We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Embryonic stem cell extracts: use in differentiation and reprogramming

    Jinnuo Han

    Stem Cell Laboratory, School of Psychiatry, Faculty of Medicine, The University of New South Wales, Sydney, Australia

    &
    Kuldip Sidhu

    † Author for correspondence

    Faculty of Medicine, Wallace Wurth Building, University of New South Wales, NSW 2052, Australia.

    Published Online:https://doi.org/10.2217/rme.11.8

    Stem cells have been studied extensively for decades and they have the inherent capacity to self-renew as well as to generate one or more types of specialized cells. The current focus of research on stem cells, particularly on embryonic stem cells, is on directed differentiation of these cells into specific cell types for future regenerative medicine. For the past few years, the process of reprogramming, which mediates convertion of somatic cells to their pluripotent state, has been given much attention, as it provides a possible source of autologous stem cells. In addition, understanding the molecular mechanism of differentiation and reprogramming has long been a subject of interest. In this article, we have briefly introduced stem cells and discussed the use of embryonic stem cells in reprogramming of somatic cells and differentiation to different lineages. The application of embryonic stem cells extracts in inducing reprogramming and transdifferentiation has also been described and discussed. Should this approach be successful, patient-specific cells will be produced safely and the likelihood of rejection will be decreased when used in cell therapy for many debilitating human diseases for which there is no cure such as Parkinson’s disease, Alzheimer’s disease, diabetes and others.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Fuchs E, Segre JA: Stem cells: a new lease on life. Cell100(1),143–155 (2000).
    • Rao MS, Mattson MP: Stem cells and aging: expanding the possibilities. Mech. Ageing Dev.122(7),713–734 (2001).
    • Yu J, Thomson JA: Pluripotent stem cell lines. Genes Dev.22(15),1987–1997 (2008).
    • Choumerianou DM, Dimitriou H, Kalmanti M: Stem cells: promises versus limitations. Tissue Eng. Part B Rev.14(1),53–60 (2008).
    • Weissman IL: Stem cells: units of development, units of regeneration, and units in evolution. Cell100(1),157–168 (2000).
    • Cowan C, Melton DA: ‘Stemness’: definitions, criteria, and standards. In: Essentials of Stem Cell Biology. Elsevier Inc, San Diego, CA, USA, 25–31 (2006).
    • Sidhu K, Ryan J, Lees J, Tuch B: Derivation of a new human embryonic stem cell line, Endeavour-2, and its characterization. In Vitro. Cell Dev. Biol. Anim.46(3),269–275 (2010).
    • Bajada S, Mazakova I, Richardson JB, Ashammakhi N: Updates on stem cells and their applications in regenerative medicine. J. Tissue Eng. Regen. Med.2(4),169–183 (2008).
    • Mimeault M, Batra S: Recent progress on tissue-resident adult stem cell biology and their therapeutic implications. Stem Cell Rev.4(1),27–49 (2008).
    • 10  Marshak DR, Gardner RL, Gottlieb D: Stem Cell Biology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA (2001).
    • 11  Thomson JA, Itskovitz-Eldor J, Shapiro SS et al.: Embryonic stem cell lines derived from human blastocysts. Science282(5391),1145–1147 (1998).▪▪ First paper reporting successful derivation of human embryonic stem cells.
    • 12  Sidhu KS, Ryan JP, Tuch BE: Derivation of a new human embryonic stem cell line, Endeavour-1, and its clonal propagation. Stem Cells Dev.17(1),41–52 (2008).
    • 13  Kurosawa H: Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J. Biosci. Bioeng.103(5),389–398 (2007).
    • 14  Klug MG, Soonpaa MH, Koh GY, Field LJ: Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J. Clin. Invest.98(1),216–224 (1996).
    • 15  Li M, Pevny L, Lovell-Badge R, Smith A: Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr. Biol.8(17),971–974 (1998).
    • 16  Soria B, Roche E, Berná G, León-Quinto T, Reig JA, Martín F: Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes49(2),157–162 (2000).
