraman L, Pierce L et al.: Association of CYP1A1, GSTM1 and CYP2E1 polymorphisms with lung cancer suggest cell type specificities to tobacco carcinogens. Cancer Res.58,4858–4863 (1998).
    • 47  Sikdar S, Mahmud SKA, Paul RR, Roy B: Polymorphism in CYP1A1 and CYP2E1 genes and susceptibility to leukoplakia in Indian tobacco users. Cancer Lett.195,33–42 (2003).
    • 48  Roy B, Ghosh SK, Sutradhar D, Sikdar N, Mazumder S, Barman S: Predisposition of antituberculosis drug induced hepatotoxicity by cytochrome P450 2E1 genotype and haplotype in pediatric patients. J. Gastroenterol. Hepatol.21,781–786 (2006).• Polymorphism at CYP2E1 increased the risk of ATD hepatotoxicity in Indian patients.
    • 49  Strange RC, Jones PW, Fryer AA: Glutathione S-transferase: genetics and role in toxicology. Toxicol. Lett.112–113, 357–363 (2000).
    • 50  Simon T, Becquemont L, Mary-Krause M et al.: Combined glutathione-S-transferase M1 and T1 genetic polymorphism and tacrine hepatotoxicity. Clin. Pharmacol. Ther.67(4),432–437 (2000).
    • 51  Huang YS, Su WJ, Huang YH et al.: Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H: quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. J. Hepatol.47,128–134 (2007).• Polymorphism at GSTM1 increased the risk of ATD hepatotoxicity in Chinese patients.
    • 52  Pemble S, Schroeder KR, Spencer SR et al.: Human glutathione-S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem. J.300,271–276 (1994).
    • 53  Sikdar N, Paul RR, Roy B: Glutathione S transferase M3 (A/A) genotype as a risk factor for oral cancer and leukoplakia among Indian tobacco smokers. Int. J. Cancer:109,95–101 (2004).
    • 54  Rebbeck T, Walker A, Jaffe J, White DL, Wein AJ, Malkowicz SB: Glutathione-S-transferase µ (GSTM1) and theta (GSTT1) genotypes in the etiology of prostate cancer. Cancer Epidemiol. Biomarkers Prev.8,283–287 (1999).
    • 55  Cotton S, Sharp L, Little J, Brockton N: Glutathione-S-transferase polymorphisms and colorectal cancer: HuGE review. Am. J. Epidemiol.151,7–32 (2000).
    • 56  Geisler SA, Olshan AF: GSTM1, GSTT1 and risk of squamous cell carcinoma of head and neck: a mini-HuGE review, Am. J. Epidemiol.154,95–105 (2001).
    • 57  Roy B, Majumder PP, Dey B et al.: Ethnic differences in distributions of GSTM1 and GSTT1 homozygous “null” genotypes in India. Hum. Biol.73,443–450 (2001).
    • 58  Lee EJ, Wong JY, Yeoh PN, Gong NH: Glutathione S-transferase-theta (GSTT1) genetic polymorphism among Chinese, Malays and Indians in Singapore. Pharmacogenetics5,332–334 (1995).
    • 59  Sodhi CP, Rana SV, Mehta SK et al.: Study of oxidative stress in isoniazid induced hepatic injury in young rats with and without protein energy malnutrition. J. Biochem. Toxicol.11,139–146 (1996).
    • 60  Sodhi CP, Rana SV, Mehta S, Vaiphei K, Goel RC, Mehta SK: Study of oxidative stress in rifampicin induced hepatic injury in young rats with and without protein energy malnutrition. Hum. Exp.Toxicol.16,315–321 (1997).
    • 61  Chowdhury A, Santra A, Kundu S et al.: Induction of oxidative stress in antitubercular drug-induced hepatotoxicity. Indian J. Gastroenterol.20,97–100 (2001).
    • 62  Mehra NK, Taneja V, Chaudhuri TK et al.: Pulmonary tuberculosis In: HLA in Asia-Oceania-1986. Aizawa M (Ed.). Hokkaido University Press, Sapporo, Japan, 374–379 (1986).
    • 63  Sharma SK, Balamurugan A, Saha PK, Pandey RM, Mehra NK: Evaluation of clinical and immunogenetic risk factors for the development of hepatotoxicity during antituberculosis treatment. Am. J. Respir. Crit. Care Med.166,916–919 (2002).• HLA alleles increased the risk of ATD hepatotoxicity in Indian patients.
    • 64  Agundez JAG, Martinez C, Garcia-Martin E: Analyses of linkage disequilibrium of seven NAT2 SNPs in 2,068 genes form Caucasians: Three SNPs are enough to predict 99.4% of slow acetylation genes. Fourth International workshop on the Arylamine N-acetyltransferases, Alexandroupolis, Greece, 14–16 September (2007).
    • 65  Brennan P: Gene–environment interaction and aetiology of cancer: what does it mean and how can we measure it? Carcinogenesis23,381–387 (2002).• A review for quantitative gene-environment interaction.
    • 66  Westwood IM, Bhakta S, Russell AJ et al.: Small molecule inhibitors of arylamine N-acetyltransferase (NAT) in Mycobacterium tuberculosis mimic deletion of the nat gene: support for a novel anti-tubercular target. Fourth International workshop on the Arylamine N-acetyltransferases, Alexandroupolis, Greece, 14–16 September (2007).
    • 101  Description of different alleles at NAT2 and corresponding acetylating status www.louisville.edu/medschool/pharmacology/nat.html
    • 102  A software to restructure the haplotypes from genotype data www.stat.washington.edu/stephens/
    • 103  New nomenclature for CYP2E1 allele www.cypalleles.ki.se/cyp2e1.htm