    • 17  Hadjantonakis A-K, Nagy A: The color of mice: in the light of GFP-variant reporters. Histochem. Cell Biol.115(1),49–58 (2001).
    • 18  Kim J-H, Auerbach JM, Rodriguez-Gomez JA et al.: Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature418(6893),50–56 (2002).
    • 19  Kanno S, Kim PKM, Sallam K, Lei J, Billiar TR, Shears LL: Nitric oxide facilitates cardiomyogenesis in mouse embryonic stem cells. Proc. Natl Acad. Sci. USA101(33),12277–12281 (2004).
    • 20  Blyszczuk P, Czyz J, Kania G et al.: Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc. Natl Acad. Sci. USA100(3),998–1003 (2003).
    • 21  Ishizaka S, Shiroi A, Kanda S et al.: Development of hepatocytes from ES cells after transfection with the HNF-3β gene. FASEB J.16(11),1444–1446 (2002).
    • 22  Zhou BY, Ye Z, Chen G, Gao ZP, Zhang YA, Cheng L: Inducible and reversible transgene expression in human stem cells after efficient and stable gene transfer. Stem Cells25(3),779–789 (2007).
    • 23  Vallier L, Alexander M, Pedersen R: Conditional gene expression in human embryonic stem cells. Stem Cells25(6),1490–1497 (2007).
    • 24  Matin MM, Walsh JR, Gokhale PJ et al.: Specific knockdown of Oct4 and β2-microglobulin expression by RNA interference in human embryonic stem cells and embryonic carcinoma cells. Stem Cells22(5),659–668 (2004).
    • 25  Hyslop L, Stojkovic M, Armstrong L et al.: Downregulation of NANOG induces differentiation of human embryonic stem cells to extraembryonic lineages. Stem Cells23(8),1035–1043 (2005).
    • 26  Zaehres H, Lensch MW, Daheron L, Stewart SA, Itskovitz-Eldor J, Daley GQ: High-efficiency RNA interference in human embryonic stem cells. Stem Cells23(3),299–305 (2005).
    • 27  Hohenstein KA, Pyle AD, Chern JY, Lock LF, Donovan PJ: Nucleofection mediates high-efficiency stable gene knockdown and transgene expression in human embryonic stem cells. Stem Cells26(6),1436–1443 (2008).
    • 28  Lickert H, Cox B, Wehrle C, Taketo MM, Kemler R, Rossant J: Dissecting Wnt/β-catenin signaling during gastrulation using RNA interference in mouse embryos. Development132(11),2599–2609 (2005).
    • 29  Schmitt TM, de Pooter RF, Gronski MA, Cho SK, Ohashi PS, Zuniga-Pflucker JC: Induction of T cell development and establishment of T cell competence from embryonic stem cells differentiated in vitro. Nat. Immunol.5(4),410–417 (2004).
    • 30  Liu H, Roy K: Biomimetic three-dimensional cultures significantly increase hematopoietic differentiation efficacy of embryonic stem cells. Tissue Eng.11(1–2),319–330 (2005).
    • 31  Liu H, Lin J, Roy K: Effect of 3D scaffold and dynamic culture condition on the global gene expression profile of mouse embryonic stem cells. Biomaterials27(36),5978–5989 (2006).
    • 32  Hwang NS, Varghese S, Theprungsirikul P, Canver A, Elisseeff J: Enhanced chondrogenic differentiation of murine embryonic stem cells in hydrogels with glucosamine. Biomaterials27(36),6015–6023 (2006).
    • 33  Hwang NS, Kim MS, Sampattavanich S, Baek JH, Zhang Z, Elisseeff J: Effects of three-dimensional culture and growth factors on the chondrogenic differentiation of murine embryonic stem cells. Stem Cells24(2),284–291 (2006).
    • 34  Li X-J, Du Z-W, Zarnowska ED et al.: Specification of motoneurons from human embryonic stem cells. Nat. Biotech.23(2),215–221 (2005).
    • 35  Shimada H, Yoshimura N, Tsuji A, Kunisada T: Differentiation of dopaminergic neurons from human embryonic stem cells: modulation of differentiation by FGF-20. J. Biosci. Bioeng.107(4),447–454 (2009).
    • 36  Perrier AL, Tabar V, Barberi T et al.: Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl Acad. Sci. USA101(34),12543–12548 (2004).
    • 37  D’Amour KA, Bang AG, Eliazer S et al.: Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat. Biotech.24(11),1392–1401 (2006).
    • 38  Kroon E, Martinson LA, Kadoya K et al.: Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotech.26(4),443–452 (2008).
    • 39  Sidhu K: Motoneurons from human embryonic stem cells: present status and future strategies for their use in regenerative medicine. In: Neurovascular Medicine Pursuing Cellular Longevity for Healthy Aging. Maiese K (Ed.). Oxford University Press, Oxford, UK, 231–254 (2008).
    • 40  Hanna J, Wernig M, Markoulaki S et al.: Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science318(5858),1920–1923 (2007).
    • 41  Narazaki G, Uosaki H, Teranishi M et al.: Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation118(5),498–506 (2008).
    • 42  Wernig M, Zhao J-P, Pruszak J et al.: Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc. Natl Acad. Sci. USA105(15),5856–5861 (2008).
    • 43  Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KHS: Viable offspring derived from fetal and adult mammalian cells. Nature385(6619),810–813 (1997).▪▪ Reports the generation of the first live offspring after somatic cell nuclear transfer.
    • 44  Chang C-C, Sung L-Y, Amano T et al.: Derivation of embryonic stem cells by nuclear transfer using cryopreserved eggs. Biol. Reprod.78 (2008).
    • 45  Brambrink T, Hochedlinger K, Bell G, Jaenisch R: ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable. Proc. Natl Acad. Sci. USA103(4),933–938 (2006).
    • 46  Yang X, Smith SL, Tian XC, Lewin HA, Renard J-P, Wakayama T: Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat. Genet.39(3),295–302 (2007).
    • 47  Dean W, Santos FT, Stojkovic M et al.: Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc. Natl Acad. Sci. USA98(24),13734–13738 (2001).
    • 48  Han J, Sidhu KS: Current concepts in reprogramming somatic cells to pluripotent state. Curr. Stem Cell Res. Ther.3(1),66–74 (2008).
    • 49  Cowan CA, Atienza J, Melton DA, Eggan K: Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science309(5739),1369–1373 (2005).▪ Embryonic stem cells were shown to reprogram human somatic cells after cell fusion.
    • 50  Yu J, Vodyanik MA, He P, Slukvin II, Thomson JA: Human embryonic stem cells reprogram myeloid precursors following cell–cell fusion. Stem Cells24(1),168–176 (2006).
    • 51  Hasegawa K, Zhang P, Wei Z, Pomeroy JE, Lu W, Pera MF: Comparison of reprogramming efficiency between transduction of reprogramming factors, cell–cell fusion, and cytoplast fusion. Stem Cells28(8),1338–1348 (2010).
    • 52  Sumer H, Jones KL, Liu J et al.: Reprogramming of somatic cells after fusion with induced pluripotent stem cells and nuclear transfer embryonic stem cells. Stem Cells Dev.19(2),239–246 (2010).
    • 53  Matsumura H, Tada M, Otsuji T et al.: Targeted chromosome elimination from ES–somatic hybrid cells. Nat. Methods4(1),23–25 (2007).
    • 54  Sumer H, Jones KL, Liu J et al.: Transcriptional changes in somatic cells recovered from embryonic stem–somatic heterokaryons. Stem Cells Dev.18(9),1361–1368 (2009).
    • 55  Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126(4),663–676 (2006).▪▪ First paper to report that four factors are sufficient to reprogram mouse somatic cells to an embryonic-like state.
    • 56  Takahashi K, Tanabe K, Ohnuki M et al.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131(5),861–872 (2007).▪▪ Among the first publications to report successful reprogramming of human somatic cells by defined factors.
    • 57  Park I-H, Zhao R, West JA et al.: Reprogramming of human somatic cells to pluripotency with defined factors. Nature451(7175),141–146 (2008).
    • 58  Yu J, Vodyanik MA, Smuga-Otto K et al.: Induced pluripotent stem cell lines derived from human somatic cells. Science318(5858),1917–1920 (2007).
    • 59  Feng B, Jiang J, Kraus P et al.: Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat. Cell Biol.11(2),197–203 (2009).
    • 60  Nakagawa M, Koyanagi M, Tanabe K et al.: Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol.26(1),101–106 (2008).
    • 61  Kim JB, Zaehres H, Wu G et al.: Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature454(7204),646–650 (2008).
    • 62  Kim JB, Sebastiano V, Wu G et al.: Oct4-induced pluripotency in adult neural stem cells. Cell136(3),411–419 (2009).
    • 63  Shi Y, Tae Do J, Desponts C, Hahm HS, Schöler HR, Ding S: A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell2(6),525–528 (2008).
    • 64  Huangfu D, Maehr R, Guo W et al.: Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol.26(7),795–797 (2008).
    • 65  Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K: Induced pluripotent stem cells generated without viral integration. Science322(5903),945–949 (2008).
    • 66  Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S: Generation of mouse induced pluripotent stem cells without viral vectors. Science322(5903),949–953 (2008).
    • 67  Sommer CA, Stadtfeld M, Murphy GJ, Hochedlinger K, Kotton DN, Mostoslavsky G: Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells27(3),543–549 (2009).
    • 68  Carey BW, Markoulaki S, Hanna J et al.: Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc. Natl Acad. Sci. USA106(1),157–162 (2009).
    • 69  Warren L, Manos PD, Ahfeldt T et al.: Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell7(5),618–630 (2010).
    • 70  Brambrink T, Foreman R, Welstead GG et al.: Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell2(2),151–159 (2008).
    • 71  Marson A, Foreman R, Chevalier B et al.: Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell3(2),132–135 (2008).
    • 72  Stadtfeld M, Maherali N, Breault DT, Hochedlinger K: Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell2(3),230–240 (2008).
    • 73  Hockemeyer D, Soldner F, Cook EG, Gao Q, Mitalipova M, Jaenisch R: A drug-inducible system for direct reprogramming of human somatic cells to pluripotency. Cell Stem Cell3,346–353 (2008).
    • 74  Ulitzur N, Gruenbaum Y: Nuclear envelope assembly around sperm chromatin in cell-free preparations from Drosophila embryos. FEBS Lett.259(1),113–116 (1989).
    • 75  Lohka MJ, Masui Y: Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components. Science220(4598),719–721 (1983).
    • 76  Leno GH: Cell-free systems to study chromatin remodelling. Methods Cell Biol.53,497–515 (1998).
    • 77  Kikyo N, Wade PA, Guschin D, Ge H, Wolffe AP: Active remodeling of somatic nuclei in egg cytoplasm by the nucleosomal ATPase ISWI. Science289(5488),2360–2362 (2000).
    • 78  Landsverk HB, Håkelien AM, Küntziger T, Robl JM, Skålhegg BS, Collas P: Reprogrammed gene expression in a somatic cell-free extract. EMBO Rep.3(4),384–389 (2002).
    • 79  Håkelien AM, Landsverk HB, Robl JM, Skålhegg BS, Collas P: Reprogramming fibroblasts to express T-cell functions using cell extracts. Nat. Biotechnol.20(5),460–466 (2002).
    • 80  Taranger CK, Noer A, Sørensen AL, Håkelien AM, Boquest AC, Collas P: Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol. Biol. Cell16(12),5719–5735 (2005).▪ Demonstrates that pluripotent cell extracts could be used to reprogram somatic cells.
    • 81  Han J, Sachdev PS, Sidhu KS: A combined epigenetic and non-genetic approach for reprogramming human somatic cells. PLoS ONE5(8),e12297 (2010).
    • 82  Mohib K, Allan D, Wang L: Human embryonic stem cell-extracts inhibit the differentiation and function of monocyte-derived dendritic cells. Stem Cell Rev.6(4),611–621 (2010).
    • 83  Collas P, Håkelien A-M: Reprogramming somatic cells for therapeutic applications. e-biomed: The Journal of Regenerative Medicine4(2),7–13 (2003).
    • 84  Håkelien A-M, Küntziger T, Gaustad KG, Marstad A, Collas P: In vitro reprogramming of nuclei and cells. Methods Mol. Biol.348,259–267 (2006).
    • 85  Duncan JL, Schlegel R: Effect of streptolysin O on erythrocyte membranes, liposomes, and lipid dispersions. A protein–cholesterol interaction. J. Cell Biol.67(1),160–174 (1975).
    • 86  Kehoe MA, Miller L, Walker JA, Boulnois GJ: Nucleotide sequence of the streptolysin O (SLO) gene: structural homologies between SLO and other membrane-damaging, thiol-activated toxins. Infect. Immun.55(12),3228–3232 (1987).
    • 87  The family of the antigenically related cholesterol-binding (‘sulfhydryl activated’) cytolytic toxins. In: Source Book of Bacterial Protein Toxins. Alouf J, Geoffroy C (Eds). Academic Press, London, UK, 147–186 (1991).
    • 88  Bhakdi S, Tranum-Jensen J, Sziegoleit A: Mechanism of membrane damage by streptolysin-O. Infect. Immun.47(1),52–60 (1985).
    • 89  Buckingham L, Duncan JL: Approximate dimensions of membrane lesions produced by streptolysin S and streptolysin O. Biochim. Biophys. Acta729(1),115–122 (1983).
    • 90  Hugo F, Reichwein J, Arvand M: Use of a monoclonal antibody to determine the mode of transmembrane pore formation by streptolysin O. Infect. Immun.54(3),641–645 (1986).
    • 91  Palmer M, Harris R, Freytag C, Kehoe M, Tranum-Jensen J, Bhakdi S: Assembly mechanism of the oligomeric streptolysin O pore: the early membrane lesion is lined by a free edge of the lipid membrane and is extended gradually during oligomerization. EMBO J.17(6),1598–1605 (1998).
    • 92  Walev I, Hombach M, Bobkiewicz W, Fenske D, Bhakdi S, Husmann M: Resealing of large transmembrane pores produced by streptolysin O in nucleated cells is accompanied by NF-kB activation and downstream events. FASEB J.16(2),237–239 (2001).
    • 93  Bhakdi S, Bayley H, Valeva A et al.: Staphylococcal α-toxin, streptolysin-O, and Escherichia coli hemolysin: prototypes of pore-forming bacterial cytolysins. Arch. Microbiol.165(2),73–79 (1996).
    • 94  Fawcett JM, Harrison SM, Orchard CH: A method for reversible permeabilization of isolated rat ventricular myocytes. Exp. Physiol.83(3),293–303 (1998).
    • 95  Alberio R, Johnson AD, Stick R, Campbell KHS: Differential nuclear remodeling of mammalian somatic cells by Xenopus laevis oocyte and egg cytoplasm. Exp. Cell Res.307(1),131–141 (2005).
    • 96  Hansis C, Barreto G, Maltry N, Niehrs C: Nuclear reprogramming of human somatic cells by Xenopus egg extract requires BRG1. Curr. Biol.14(16),1475–1480 (2004).
    • 97  Rathbone AJ, Fisher PA, Lee J-H, Craigon J, Campbell KHS: Reprogramming of ovine somatic cells with Xenopus laevis oocyte extract prior to SCNT improves live birth rate. Cell Reprogram.12(5),609–616 (2010).
    • 98  Miyamoto K, Tsukiyama T, Yang Y et al.: Cell-free extracts from mammalian oocytes partially induce nuclear reprogramming in somatic cells. Biol. Reprod.80(5),935–943 (2009).
    • 99  Tamada H, Thuan NV, Reed P et al.: Chromatin decondensation and nuclear reprogramming by nucleoplasmin. Mol. Cell Biol.26(4),1259–1271 (2006).
    • 100  Håkelien A-M, Gaustad KG, Taranger CK, Skålhegg BS, Küntziger T, Collas P: Long-term in vitro, cell-type-specific genome-wide reprogramming of gene expression. Exp. Cell Res.309(1),32–47 (2005).
    • 101  Freberg CT, Dahl JA, Timoskainen S, Collas P: Epigenetic reprogramming of OCT4 and NANOG regulatory regions by embryonal carcinoma cell extract. Mol. Biol. Cell18(5),1543–1553 (2007).
    • 102  Bru T, Clarke C, McGrew MJ, Sang HM, Wilmut I, Blow JJ: Rapid induction of pluripotency genes after exposure of human somatic cells to mouse ES cell extracts. Exp. Cell Res.314(14),2634–2642 (2008).
    • 103  Neri T, Monti M, Rebuzzini P et al.: Mouse fibroblasts are reprogrammed to Oct-4 and Rex-1 gene expression and alkaline phosphatase activity by embryonic stem cell extracts. Cloning Stem Cells9(3),394–406 (2007).
    • 104  Rajasingh J, Lambers E, Hamada H et al.: Cell-free embryonic stem cell extract-mediated derivation of multipotent stem cells from NIH3T3 fibroblasts for functional and anatomical ischemic tissue repair. Circ. Res.102(11),e107–e117 (2008).
    • 105  Miyamoto K, Furusawa T, Ohnuki M et al.: Reprogramming events of mammalian somatic cells induced by Xenopus laevis egg extracts. Mol. Reprod. Dev.74(10),1268–1277 (2007).
    • 106  Qin M, Tai G, Collas P, Polak JM, Bishop AE: Cell extract–derived differentiation of embryonic stem cells. Stem Cells23(6),712–718 (2005).
    • 107  Eguchi G, Okada TS: Differentiation of lens tissue from the progeny of chick retinal pigment cells cultured in vitro: a demonstration of a switch of cell types in clonal cell culture. Proc. Natl Acad. Sci. USA70(5),1495–1499 (1973).
    • 108  Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M: Direct conversion of fibroblasts to functional neurons by defined factors. Nature463(7284),1035–1041 (2010).
    • 109  Choi J, Costa ML, Mermelstein CS, Chagas C, Holtzer S, Holtzer H: MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells into striated mononucleated myoblasts and multinucleated myotubes. Proc. Natl Acad. Sci. USA87(20),7988–7992 (1990).
    • 110  Xie H, Ye M, Feng R, Graf T: Stepwise reprogramming of B cells into macrophages. Cell117(5),663–676 (2004).
    • 111  Kondo T, Raff M: Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science289(5485),1754–1757 (2000).
    • 112  Shen C-N, Slack JMW, Tosh D: Molecular basis of transdifferentiation of pancreas to liver. Nat. Cell Biol.2(12),879–887 (2000).
    • 113  Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA: In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature455(7213),627–632 (2008).
    • 114  Håkelien A-M, Gaustad KG, Collas P: Transient alteration of cell fate using a nuclear and cytoplasmic extract of an insulinoma cell line. Biochem. Biophys. Res. Commun.316(3),834–841 (2004).
    • 115  Gaustad KG, Boquest AC, Anderson BE, Gerdes AM, Collas P: Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes. Biochem. Biophys. Res. Commun.314(2),420–427 (2004).
    • 116  Labovsky V, Hofer EL, Feldman L et al.: Cardiomyogenic differentiation of human bone marrow mesenchymal cells: role of cardiac extract from neonatal rat cardiomyocytes. Differentiation79(2),93–101 (2010).
    • 117  Perán M, Marchal JA, López E et al.: Human cardiac tissue induces transdifferentiation of adult stem cells towards cardiomyocytes. Cytotherapy12(3),332–337 (2010).
    • 118  Pewsey E, Bruce C, Georgiou AS et al.: Proteomics analysis of epithelial cells reprogrammed in cell-free extract. Mol. Cell Proteomics8(6),1401–1412 (2009).
    • 119  Collas P, Gammelsaeter R: Novel approaches to epigenetic reprogramming of somatic cells. Cloning Stem Cells9(1),26–32 (2007).